1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
Yan H, Wu L, Wang P, Xia M, Shi Z, Huang X, Yin S, Jiang Q, Yin CC, Zhao X, Qiu X. A Comparative Analysis of the Immunoglobulin Repertoire in Leukemia Cells and B Cells in Chinese Acute Myeloid Leukemia by High-Throughput Sequencing. BIOLOGY 2024; 13:613. [PMID: 39194551 DOI: 10.3390/biology13080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
It is common knowledge that immunoglobulin (Ig) is produced by B lymphocytes and mainly functions as an antibody. However, it has been shown recently that myeloblasts from acute myeloid leukemia (AML) could also express Ig and that AML-Ig played a role in leukemogenesis and AML progression. The difference between Ig from myeloblasts and B cells has not been explored. Studying the characteristics of the Ig repertoire in myeloblasts and B cells will be helpful to understand the function and significance of AML-Ig. We performed 5' RACE-related PCR coupled with PacBio sequencing to analyze the Ig repertoire in myeloblasts and B cells from Chinese AML patients. Myeloblasts expressed all five classes of IgH, especially Igγ, with a high expression frequency. Compared with B-Ig in the same patient, AML-Ig showed different biased V(D)J usages and mutation patterns. In addition, the CDR3 length distribution of AML-Ig was significantly different from those of B-Ig. More importantly, mutations of AML-IgH, especially Igμ, Igα, and Igδ, were different from that of B-IgH in each AML patient, and the mutations frequently occurred at the sites of post-translational modification. AML-Ig has distinct characteristics of variable regions and mutations, which may have implications for disease monitoring and personalized therapy.
Collapse
Affiliation(s)
- Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| | - Miaoran Xia
- Department of Immunology, Capital Medical University, Beijing 100069, China
| | - Zhan Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| | - Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| | - Qian Jiang
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Immunology, National Health Commission, Beijing 100191, China
| |
Collapse
|
3
|
Chu M, Fu N, Zhang L, Yu M, Zhang Y, Qiu X. Non B Cell-Derived Immunoglobulin, A Brighter Horizon for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:3-10. [PMID: 38967746 DOI: 10.1007/978-981-97-0511-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The canonical theory of immunology stating that "Immunoglobulin (Ig) is produced by B lymphocytes and exerts antibody activity" has been established since the 1970s. However, the discovery of non B cell-derived Igs (non B-Igs), which can exert multiple biological activities in addition to their antibody activities, necessitates a reevaluation of the classic concept of Ig. This has been documented with a number of characteristics related to their structure, modification, genetic regulation as well as the functions associated with clinical conditions, particularly multiple cancers. The discovery of non B-Ig provides us with a new perspective to better understand not only basic immunology, but also various Ig-related clinical manifestations including autoimmune diseases, chronic inflammation, and anaphylaxis. Notably, non B-Ig can directly promote the occurrence of malignant tumours.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Ning Fu
- Department of Immunology, Southern Medical University, Guangzhou, China
| | - Liang Zhang
- Department of BIomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Meng Yu
- Shanghai R&D Department, Shanghai Baiying Biotechnology Co., Ltd., Shanghai, China
| | - Youhui Zhang
- Department of Immunology, Cancer Institute, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Zheng J, Li G, Liu W, Deng Y, Xu X. The Expression of Non B Cell-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:11-36. [PMID: 38967747 DOI: 10.1007/978-981-97-0511-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although V(D)J recombination and immunoglobulin (Ig) production are traditionally recognised to occur only in B lymphocytes and plasma cells, the expression of Igs in non-lymphoid cells, which we call non B cell-derived Igs (non B Igs), has been documented by growing studies. It has been demonstrated that non B-Igs can be widely expressed in most cell types, including, but not limited to, epithelial cells, cardiomyocytes, hematopoietic stem/progenitor cells, myeloid cells, and cells from immune-privileged sites, such as neurons and spermatogenic cells. In particular, malignant tumour cells express high level of IgG. Moreover, different from B-Igs that mainly localised on the B cell membrane and in the serum and perform immune defence function mainly, non B-Igs have been found to distribute more widely and play critical roles in immune defence, maintaining cell proliferation and survival, and promoting progression. The findings of non B-Igs may provide a wealthier breakthrough point for more therapeutic strategies for a wide range of immune-related diseases.
Collapse
Affiliation(s)
- Jie Zheng
- Hematologic Disease Laboratory, Department of Stem Cell Transplantation, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Guohui Li
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Wei Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - XiaoJun Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Cui M, Qiu X. Cancer-Derived Immunoglobulin G and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:129-135. [PMID: 38967755 DOI: 10.1007/978-981-97-0511-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Immunoglobulin (Ig) is traditionally believed to be produced solely by B cells. Nonetheless, mounting evidence has demonstrated that various types of Igs are extensively expressed in many cell types. Among them, IgG is found to be highly expressed in cancer cells and is thus labeled as cancer-derived IgG. Cancer-derived IgG shares identical fundamental structures with B cell-derived IgG, but displays several unique characteristics, including restricted variable region sequences and unique glycosylation modifications for those expressed by epithelial cancers. Cancer-derived IgG plays multiple crucial roles in carcinogenesis, including facilitating cancer invasion and metastasis, enhancing cancer stemness, contributing to chemoresistance, and remodeling the tumour microenvironment. Recent studies have discovered that cancer-derived sialylated IgG (SIA-IgG) is extensively expressed in pancreatic cancer cells and is predominantly located in the cytoplasm and on the cell membrane. Cancer-derived IgG expressed by pancreatic cancer presents a restrictive variable region sequence and contains a unique sialylation site of the Fab region. Functionally, cancer-derived IgG participates in pancreatic cancer progression via different mechanisms, such as promoting proliferation, facilitating migration and invasion, resisting apoptosis, inducing inflammation, and modulating the tumour microenvironment. SIA-IgG has shown potential as a clinical biomarker. The expression of SIA-IgG is associated with poor tumour differentiation, metastasis, and chemoresistance in pancreatic cancer. High expression of SIA-IgG can serve as an independent prognostic factor for pancreatic cancer. Additionally, SIA-IgG expression elevated with malignant progression for the precursor lesions of pancreatic cancer. These findings present a prospect of applying cancer-derived IgG as a novel diagnostic and therapeutic target in the management of pancreatic cancer, and aiding in overcoming the challenge in the treatment of this stubborn malignancy.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Sun H, Yan P, Wang R, Du Y, Zhang C, Guo F, Kang L, Cui Y. Radioiodination, purification, and evaluation of antihuman tumor-derived immunoglobulin G light chain monoclonal antibody in tumor-bearing nude mice. J Labelled Comp Radiopharm 2023; 66:108-115. [PMID: 36794560 DOI: 10.1002/jlcr.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
We report the synthesis and biological evaluation of 131 I-labeled antihuman tumor-derived immunoglobulin G (IgG) light chain monoclonal antibody (4E9) ([131 I]I-4E9) as a promising probe for tumor imaging. [131 I]I-4E9 was synthesized in radiochemical yield of 89.9 ± 4.7% with radiochemical purity of more than 99%. [131 I]I-4E9 showed high stability in normal saline and human serum. In cell uptake studies, [131 I]I-4E9 exhibited favorable binding affinity and high specificity in HeLa MR cells. In biodistribution studies, [131 I]I-4E9 showed high tumor uptake, high tumor/non-tumor ratios, and specific binding in BALB/c nu/nu mice bearing human HeLa MR xenografts. Single-photon emission computerized tomography (SPECT) imaging of [131 I]I-4E9 in the HeLa MR xenograft model demonstrated clear visualization of tumor after 48 h and confirmed specific binding in tumor. These findings suggest that [131 I]I-4E9 possesses favorable biological characteristics and warrants further investigation as a prospective probe for imaging and treatment of cancers.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Fengqin Guo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yonggang Cui
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Kendal JK, Shehata MS, Lofftus SY, Crompton JG. Cancer-Associated B Cells in Sarcoma. Cancers (Basel) 2023; 15:cancers15030622. [PMID: 36765578 PMCID: PMC9913500 DOI: 10.3390/cancers15030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Despite being one of the first types of cancers studied that hinted at a major role of the immune system in pro- and anti-tumor biology, little is known about the immune microenvironment in sarcoma. Few types of sarcoma have shown major responses to immunotherapy, and its rarity and heterogeneity makes it challenging to study. With limited systemic treatment options, further understanding of the underlying mechanisms in sarcoma immunity may prove crucial in advancing sarcoma care. While great strides have been made in the field of immunotherapy over the last few decades, most of these efforts have focused on harnessing the T cell response, with little attention on the role B cells may play in the tumor microenvironment. A growing body of evidence suggests that B cells have both pro- and anti-tumoral effects in a large variety of cancers, and in the age of bioinformatics and multi-omic analysis, the complexity of the humoral response is just being appreciated. This review explores what is currently known about the role of B cells in sarcoma, including understanding the various B cell populations associated with sarcoma, the organization of intra-tumoral B cells in tertiary lymphoid structures, recent trials in immunotherapy in sarcoma, intra-tumoral immunoglobulin, the pro-tumor effects of B cells, and exciting future areas for research.
Collapse
Affiliation(s)
- Joseph K. Kendal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90404, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael S. Shehata
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Serena Y. Lofftus
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-2644
| |
Collapse
|
8
|
Zhou TL, Chen HX, Wang YZ, Wen SJ, Dao PH, Wang YH, Chen MF. Single-cell RNA sequencing reveals the immune microenvironment and signaling networks in cystitis glandularis. Front Immunol 2023; 14:1083598. [PMID: 36814917 PMCID: PMC9940314 DOI: 10.3389/fimmu.2023.1083598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Cystitis glandularis (CG) is a rare chronic bladder hyperplastic disease that mainly manifests by recurrent frequent urination, dysuria and gross hematuria. The current lack of unified diagnosis and treatment criteria makes it essential to comprehensively describe the inflammatory immune environment in CG research. Methods Here, we performed scRNA-sequencing in CG patients for the first time, in which four inflamed tissues as well as three surrounding normal bladder mucosa tissues were included. Specifically, we isolated 18,869 cells to conduct bioinformatic analysis and performed immunofluorescence experiments. Results Our genetic results demonstrate that CG does not have the classic chromosomal variation observed in bladder tumors, reveal the specific effects of TNF in KRT15 epithelial cells, and identify a new population of PIGR epithelial cells with high immunogenicity. In addition, we confirmed the activation difference of various kinds of T cells during chronic bladder inflammation and discovered a new group of CD27-Switch memory B cells expressing a variety of immunoglobulins. Discussion CG was regarded as a rare disease and its basic study is still weak.Our study reveals, for the first time, the different kinds of cell subgroups in CG and provides the necessary basis for the clinical treatment of cystitis glandularis. Besides, our study significantly advances the research on cystitis glandularis at the cellular level and provides a theoretical basis for the future treatment of cystitis glandularis.
Collapse
Affiliation(s)
- Tai Lai Zhou
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Heng Xin Chen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Yin Zhao Wang
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Si Jie Wen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Ping Hong Dao
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Yu Hang Wang
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| | - Min Feng Chen
- Department of Urology, Xiangya Hosipital Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhang M, Zheng J, Guo J, Zhang Q, Du J, Zhao X, Wang Z, Liao Q. SIA-IgG confers poor prognosis and represents a novel therapeutic target in breast cancer. Bioengineered 2022; 13:10072-10087. [PMID: 35473571 PMCID: PMC9208471 DOI: 10.1080/21655979.2022.2063593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The incidence rate of breast cancer is the highest in the world, and major problem in the clinical treatment is the therapy resistance of breast cancer stem cells (CSCs). Thus, new therapeutic approaches targeting breast CSCs are needed. Our previous study demonstrated cancer-derived sialylated IgG (SIA-IgG) is highly expressed in cancer cells with stem/progenitor features. Furthermore, a high frequency of SIA-IgG in breast cancer tissue predicted metastasis and correlated with poor prognosis factors, and depletion of IgG in breast cancer leads to lower malignancy of cancer cells, suggesting SIA-IgG could be a potential therapeutic target in breast cancer. In this study, we first investigated the relationship of SIA-IgG expression with the clinicopathological characteristics and clinical prognosis of breast carcinoma patients, and the data confirmed that the expression of SIA-IgG confers poor prognosis in breast cancer. Successively, by using a monoclonal antibody specifically against SIA-IgG, we targeted SIA-IgG on the surface of MDA-MB-231 cells and detected their functional changes, and the results suggested SIA-IgG to be a promising antibody therapeutic target in breast cancer. In addition, we explored the mechanism of action at the molecular level of SIA-IgG on breast cancer cell, the findings suggest that SIA-IgG promotes proliferation, metastasis, and invasion of breast cancer cells through the Wnt/β-catenin signaling pathway. Developing therapeutic antibody needs effective therapeutic target, and the antibody should better be a monoclonal antibody with high affinity and high specificity. This study provides a potential prognostic marker and a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Man Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Jinhua Zheng
- Department of Pathology, Guilin Medical University Affiliated Hospital, Guilin, Guangxi province, China
| | - Junying Guo
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Juan Du
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Zhihua Wang
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| |
Collapse
|
10
|
Kdimati S, Mullins CS, Linnebacher M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development. Int J Mol Sci 2021; 22:11597. [PMID: 34769026 PMCID: PMC8583861 DOI: 10.3390/ijms222111597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human immunoglobulin G (IgG) is the primary component of the human serum antibody fraction, representing about 75% of the immunoglobulins and 10-20% of the total circulating plasma proteins. Generally, IgG sequences are highly conserved, yet the four subclasses, IgG1, IgG2, IgG3, and IgG4, differ in their physiological effector functions by binding to different IgG-Fc receptors (FcγR). Thus, despite a similarity of about 90% on the amino acid level, each subclass possesses a unique manner of antigen binding and immune complex formation. Triggering FcγR-expressing cells results in a wide range of responses, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and complement activation. Textbook knowledge implies that only B lymphocytes are capable of producing antibodies, which recognize specific antigenic structures derived from pathogens and infected endogenous or tumorigenic cells. Here, we review recent discoveries, including our own observations, about misplaced IgG expression in tumor cells. Various studies described the presence of IgG in tumor cells using immunohistology and established correlations between high antibody levels and promotion of cancer cell proliferation, invasion, and poor clinical prognosis for the respective tumor patients. Furthermore, blocking tumor-cell-derived IgG inhibited tumor cells. Tumor-cell-derived IgG might impede antigen-dependent cellular cytotoxicity by binding antigens while, at the same time, lacking the capacity for complement activation. These findings recommend tumor-cell-derived IgG as a potential therapeutic target. The observed uniqueness of Ig heavy chains expressed by tumor cells, using PCR with V(D)J rearrangement specific primers, suggests that this specific part of IgG may additionally play a role as a potential tumor marker and, thus, also qualify for the neoantigen category.
Collapse
Affiliation(s)
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany; (S.K.); (C.S.M.)
| |
Collapse
|
11
|
Li X, Chen W, Yang C, Huang Y, Jia J, Xu R, Guan S, Ma R, Yang H, Xie L. IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-Catenin pathway. Cancer Cell Int 2021; 21:397. [PMID: 34315496 PMCID: PMC8314571 DOI: 10.1186/s12935-021-02098-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background Despite current advances in gastric cancer treatment, disease metastasis and chemo-resistance remain as major hurdles against better overall prognosis. Previous studies indicated that IGHG1 as well as -Catenin serve as important regulators of tumor cellular malignancy. Therefore, understanding detailed molecular mechanism and identifying druggable target will be of great potentials in future therapeutic development. Methods Surgical tissues and gastric cancer cell lines were retrieved to evaluate IGHG1 expression for patients with or without lymph node/distal organ metastasis. Functional assays including CCK8 assay, Edu assay, sphere formation assay and transwell assay, wound healing assay, etc. were subsequently performed to evaluate the impact of IGHG1/-catenin axis on tumor cell proliferation, migration and chemo-resistance. Results Gastric cancer tissues and tumor cell lines demonstrated significantly higher level of IGHG1. Functional study further demonstrated that IGHG1 promoted proliferative and migration as well as chemo-resistance of gastric cancer tumor cells. Further experiments indicated that IGHG1 activated AKT/GSK-3/-Catenin axis, which played crucial role in regulation of proliferative and chemo-resistance of gastric cancer cells. Conclusion This study provided novel evidences that IGHG1 acted as oncogene by promotion of gastric cancer cellular proliferation, migration and chemo-resistance. Our research further suggested that IGHG1/AKT/GSK-3β/β-Catenin axis acted as novel pathway which regulated gastric cancer cellular malignant behavior. Our research might inspire future therapy development to promote overall prognosis of gastric cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02098-1.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City, 362002, Fujian Province, China
| | - Wen Chen
- Department of Traditional Chinese Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China
| | - Chunkang Yang
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, 420 Fuma Road, Jin'an District, Fuzhou City, 350005, Fujian Province, China.
| | - Yisen Huang
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City, 362002, Fujian Province, China
| | - Jing Jia
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City, 362002, Fujian Province, China
| | - Rongyu Xu
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City, 362002, Fujian Province, China.
| | - Shen Guan
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, 420 Fuma Road, Jin'an District, Fuzhou City, 350005, Fujian Province, China
| | - Ruijun Ma
- Department of General Surgery, Tongxin County People's Hospital, Ningxia Hui Autonomous Region, Wuzhong City, 751300, Tongxin County, China
| | - Haitao Yang
- Department of General Surgery, Wuzhong People's Hospital, Ningxia Hui Autonomous Region, Wuzhong City, 751000, China
| | - Lifeng Xie
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou City, 362002, Fujian Province, China
| |
Collapse
|
12
|
Zhao J, Peng H, Gao J, Nong A, Hua H, Yang S, Chen L, Wu X, Zhang H, Wang J. Current insights into the expression and functions of tumor-derived immunoglobulins. Cell Death Discov 2021; 7:148. [PMID: 34226529 PMCID: PMC8257790 DOI: 10.1038/s41420-021-00550-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have reported expressions of immunoglobulins (Igs) in many human tumor tissues and cells. Tumor-derived Igs have displayed multiple significant functions which are different from classical Igs produced by B lymphocytes and plasma cells. This review will concentrate on major progress in expressions, functions, and mechanisms of tumor-derived Igs, similarities and differences between tumor-derived Igs and B-cell-derived Igs. We also discuss the future research directions of tumor-derived Igs, including their structural characteristics, physicochemical properties, mechanisms for rearrangement and expression regulation, signaling pathways involved, and clinical applications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hui Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shulin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Liying Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xiangsheng Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China.
| |
Collapse
|
13
|
Single-Cell Sequencing Confirms Transcripts and V HDJ H Rearrangements of Immunoglobulin Genes in Human Podocytes. Genes (Basel) 2021; 12:genes12040472. [PMID: 33806147 PMCID: PMC8064494 DOI: 10.3390/genes12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Most glomerular diseases are associated with inflammation caused by deposited pathogenic immunoglobulins (Igs), which are believed to be produced by B cells. However, our previous study indicated that the human podocyte cell line can produce IgG. In this study, we aimed to confirm the transcripts and characterize the repertoires of Igs in primary podocytes at single cell level. First, single-cell RNA sequencing of cell suspensions from “normal” kidney cortexes by a 10xGenomics Chromium system detected Ig transcripts in 7/360 podocytes and Ig gene segments in 106/360 podocytes. Then, we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in 48 single podocytes and found that five classes of Ig heavy chains were amplified in podocytes. Four-hundred and twenty-nine VHDJH rearrangement sequences were analyzed; podocyte-derived Igs exhibited classic VHDJH rearrangements with nucleotide additions and somatic hypermutations, biased VH1 usage and restricted diversity. Moreover, compared with the podocytes from healthy control that usually expressed one class of Ig and one VHDJH pattern, podocytes from patients expressed more classes of Ig, VHDJH patterns and somatic hypermutations. These findings suggested that podocytes can express Igs in normal condition and increase diversity in pathological situations.
Collapse
|
14
|
Cui M, Huang J, Zhang S, Liu Q, Liao Q, Qiu X. Immunoglobulin Expression in Cancer Cells and Its Critical Roles in Tumorigenesis. Front Immunol 2021; 12:613530. [PMID: 33841396 PMCID: PMC8024581 DOI: 10.3389/fimmu.2021.613530] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traditionally, immunoglobulin (Ig) was believed to be produced by only B-lineage cells. However, increasing evidence has revealed a high level of Ig expression in cancer cells, and this Ig is named cancer-derived Ig. Further studies have shown that cancer-derived Ig shares identical basic structures with B cell-derived Ig but exhibits several distinct characteristics, including restricted variable region sequences and aberrant glycosylation. In contrast to B cell-derived Ig, which functions as an antibody in the humoral immune response, cancer-derived Ig exerts profound protumorigenic effects via multiple mechanisms, including promoting the malignant behaviors of cancer cells, mediating tumor immune escape, inducing inflammation, and activating the aggregation of platelets. Importantly, cancer-derived Ig shows promising potential for application as a diagnostic and therapeutic target in cancer patients. In this review, we summarize progress in the research area of cancer-derived Ig and discuss the perspectives of applying this novel target for the management of cancer patients.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
NBIGV-DB: A dedicated database of non-B cell derived immunoglobulin variable region. Gene 2020; 772:145378. [PMID: 33359127 DOI: 10.1016/j.gene.2020.145378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Immunoglobulins (Ig) are important immune molecules that possess highly diverse variable region sequences enabling antigen recognition. According to classical immune theory, B lymphocytes have been considered the only source of Ig production (B-Igs). However, accumulating evidence have suggested that Igs are also produced by many non-B cells (non-B Igs), including epithelial cells, neurons, germ cells, as well as myeloid cells of hemopoietic system. Besides acting as bona fide antibodies, Non-B Igs have alternative cellular functions, such as promotion of cell survival, adhesion and migration. More importantly, Unlike the unlimited sequence diversity of B-Igs, the non-B Igs exhibit conserved V(D)J patterns across the same lineages. To support the analysis and comparison of variable region sequences from Igs, produced by B and non-B cells, we established a database (NBIGV) constituted by a non-B Ig variable region repertoire, which includes 727,989 VHDJH and VκJκ recombination sequences of non-B Igs sequenced from mouse samples. Upon database search, users can view, browse and investigate the variable region sequences of non-B Igs according to respective mice strains and tissues as well as Ig classes. Moreover, users can easily download selected sequences and/or compare sequences of interest with known non-B Ig sequences present in the database using NCBI-BLAST algorithms. Additionally, our database integrates a submission page and supplementary sample information. The NBIGV database may serve as a valuable resource for sequence analyses of Non-B Igs. NBIGV database is freely available at http://nbigv.org.
Collapse
|
16
|
Madrid FF, Grossman LI, Aras S. Mitochondria Autoimmunity and MNRR1 in Breast Carcinogenesis: A Review. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:138-158. [PMID: 33615312 PMCID: PMC7894625 DOI: 10.33696/cancerimmunol.2.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We review here the evidence for participation of mitochondrial autoimmunity in BC inception and progression and propose a new paradigm that may challenge the prevailing thinking in oncogenesis by suggesting that mitochondrial autoimmunity is a major contributor to breast carcinogenesis and probably to the inception and progression of other solid tumors. It has been shown that MNRR1 mediated mitochondrial-nuclear function promotes BC cell growth and migration and the development of metastasis and constitutes a proof of concept supporting the participation of mitochondrial autoimmunity in breast carcinogenesis. The resemblance of the autoantibody profile in BC detected by IFA with that in the rheumatic autoimmune diseases suggested that studies on the autoantibody response to tumor associated antigens and the characterization of the mtDNA- and nDNA-encoded antigens may provide functional data on breast carcinogenesis. We also review the studies supporting the view that a panel of autoreactive nDNA-encoded mitochondrial antigens in addition to MNRR1 may be involved in breast carcinogenesis. These include GAPDH, PKM2, GSTP1, SPATA5, MFF, ncRNA PINK1-AS/DDOST as probably contributing to BC progression and metastases and the evidence suggesting that DDX21 orchestrates a complex signaling network with participation of JUND and ATF3 driving chronic inflammation and breast tumorigenesis. We suggest that the widespread autoreactivity of mtDNA- and nDNA-encoded mitochondrial proteins found in BC sera may be the reflection of autoimmunity triggered by mitochondrial and non-mitochondrial tumor associated antigens involved in multiple tumorigenic pathways. Furthermore, we suggest that mitochondrial proteins may contribute to mitochondrial dysfunction in BC even if mitochondrial respiration is found to be within normal limits. However, although the studies show that mitochondrial autoimmunity is a major factor in breast cancer inception and progression, it is not the only factor since there is a multiplex autoantibody profile targeting centrosome and stem cell antigens as well as anti-idiotypic antibodies, revealing the complex signaling network involved in breast carcinogenesis. In summary, the studies reviewed here open new, unexpected therapeutic avenues for cancer prevention and treatment of patients with cancer derived from an entirely new perspective of breast carcinogenesis.
Collapse
Affiliation(s)
- Félix Fernández Madrid
- Department of Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
17
|
Wang LM, Gan YH. Cancer-derived IgG involved in cisplatin resistance through PTP-BAS/Src/PDK1/AKT signaling pathway. Oral Dis 2020; 27:464-474. [PMID: 32730654 DOI: 10.1111/odi.13583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to explore whether knockdown of cancer-derived IgG (CIgG) could enhance cisplatin-induced anti-cancer effects. MATERIALS AND METHODS Cancer-derived IgG was knocked down by siRNA or Tet-on shRNA in the absence or presence of cisplatin in WSU-HN6 or CAL27 cells. Cell proliferation, apoptosis, and mobility were evaluated using CCK-8, flow cytometry, and transwell assays, respectively. Molecular events were investigated using real-time PCR and Western blot assays. RESULTS Knockdown of CIgG significantly promoted cisplatin-induced apoptosis and inhibition of cell proliferation, migration, and invasion. Cisplatin upregulated CIgG expression and phosphorylation of AKT and PDK1, while knockdown of CIgG downregulated phosphorylation of AKT and PDK1, and blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Moreover, knockdown of CIgG blocked cisplatin-induced upregulation of Src phosphorylation, and knockdown of Src blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Overexpression of Src upregulated AKT and PDK1 phosphorylation. Furthermore, knockdown of CIgG upregulated PTP-BAS mRNA and protein expression, whereas cisplatin downregulated PTP-BAS protein, but not mRNA expression; knockdown of PTP-BAS upregulated phosphorylation of Src, PDK1, AKT, and blocked CIgG knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. CONCLUSION Knockdown of CIgG enhanced the anti-cancer effects of cisplatin through PTP-BAS/Src/PDK1/AKT signaling pathway in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Lu-Ming Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
18
|
Qin C, Sheng Z, Huang X, Tang J, Liu Y, Xu T, Qiu X. Cancer-driven IgG promotes the development of prostate cancer though the SOX2-CIgG pathway. Prostate 2020; 80:1134-1144. [PMID: 32628304 DOI: 10.1002/pros.24042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although androgen deprivation therapy (ADT) is the initial treatment strategy for prostate cancer (PCa), recurrent castration-resistant prostate cancer (CRPC) eventually ensues. In this study, cancer-derived immunoglobulin G (CIgG) is found to be induced after ADT, identifying CIgG as a potential CRPC driver gene. METHODS The expression of CIgG and its clinical significance in PCa tissue was analyzed by The Cancer Genome Atlas database and immunohistochemistry. Subsequently, the sequence features of prostate cell line VHDJH rearrangements were analyzed. We also assessed the effect of CIgG on the migratory, invasive and proliferative abilities of PCa cells in vitro and vivo. Suspended microsphere, colony formation and drug-resistant assays were performed using PC3 cells with high CIgG expression (CIgGhigh ) and low CIgG expression (CIgG-/low ), and A nonobese diabetic/severe combined immunodeficiency mouse tumor xenograft model was developed for the study of the tumorigenic effects of the different cell populations. The SOX2-CIgG signaling pathway was validated by immunohistochemistry, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, Western blot, luciferase, and chromatin immunoprecipitation assays and bioinformatics analyses. Finally, we investigated the effect of RP215 inhibition on the progression of PCa in vivo using a Babl/c nude mouse xenograft model. RESULTS CIgG is frequently expressed in PCa and associated with clinicopathological characteristics, moreover, CIgG transcripts with unique patterns of VHDJH rearrangements are found in PCa cells. Functional analyses identified that CIgG was induced by ADT and upregulated by SOX2 (SRY (sex determining region Y)-box 2) in PCa, promoting the development of PCa. In addition, our findings underscore a novel role of CIgG signaling in the maintenance of stemness and the progression of cancer through mitogen activated protein kinase/extracellular-signal-regulated kinase and AKT in PCa. In vivo experiments further demonstrated that depleting CIgG significantly suppressed the growth of PCa cell xenografts. Furthermore, a CIgG monoclonal antibody named RP215 exhibits tumor inhibitory effect as well. CONCLUSION Our data suggests that CIgG could be a driver of PCa development, and that targeting the SOX2-CIgG axis may therefore inhibit PCa development after ADT.
Collapse
Affiliation(s)
- Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhengzuo Sheng
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingshu Tang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Cui M, Hu Y, Zheng B, Zhang S, Zhang X, Wang M, Qiu XY, Liao Q, Zhao YP. Cancer-derived immunoglobulin G: A novel marker for differential diagnosis and relapse prediction in parathyroid carcinoma. Clin Endocrinol (Oxf) 2020; 92:461-467. [PMID: 31943291 DOI: 10.1111/cen.14158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A differential diagnosis between malignant and benign parathyroid lesions is difficult due to their overlapping clinicopathological characteristics. As such, molecular markers are urgently needed. Cancer-derived immunoglobulin G (CIgG) is a novel molecule playing important roles in carcinogenesis. The present study aimed to investigate the clinical significance of CIgG in parathyroid neoplasms. PATIENTS Fifty patients with parathyroid carcinoma (PC), 50 patients with parathyroid adenoma (PA) and 9 patients with parathyroid hyperplasia (PH) were retrospectively enrolled in the current study. MEASUREMENTS Immunohistochemistry was used to assess CIgG expression in these patients. The performance of CIgG expression in the differential diagnosis between parathyroid lesions was assessed by receiver operating characteristic (ROC) curves. The associations between CIgG expression and clinical outcomes were also analysed by Kaplan-Meier survival curves and Cox proportional hazards models. RESULTS The expression level of CIgG was significantly higher in PC patients than in PA or PH patients (P < .001). CIgG expression discriminated PC from PA or PH, with an area under the ROC curve of 0.84 (76% sensitivity and 88% specificity). High CIgG expression was significantly associated with worse disease-free survival (DFS) in PC patients (P = .018) and was validated as an independent risk factor for DFS in the multivariable Cox regression analysis (P = .002). CONCLUSIONS The ability of CIgG expression both in the differential diagnosis between malignant and benign parathyroid lesions and in the prognosis prediction for PC was shown in the present study. CIgG might be used as a novel biomarker of parathyroid lesions in future clinical practice.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bang Zheng
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Yan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Chu LY, Peng YH, Weng XF, Xie JJ, Xu YW. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma. World J Gastroenterol 2020; 26:1708-1725. [PMID: 32351288 PMCID: PMC7183865 DOI: 10.3748/wjg.v26.i15.1708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system worldwide, especially in China. Due to the lack of effective early detection methods, ESCC patients often present at an advanced stage at the time of diagnosis, which seriously affects the prognosis of patients. At present, early detection of ESCC mainly depends on invasive and expensive endoscopy and histopathological biopsy. Therefore, there is an unmet need for a non-invasive method to detect ESCC in the early stages. With the emergence of a large class of non-invasive diagnostic tools, serum tumor markers have attracted much attention because of their potential for detection of early tumors. Therefore, the identification of serum tumor markers for early detection of ESCC is undoubtedly one of the most effective ways to achieve early diagnosis and treatment of ESCC. This article reviews the recent advances in the discovery of blood-based ESCC biomarkers, and discusses the origins, clinical applications, and technical challenges of clinical validation of various types of biomarkers.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xue-Fen Weng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
21
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
22
|
Cui M, You L, Zheng B, Huang X, Liu Q, Huang J, Pan B, Qiu X, Liao Q, Zhao Y. High Expression of Cancer-Derived Glycosylated Immunoglobulin G Predicts Poor Prognosis in Pancreatic Ductal Adenocarcinoma. J Cancer 2020; 11:2213-2221. [PMID: 32127948 PMCID: PMC7052941 DOI: 10.7150/jca.39800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Cancer-derived immunoglobulin G (CIgG) has been detected in various cancers and plays important roles in carcinogenesis. The present study aimed to investigate its clinical significance in pancreatic ductal adenocarcinoma (PDAC). Methods: Using tissue microarrays (TMAs) and immunohistochemistry, we assessed CIgG expression in 326 patients who underwent surgical resection for PDAC. The associations between CIgG expression and clinicopathological features and clinical outcomes were analyzed. Functional experiments were also performed to investigate the effect of CIgG on PDAC cells. Results: High CIgG expression was related to poor tumor differentiation and metastasis during follow-up and was associated with poor disease-free survival (DFS) and overall survival (OS). A multivariate Cox regression analysis identified high CIgG expression as an independent prognostic factor for DFS and OS. The incorporation of CIgG expression improved the accuracy of an established prognosis prediction model for 1-year OS and 2-year OS. In vitro studies showed that knocking down CIgG profoundly suppressed the proliferation, migration, and invasion capacity of PDAC cells. Conclusions: CIgG contributes to the malignant behaviors of PDAC and offers a powerful prognostic predictor for these patients.
Collapse
Affiliation(s)
- Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bang Zheng
- School of Public Health, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Boju Pan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
23
|
Xu Q, Zhang Z, Chen Z, Zhang B, Zhao C, Zhang Y, Zhao C, Deng X, Zhou Y, Wu Y, Gu J. Nonspecific immunoglobulin G is effective in preventing and treating cancer in mice. Cancer Manag Res 2019; 11:2073-2085. [PMID: 30881131 PMCID: PMC6410752 DOI: 10.2147/cmar.s188172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous accidental findings showed that administration of immunoglobulin G (IgG) in treating autoimmune diseases was able to inhibit cancers that happened to grow in these patients. However, such treatment has not been used to treat cancer patients clinically. The mechanism and optimal dosages of this treatment have not been established. Subsequent animal experiments confirmed this effect, but all previous studies in animal models used human IgG which was heterogeneous to the animal hosts and therefore could adversely interfere with the results. MATERIALS AND METHODS We tested different dosages of mouse IgG in treating and preventing three syngeneic cancer types (melanoma, colon cancer, and breast cancer) in three immune potent mouse models. The expression of Ki67, CD34, VEGF, MMPs, and cytokines in tumor tissues were examined with immunohistochemistry or quantitative real-time PCR to evaluate tumor proliferation, vascularization, metastasis, and proinflammatory response in the tumor microenvironment. RESULTS We found that low-dose IgG could effectively inhibit cancer progression, regulate tumor vessel normalization, and prolong survival. Administration of IgG before cancer cell inoculation could also prevent the development of cancer. In addition, IgG caused changes in a number of cytokines and skewed macrophage polarization toward M1-like phenotype, characterized by proinflammatory activity and inhibition of proliferation of cancer cells. CONCLUSION Our findings suggest that nonspecific IgG at low dosages could be a promising candidate for cancer prevention and treatment.
Collapse
Affiliation(s)
- Qian Xu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Zaiping Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Zhiming Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Biying Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Chanyuan Zhao
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Yimin Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Conghui Zhao
- Department of Pathology, Beijing University Health Science Center, Beijing 100083, China,
| | - Xiaodong Deng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Yao Zhou
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Yanyun Wu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China,
- Department of Pathology, Beijing University Health Science Center, Beijing 100083, China,
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu 610066, Sichuan, China,
| |
Collapse
|
24
|
The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Autoimmun Rev 2017; 16:1270-1281. [PMID: 29042252 DOI: 10.1016/j.autrev.2017.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
The existence of autoantibodies towards an individual's own proteins or nucleic acids has been established for more than 100years, and for a long period, these autoantibodies have been believed to be closely associated with autoimmune diseases. However, in recent years, researchers have become more interested in the role and application of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Over the past few decades, numerous epidemiological studies have shown that the risk of certain cancers is significantly altered (increased or decreased) in patients with autoimmune diseases, which suggests that autoantibodies may play either promoting or suppressing roles in cancer progression. The idea that autoantibodies are directly involved in tumour progression gains special support by the findings that some antibodies secreted by a variety of cancer cells can promote their proliferation and metastasis. Because the cancer cells generate cell antigenic changes (neoantigens), which trigger the immune system to produce autoantibodies, serum autoantibodies against tumour-associated antigens have been established as a novel type of cancer biomarkers and have been extensively studied in different types of cancer. The autoantibodies as biomarkers in cancer diagnosis are not only more sensitive and specific than antigens, but also could appear before clinical evidences of the tumours, thus disclosing them. The observations that cancer risk is lower in patients with some autoimmune diseases suggest that certain autoantibodies may be protective from certain cancers. Moreover, the presence of autoantibodies in healthy individuals implies that it could be safe to employ autoantibodies to treat cancer. Of note, an autoantibodies derived from lupus murine model received much attention due to their selective cytotoxicity for malignant tumour cell without harming normal ones. These studies showed the therapeutic value of autoantibodies in cancer. In this review, we revisited the pathological or protective role of autoantibodies in cancer progression, summarize the application of autoantibodies in cancer diagnosis and prognosis, and discuss the value of autoantibodies in cancer therapy. The studies established to date suggest that autoantibodies not only regulate cancer progression but also promise to be valuable instruments in oncological diagnosis and therapy.
Collapse
|
25
|
Sheng Z, Liu Y, Qin C, Liu Z, Yuan Y, Yin H, Qiu X, Xu T. Involvement of cancer-derived IgG in the proliferation, migration and invasion of bladder cancer cells. Oncol Lett 2016; 12:5113-5121. [PMID: 28105218 PMCID: PMC5228517 DOI: 10.3892/ol.2016.5350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/11/2016] [Indexed: 01/10/2023] Open
Abstract
It is widely accepted that immunoglobulin (Ig), the classical immune molecule, is extensively expressed in many cell types other than B-cells (non-B-IgG), including some malignant cells. The expression of Ig in malignant cells has been associated with a poor prognosis. In the present study, immunohistochemical analysis detected strong positive staining of IgG in three bladder cancer cell lines, the cancer cells in 77 bladder cancer patient samples and the cells in 3 cystitis glandularis tissue samples, while negative staining was observed in 4 specimens of normal transitional epithelial tissues. Importantly, functional transcripts of IgG with unique VHDJH rearrangement patterns were also found in bladder cancer cells. The knockdown of IgG in bladder cancer cell lines using small interfering RNA significantly inhibited the proliferation, migration and invasion of the cells. Notably, high IgG expression, as determined by immunostaining, was significantly correlated with a high histological grade and recurrence. The results of the present study suggested that IgG expression is involved in the malignant biological behavior and poor prognosis of bladder cancer. Therefore, IgG may serve as a novel target for bladder cancer therapy.
Collapse
Affiliation(s)
- Zhengzuo Sheng
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
- Peking University Center for Human Disease Genomics, Beijing 100191, P.R. China
| | - Caipeng Qin
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhenhua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Yeqing Yuan
- Department of Urology, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Huaqi Yin
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
- Peking University Center for Human Disease Genomics, Beijing 100191, P.R. China
| | - Tao Xu
- Department of Urology, 2nd Clinical Medical College of Peking University, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
26
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
27
|
Wen L, Yang S, Zhu P, Yu Y, Qiu X, Fu N, Liu Y. Peptide mimics of a carbohydrate‑associated epitope expressed by cancer cells: Identification of vaccine candidates. Mol Med Rep 2016; 14:5237-5244. [PMID: 27779668 DOI: 10.3892/mmr.2016.5863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer-associated antigen 215 (CA215) is an immunoglobulin molecule expressed by numerous tumor types. Membrane‑bound and soluble CA215 have been detected in the majority of cancer cells and rarely identified in normal tissues. In addition, CA215C is a carbohydrate‑associated epitope in the variable region of CA215, which is specifically recognized by the monoclonal antibody, RP215. However, CA215C is not a suitable vaccine candidate as it is a thymus‑independent antigen. In the present study, RP215 was used as a target to screen short peptide mimics of CA215C from a phage display peptide library. Following three rounds of screening, 30 positive phage clones that specifically bound to RP215 were identified and sequenced. The result of amino‑acid sequence analysis revealed five conserved sequence groups for seventeen of the positive phage clones. The sequences of phage clones 2, 13 and 42 were selected for peptide synthesis and binding analysis. The synthetic peptides R2 and R42 specifically bound RP215. Antisera from mice immunized with R2‑BSA or R42‑BSA bound purified CA215C and innate CA215C expressed on human hepatic and rectal carcinoma tissues, as demonstrated by immunohistochemistry. Furthermore, R2‑BSA and R42‑BSA antisera inhibited RP215 binding to cancer tissues. These results revealed that R2‑BSA and R42‑BSA antisera had similar characteristics to RP215 and that the synthetic peptides R2 and R42 may mimic the CA215C epitope. R2 and R42 peptides may therefore have potential for development into a tumor vaccine.
Collapse
Affiliation(s)
- Liyan Wen
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sha Yang
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingxin Yu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ning Fu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
28
|
Liao Q, Liu W, Liu Y, Wang F, Wang C, Zhang J, Chu M, Jiang D, Xiao L, Shao W, Sheng Z, Tao X, Huo L, Yin CC, Zhang Y, Lee G, Huang J, Li Z, Qiu X. Aberrant high expression of immunoglobulin G in epithelial stem/progenitor-like cells contributes to tumor initiation and metastasis. Oncotarget 2015; 6:40081-94. [PMID: 26472025 PMCID: PMC4741881 DOI: 10.18632/oncotarget.5542] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
High expression of immunoglobulin G (IgG) in many non-B cell malignancies and its non-conventional roles in promoting proliferation and survival of cancer cells have been demonstrated. However, the precise function of non-B IgG remains incompletely understood. Here we define the antigen specificity of RP215, a monoclonal antibody that specifically recognizes the IgG in cancer cells. Using RP215, our study shows that IgG is overexpressed in cancer cells of epithelial lineage, especially cells with cancer stem/progenitor cell-like features. The RP215-recognized IgG is primarily localized on the cell surface, particularly lamellipodia-like structures. Cells with high IgG display higher migration, increased invasiveness and metastasis, and enhanced self-renewal and tumorgenecity ability in vitro and in vivo. Importantly, depletion of IgG in breast cancer leads to reduced adhesion, invasion and self-renewal and increased apoptosis of cancer cells. We conclude that high expression of IgG is a novel biomarker of tumor progression, metastasis and cancer stem cell maintenance and demonstrate the potential therapeutic benefits of RP215-recognized IgG targeted strategy.
Collapse
Affiliation(s)
- Qinyuan Liao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wei Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Fulin Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chong Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Jingxuan Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Dongyang Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Lin Xiao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wenwei Shao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zhengzuo Sheng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xia Tao
- Department of Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Lei Huo
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Science, Beijing, 100021, China
| | - Gregory Lee
- Andrology Lab, University of British Columbia Centre for Reproductive Health, Vancouver, BC V5Z 4H4, Canada
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| |
Collapse
|
29
|
Wan X, Lei Y, Li Z, Wang J, Chen Z, McNutt M, Lin D, Zhao C, Jiang C, Li J, Pu Q, Su M, Wang Y, Gu J. Pancreatic Expression of Immunoglobulin G in Human Pancreatic Cancer and Associated Diabetes. Pancreas 2015; 44:1304-1313. [PMID: 26390427 DOI: 10.1097/mpa.0000000000000544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The prognosis of pancreatic cancer (PC) is poor and the pathogenesis of PC-associated diabetes is unknown. We investigated the possible expression of immunoglobulin G (IgG) in human pancreatic carcinomas and adjacent pancreatic islets to gain a better understanding of these diseases. METHODS We employed immunohistochemistry, Western Blot, real-time polymerase chain reaction, and in situ hybridization to examine IgG expression in PC tissues and adjacent islets with and without cancer-associated diabetes. The IgG mRNA and IgG synthesizing-related enzymes were examined in PC cell lines. The IgG expression and secretion were downregulated with specific small interfering RNA and antibody to IgG followed by flow cytometry to assess its effect on apoptosis of cultured PC cells. RESULTS The expression of IgG was detected in pancreatic carcinoma and adjacent islets. Small interfering RNA and antibody treatments induced apoptosis in PC cell lines. In the carcinoma tissue, the levels of IgG expression varied depending on the stages of the cancers with more malignant cancers expressing more IgG (P < 0.05). The IgG levels in cancer cells were also increased when the patients had diabetes or hyperglycemia (P < 0.05). In addition, the extent of IgG expression in the seemingly normal islet cells adjacent to the tumor varied in relation to the grade of cancer differentiation and distance to the cancer nests. CONCLUSIONS (1) Immunoglobulin G was locally produced by PC cells and adjacent islet cells. (2) Immunoglobulin G may promote tumor growth by inhibiting cancer cell apoptosis. (3) Locally produced IgG might play a role in PC-associated diabetes.
Collapse
Affiliation(s)
- Xia Wan
- From the *Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong; †Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sheng Z, Liu Y, Qin C, Liu Z, Yuan Y, Hu F, Du Y, Yin H, Qiu X, Xu T. IgG is involved in the migration and invasion of clear cell renal cell carcinoma. J Clin Pathol 2015; 69:497-504. [PMID: 26519488 PMCID: PMC4893138 DOI: 10.1136/jclinpath-2015-202881] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE: To investigate if IgG can be expressed in clear cell renal cell carcinoma (cRCC) , and the expression of IgG is involved in the cancer progression. If IgG expression can serve as a potential target in cancer therapies and be used for judging the prognosis. MATERIALS AND METHODS: By immunohistochemistry, we detected IgG in cRCC tissues(75 cRCC tissues and75 adjacent normal kidney tissues). Immunofluorescence and Western blot was used to detect the IgG in cRCC cell lines (786-0, ACHN and CAKI-I). By RT-PCR, the functional transcript of IgG heavy chain was detected. Knockdown of IgG was to analyze the proliferation, migration and invasion ability by CCK8, Transwell and Matrigel and apoptosis in cRCC cell lines. RESULTS: By immunohistochemistry, we found strong staining of IgG in 66 cases of 75 cRCC tissues and 63 cases of 75 adjacent normal kidney tissues. Immunofluorescence and Western blot was found IgG in cRCC cell lines. Knock-down IgG in cRCC cell lines resulted in significant inhibition of cell proliferation, migration and invasion, and the induction of apoptosis of the 786-0 cells. The immunohistochemistry analysis showed that high IgG expression significantly correlated with the poor differentiation and advanced stage of cRCC. CONCLUSION: IgG was over expressed in cRCC and was involved in the proliferation, migration and invasion of cancer cells. IgG expression may serve as a potential target in cancer therapies and could be used for judging the prognosis.
Collapse
Affiliation(s)
- Zhengzuo Sheng
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| | - Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China Peking University Center for Human Disease Genomics, Beijing, China
| | - Caipeng Qin
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| | - Zhenhua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Yeqing Yuan
- Department of Urology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - FengZhan Hu
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| | - Yiqing Du
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| | - Huaqi Yin
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China Peking University Center for Human Disease Genomics, Beijing, China
| | - Tao Xu
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Syed P, Gupta S, Choudhary S, Pandala NG, Atak A, Richharia A, K P M, Zhu H, Epari S, Noronha SB, Moiyadi A, Srivastava S. Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays. Sci Rep 2015; 5:13895. [PMID: 26370624 PMCID: PMC4570193 DOI: 10.1038/srep13895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shabarni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saket Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Narendra Goud Pandala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurva Atak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annie Richharia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manubhai K P
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai 400 012, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400 012, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
32
|
Liu J, Xia M, Wang P, Wang C, Geng Z, Cameron Yin C, Zhang C, Qiu X. Immunoglobulin gene expression in umbilical cord blood-derived CD34⁺ hematopoietic stem/progenitor cells. Gene 2015; 575:108-17. [PMID: 26364572 DOI: 10.1016/j.gene.2015.08.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 02/07/2023]
Abstract
Recently, immunoglobulin (Ig) expression was reported in a variety of non-B lineage cells, including myeloid cells. We assessed whether hematopoietic stem/progenitor cells (HSC/HPCs) can express Ig. With Gene Expression Omnibus (GEO) microarray database analysis, we found that IGHM was expressed with the highest frequency and level in umbilical cord blood CD34(+) HSC/HPCs, followed by IGK@, IGHE, IGHD, IGHG1, and IGHA1, while IGL@ was nearly not expressed. Ig expression was further confirmed by molecular experiments and immunofluorescence. Moreover, HSC/HPCs-derived Ig displayed restricted/biased usages and VHDJH rearrangement patterns. These results suggest that Igs, especially IgM, may have a role in CD34(+) HSC/HPCs function.
Collapse
Affiliation(s)
- Jingfang Liu
- Department of Obstetrics, Jishuitan Hospital, Beijing 100035, China
| | - Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Pingzhang Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China
| | - Chong Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zihan Geng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chi Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Medical Immunology, Ministry of Health, Beijing 100191, China.
| |
Collapse
|
33
|
Ji F, Chang X, Liu C, Meng L, Qu L, Wu J, Liu C, Cui H, Shou C. Prognostic value and characterization of the ovarian cancer-specific antigen CA166-9. Int J Oncol 2015; 47:1405-15. [PMID: 26251984 DOI: 10.3892/ijo.2015.3115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 11/05/2022] Open
Abstract
COC166-9 is an ovarian cancer-specific monoclonal antibody, and COC166-9-based immunotherapy has been shown to possess killing effects against ovarian cancer cells in vitro and in vivo. However the antigen recognized by COC166-9 (COC166-9-Ag, CA166-9) has not been identified and the clinical significance of CA166-9 expression remains unknown. We found that CA166-9 was positive in 53.1% of ovarian cancer tissues. Expression of CA166-9 was strongly correlated with the cancer recurrence (P<0.001). Patients with positive CA166-9 had substantially shorter overall survival (P=0.026) and disease-free survival (P=0.002). CA166-9 was also shown to be an independent predictive factor for overall survival (HR=2.454, P=0.016) and disease-free survival (HR=2.331, P=0.021). We identified CA166-9 as human immunoglobulin γ-1 heavy chain constant region (IGHG1). Purified IGHG1 promoted proliferation, migration, and invasion of CA166-9-negative ovarian cancer HOC1A cells, whereas it had minimal effects on the phenotypes of CA166-9-positive ovarian cancer CAOV-3 cells. In addition, overexpression of IGHG1 enhanced migration of ovarian cancer cells. On the contrary, COC166-9 inhibited proliferation, migration, and invasion of CAOV-3 cells, but had no effects on HOC1A cells. Therefore, IGHG1 similarly to CA166-9, could play an important role in ovarian cancer development and may serve as a potential prognostic marker and a therapeutical target for ovarian cancer.
Collapse
Affiliation(s)
- Fangxing Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaohong Chang
- Gynecological Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Caiyun Liu
- Gynecological Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jian Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Chanzhen Liu
- Gynecological Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Heng Cui
- Gynecological Oncology Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
34
|
Liu Y, Liu D, Wang C, Liao Q, Huang J, Jiang D, Shao W, Yin CC, Zhang Y, Lee G, Qiu X. Binding of the monoclonal antibody RP215 to immunoglobulin G in metastatic lung adenocarcinomas is correlated with poor prognosis. Histopathology 2015; 67:645-53. [PMID: 25753759 DOI: 10.1111/his.12686] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022]
Abstract
AIMS Cancer cell-derived immunoglobulin (Ig)G (cancer-IgG) has been found to be involved in the pathogenesis and progression of many cancers, including lung cancer. The aim of the present study was to investigate the relationship between cancer-IgG expression in lung adenocarcinoma (ADC) and clinicopathological characteristics and clinical outcome. METHODS AND RESULTS Immunohistochemical analysis was performed using an RP215 monoclonal antibody to determine cancer-IgG expression in 140 lung ADC patients. Cell migration and invasion were analysed in A549 cell line after short interfering RNA (siRNA) knockdown of IgG and cell sorting by flow cytometry. Our results show that RP215 immunostaining score is correlated significantly with local invasion (P < 0.05) and tumour differentiation (P < 0.05) in ADC. Moreover, RP215 staining was significantly higher in metastatic tumours than in primary tumours (P < 0.0001). The knockdown of IgG resulted in a reduction of cell migration and invasion. In contrast, RP215-positive cells displayed greater migration and invasion ability than RP215-negative cells. Additionally, a higher RP215 immunostaining score was associated significantly with poor prognosis. CONCLUSIONS RP215 staining is correlated strongly with differentiation, local invasion, metastasis and clinical outcome of patients with lung ADC. Our results suggest that RP215 can serve as a biomarker for prognosis of lung ADC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Dan Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Chong Wang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Jing Huang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Dongyang Jiang
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenwei Shao
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Cheng Cameron Yin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Youhui Zhang
- Department of Immunology, Cancer Institute and Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Gregory Lee
- Andrology Laboratory, University of British Columbia Centre for Reproductive Health, Vancouver, BC, Canada
| | - Xiaoyan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| |
Collapse
|
35
|
Gu J, Lei Y, Huang Y, Zhao Y, Li J, Huang T, Zhang J, Wang J, Deng X, Chen Z, Korteweg C, Deng R, Yan M, Xu Q, Dong S, Cai M, Luo L, Huang G, Wang Y, Li Q, Lin C, Su M, Yang C, Zhuang Z. Fab fragment glycosylated IgG may play a central role in placental immune evasion. Hum Reprod 2015; 30:380-391. [PMID: 25505012 PMCID: PMC4303772 DOI: 10.1093/humrep/deu323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/10/2014] [Accepted: 10/30/2014] [Indexed: 02/05/2023] Open
Abstract
STUDY QUESTION How does the placenta protect the fetus from immune rejection by the mother? SUMMARY ANSWER The placenta can produce IgG that is glycosylated at one of its Fab arms (asymmetric IgG; aIgG) which can interact with other antibodies and certain leukocytes to affect local immune reactions at the junction between the two genetically distinct entities. WHAT IS KNOWN ALREADY The placenta can protect the semi-allogenic fetus from immune rejection by the immune potent mother. aIgG in serum is increased during pregnancy and returns to the normal range after giving birth. aIgG can react to antigens to form immune complexes which do not cause a subsequent immune effector reaction, including fixing complements, inducing cytotoxicity and phagocytosis, and therefore has been called 'blocking antibody'. STUDY DESIGN, SIZE, DURATION Eighty-eight human placentas, four trophoblast cell lines (TEV-1, JAR, JEG and BeWo), primary culture of human placental trophoblasts and a gene knock-out mouse model were investigated in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS The general approach included the techniques of cell culture, immunohistochemistry, in situ hybridization, immuno-electron microscopy, western blot, quantitative PCR, protein isolation, glycosylation analysis, enzyme digestion, gene sequencing, mass spectrophotometry, laser-guided microdissection, enzyme-linked immunosorbent assay, pulse chase assay, double and multiple staining to analyze protein and DNA and RNA analysis at the cellular and molecular levels. MAIN RESULTS AND THE ROLE OF CHANCE Three major discoveries were made: (i) placental trophoblasts and endothelial cells are capable of producing IgG, a significant portion of which is aberrantly glycosylated at one of its Fab arms to form aIgG; (ii) the asymmetrically glycosylated IgG produced by trophoblasts and endothelial cells can react to immunoglobulin molecules of human, rat, mouse, goat and rabbit at the Fc portion; (iii) asymmetrically glycosylated IgG can react to certain leukocytes in the membrane and cytoplasm, while symmetric IgG from the placenta does not have this property. LIMITATIONS, REASONS FOR CAUTION Most of the experiments were performed in vitro. The proposed mechanism calls for verification in normal and abnormal pregnancy. WIDER IMPLICATIONS OF THE FINDINGS This study identified a number of new phenomena suggesting that aIgG produced by the placenta would be able to react to detrimental antibodies and leukocytes and interfere with their immune reactions against the placenta and the fetus. This opens a new dimension for further studies on pregnancy physiology and immunology. Should the mechanism proposed here be confirmed, it will have a direct impact on our understanding of the physiology and pathology of human reproduction and offer new possibilities for the treatment of many diseases including spontaneous abortion, infertility and pre-eclampsia. It also sheds light on the mechanism of immune evasion in general including that of cancer.
Collapse
Affiliation(s)
- Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yu Lei
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yuanping Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yingying Zhao
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Jing Li
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tao Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Junjun Zhang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Juping Wang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaodong Deng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhengshan Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Christine Korteweg
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ruishu Deng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Meiling Yan
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qian Xu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shengnan Dong
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Monghong Cai
- Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lili Luo
- Department of Gynecology and Obstetrician, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guowei Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yun Wang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qian Li
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Changmei Lin
- Department of Fertility, Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Meng Su
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 10, Room 5D 37, 10 Center Drive, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 10, Room 5D 37, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Wu L, Liu Y, Zhu X, Zhang L, Chen J, Zhang H, Hao P, Zhang S, Huang J, Zheng J, Zhang Y, Zhang Y, Qiu X. The immunoglobulin heavy chain VH6-1 promoter regulates Ig transcription in non-B cells. Cancer Cell Int 2014; 14:114. [PMID: 25493072 PMCID: PMC4260249 DOI: 10.1186/s12935-014-0114-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/24/2014] [Indexed: 12/02/2022] Open
Abstract
Background Non-B cell immunoglobulins (Igs) are widely expressed in epithelial cancer cells. The past 20 years of research have demonstrated that non-B cell Igs are associated with cancer cell proliferation, the cellular cytoskeleton and cancer stem cells. In this study we explored the transcriptional mechanism of IgM production in non-B cells. Methods The promoter region of a V-segment of the heavy mu chain gene (VH6-1) was cloned from a colon cancer cell line HT-29. Next, the promoter activities in non-B cells and B-cells were detected using the dual-luciferase reporter assay. Then the transcription factor binding to the promoter regions was evaluated by electrophoretic mobility shift assays (EMSAs) and gel supershift experiments. Results Our data showed that the sequence 1200 bp upstream of VH6-1 exhibited promoter activity in both B and non-B cells. No new regulatory elements were identified within the region 1200 bp to 300 bp upstream of VH6-1. In addition, Oct-1 was found to bind to the octamer element of the Ig gene promoter in cancer cells, in contrast to B cells, which utilize the transcriptional factor Oct-2. Conclusion The regulatory mechanisms among different cell types controlling the production of IgM heavy chains are worth discussing.
Collapse
Affiliation(s)
- Lina Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Yang Liu
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Xiaohui Zhu
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Li Zhang
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Jinfeng Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Hong Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Peng Hao
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Shuai Zhang
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Jing Huang
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Jie Zheng
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Yingmei Zhang
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| | - Youhui Zhang
- Department of Immunology, Cancer Institute, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoyan Qiu
- Peking University Center for Human Disease Genomics, Beijing, 100038 China
| |
Collapse
|
37
|
Drak Alsibai K. Cancer Metabolic and Immune Reprogramming: The Intimate Interaction Between Cancer Cells and Microenvironment. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/jcpcr.2014.01.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Abstract
The study of cancer immunology has provided diagnostic and therapeutic instruments through serum autoantibody biomarkers and exogenous monoclonal antibodies. While some endogenous antibodies are found within or surrounding transformed tissue, the extent to which this exists has not been entirely characterized. We find that in transgenic and xenograft mouse models of cancer, endogenous gamma immunoglobulin (IgG) is present at higher concentration in malignantly transformed organs compared to non-transformed organs in the same mouse or organs of cognate wild-type mice. The enrichment of endogenous antibodies within the malignant tissue provides a potential means of identifying and tracking malignant cells in vivo as they mutate and diversify. Exploiting these antibodies for diagnostic and therapeutic purposes is possible through the use of agents that bind endogenous antibodies.
Collapse
|
39
|
Jiang C, Huang T, Wang Y, Huang G, Wan X, Gu J. Immunoglobulin G expression in lung cancer and its effects on metastasis. PLoS One 2014; 9:e97359. [PMID: 24853685 PMCID: PMC4031068 DOI: 10.1371/journal.pone.0097359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the leading malignancies worldwide, but the regulatory mechanism of its growth and metastasis is still poorly understood. We investigated the possible expression of immunoglobulin G (IgG) genes in squamous cell carcinomas and adenocarcinomas of the lung and related cancer cell lines. Abundant mRNA of IgG and essential enzymes for IgG synthesis, recombination activation genes 1, 2 (RAG1, 2) and activation-induced cytidine deaminase (AID) were detected in the cancer cells but not in adjacent normal lung tissue or normal lung epithelial cell line. The extents of IgG expression in 86 lung cancers were found to associate with clinical stage, pathological grade and lymph node metastasis. We found that knockdown of IgG with siRNA resulted in decreases of cellular proliferation, migration and attachment for cultured lung cancer cells. Metastasis-associated gene 1 (MTA1) appeared to be co-expressed with IgG in lung cancer cells. Statistical analysis showed that the rate of IgG expression was significantly correlated to that of MTA1 and to lymph node metastases. Inhibition of MTA1 gene expression with siRNA also led to decreases of cellular migration and attachment for cultured lung cancer cells. These evidences suggested that inhibition of cancer migration and attachment induced by IgG down-regulation might be achieved through MTA1 regulatory pathway. Our findings suggest that lung cancer-produced IgG is likely to play an important role in cancer growth and metastasis with significant clinical implications.
Collapse
Affiliation(s)
- Chunfan Jiang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Guowei Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Wan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
40
|
Wang J, Lin D, Peng H, Huang Y, Huang J, Gu J. Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species. Cell Death Dis 2013; 4:e945. [PMID: 24309932 PMCID: PMC3877547 DOI: 10.1038/cddis.2013.474] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 02/05/2023]
Abstract
Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucidate its mechanism, we carried out a co-immunoprecipitation assay in HeLa cells and identified 27 potential IgG-interacting proteins. Among them, receptor of activated protein kinase C 1 (RACK1), ras-related nuclear protein (RAN) and peroxiredoxin 1 (PRDX1) are closely related to cell growth and oxidative stress, which prompted us to investigate the mechanism of action of IgG in the above phenomena. Upon confirmation of the interactions between IgG and the three proteins, further experiments revealed that downregulation of cancer-derived IgG lowered levels of intracellular reactive oxygen species (ROS) by enhancing cellular total antioxidant capacity. In addition, a few ROS scavengers, including catalase (CAT), dimethylsulfoxide (DMSO), n-acetylcysteine (NAC) and superoxide dismutase (SOD), further inhibited the growth of IgG-deficient cancer cells through suppressing mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) signaling pathway induced by a low level of intracellular ROS, whereas exogenous hydrogen peroxide (H2O2) at low concentration promoted their survival via increasing intracellular ROS levels. Similar results were obtained in an animal model and human tissues. Taken together, our results demonstrate that cancer-derived IgG can enhance the growth and proliferation of cancer cells via inducing the production of ROS at low level. These findings provide new clues for understanding tumor proliferation and designing cancer therapy.
Collapse
Affiliation(s)
- J Wang
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - D Lin
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - H Peng
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Y Huang
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - J Huang
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - J Gu
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou 515041, China. Tel: +86 754 88900207; Fax: +86 754 88950293; E-mail:
| |
Collapse
|
41
|
Wang H, Cao X, Liu EC, He D, Ma Y, Zhang T, Feng Y, Qin G. Prognostic significance of immunoglobulin M overexpression in laryngeal squamous cell carcinoma. Acta Otolaryngol 2013; 133:1080-7. [PMID: 23964818 DOI: 10.3109/00016489.2013.799776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONCLUSIONS Immunoglobulin (Ig) M is overexpressed in laryngeal squamous cell carcinoma (LSCC), and its expression has an independent protective impact on disease-free survival in LSCC. OBJECTIVE A number of studies have reported on the ectopic expression of Ig in cancer cells, yet there has been a lack of understanding of its clinical and prognostic significance. This study aimed to investigate the expression of IgM in resected specimens of LSCC and to evaluate its clinical significance and prognostic value. METHODS Immunohistochemistry (IHC) and Western blotting were used to detect the expression of IgM in LSCC and normal laryngeal tissues. The serum level of IgM was also analyzed by immunoturbidimetric assay. RESULTS IHC and Western blot studies demonstrated that IgM was overexpressed in LSCC specimens (p < 0.001), while the serum level of IgM in patients with LSCC was not different from healthy controls. Chi-squared analysis revealed that the expression level of IgM was negatively correlated with regional lymph node metastasis and tumor stage (p = 0.011 and 0.025, respectively). Univariate analysis showed that IgM expression was significantly correlated with enhanced disease-free survival (DFS) (p = 0.004). In multivariate analysis, IgM retained its independent prognostic value for DFS (p = 0.048, HR = 0.506, 95% CI = 0.257-0.995).
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Luzhou Medical College , Luzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang B, Ma C, Chen Z, Yi W, McNutt MA, Wang Y, Korteweg C, Gu J. Correlation of immunoglobulin G expression and histological subtype and stage in breast cancer. PLoS One 2013; 8:e58706. [PMID: 23554916 PMCID: PMC3595271 DOI: 10.1371/journal.pone.0058706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/05/2013] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Recently, growing evidence indicates that immunoglobulins (Igs) are not only produced by mature B lymphocytes or plasma cells, but also by various normal cells types at immune privileged sites and neoplasm, including breast cancer. However, the association of breast cancer derived IgG with genesis and development of the disease has not yet been established. METHODS In this study we examined the expression of IgG in 186 breast cancers, 20 benign breast lesions and 30 normal breast tissues. Both immunohistochemistry with antibodies to Igκ (immunoglobulin G κ light chain) and Igγ (immunoglobulin G heavy chain) and in situ hybridization with an antisense probe to IgG1 heavy chain constant region gene were performed. Various clinicopathological features were also analyzed. RESULTS We found that IgG is specifically expressed in human breast cancer cells. Both infiltrating ductal carcinoma and infiltrating lobular carcinoma had significantly greater numbers of Igκ and Igγ positive cancer cells as compared with medullary carcinoma, carcinoma in situ, and benign lesions (all p<0.05). In addition, IgG expression was correlated with breast cancer histological subtypes (p<0.01) and AJCC stages (p<0.05), with more abundance of IgG expression in more malignant histological subtypes or in more advanced stage of the disease. CONCLUSIONS IgG expression in breast cancer cells is correlated with malignancy and AJCC stages of the cancers. This suggests that breast cancer derived IgG may be associated with genesis, development and prognosis of the cancer.
Collapse
Affiliation(s)
- Baokai Yang
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
| | - Changchun Ma
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhengshan Chen
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Weining Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Peking (Beijing) University Health Science Center, Beijing, China
| | - Michael A. McNutt
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
| | - Yun Wang
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine Korteweg
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology, School of Basic Medical Sciences, Peking (Beijing) University Health Science Center, Beijing, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- * E-mail:
| |
Collapse
|
43
|
Suppression of IGHG1 gene expression by siRNA leads to growth inhibition and apoptosis induction in human prostate cancer cell. Mol Biol Rep 2012; 40:27-33. [PMID: 23117283 DOI: 10.1007/s11033-012-1944-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022]
Abstract
To investigate the immunoglobulin G (IgG) expression in prostate cancer cell lines and explore the effects of IGHG1 gene knockdown on PC3 cell growth and apoptosis. Flow cytometry, qPCR and western blot were used to demonstrate IgG expression in prostate cancer cell lines. PC3 cells were transfected with designed siRNA, the expression of IgG was determined by qPCR and western blot, the proliferation and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS) and flow cytometry. The percentages of IgG in LNCaP cell membrane and cytoplasm were 2.96 and 89.22 % by flow cytometer, those of PC3 cell were 86.73 and 90.99 % respectively. The average level of IgG1 mRNA expression in PC3 cell line was significantly higher than that in LNCaP cell line (3.08 ± 0.15 vs 1.00 ± 0.37, P = 0.001). The protein level of IgG expression of PC3 cell line was 1.92 ± 0.15, compared with LNCaP cell line (1.05 ± 0.86). The expression of IgG1 mRNA and protein level in transfected PC3 cells decreased, with significant statistical differences from the blank control group (P < 0.01). The PC3 cell growth inhibition rates were 31.3 and 43.3 % in 48 and 72 h respectively. The rate of apoptotic PC3 cells were 5.29 ± 0.41 % in experimental group higher than that in control group (1.49 ± 0.29 %) (P < 0.01). IgG was identified in prostate cancer cells, and the siRNA targeted silencing of IGHG1 can inhibit cell viability and promote apoptosis, which might therefore act as a potential target in prostate cancer gene therapy.
Collapse
|
44
|
IgG expression in human colorectal cancer and its relationship to cancer cell behaviors. PLoS One 2012; 7:e47362. [PMID: 23133595 PMCID: PMC3486799 DOI: 10.1371/journal.pone.0047362] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence indicates that various cancer cell types are capable of producing IgG. The exact function of cancer-derived IgG has, however, not been elucidated. Here we demonstrated the expression of IgG genes with V(D)J recombination in 80 cases of colorectal cancers, 4 colon cancer cell lines and a tumor bearing immune deficient mouse model. IgG expression was associated with tumor differentiation, pTNM stage, lymph node involvement and inflammatory infiltration and positively correlated with the expressions of Cyclin D1, NF-κB and PCNA. Furthermore, we investigated the effect of cancer-derived IgG on the malignant behaviors of colorectal cancer cells and showed that blockage of IgG resulted in increased apoptosis and negatively affected the potential for anchor-independent colony formation and cancer cell invasion. These findings suggest that IgG synthesized by colorectal cancer cells is involved in the development and growth of colorectal cancer and blockage of IgG may be a potential therapy in treating this cancer.
Collapse
|
45
|
Liu Y, Chen Z, Niu N, Chang Q, Deng R, Korteweg C, Gu J. IgG gene expression and its possible significance in prostate cancers. Prostate 2012; 72:690-701. [PMID: 22430367 DOI: 10.1002/pros.21476] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/18/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND In spite of recent advances in treatment strategies, prostate cancer (PCa) remains the second leading cause of cancer death in men with its genetic and biologic behaviors still poorly understood. Recently, accumulating evidence indicates that cancer cells, as well as some normal cells can secret IgG. This study was designed to evaluate IgG gene expression and its possible significance in PCa tissue samples and cell lines. METHODS IgG expression was assessed by immunohistochemistry, in situ hybridization, immunofluorescence, RT-PCR, and Western blot. The possible significance of IgG was evaluated on tissue array and cell lines. To assess cell viability and proliferation, MTS assay was carried out. Apoptosis was evaluated with propidium iodide and annexin-V staining. RESULTS Expressions of IgG and its related genes were detected in cell lines. Abundant gene expressions of Igγ and Igκ chain were detected in PCa tissue samples, but not in normal prostate tissues. In addition, IgG expression was significantly higher in PCa tissues than in the benign prostate hyperplasia tissues (P < 0.001). Igγ expression was positively correlated to Gleason score and histological grade (P < 0.05). Furthermore, in vitro experiments showed that anti-human monoclonal IgG antibody suppressed cell proliferation and increased apoptosis in cultured PCa cells. CONCLUSION IgG gene expression in PCa is related to cell differentiation and clinical status. PCa cell produced IgG is involved in the biological behavior of this cancer and may serve as a useful marker for cancer cell differentiation and prognosis. Locally produced IgG could be a potential target for therapy.
Collapse
Affiliation(s)
- Yuxuan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Qiu Y, Korteweg C, Chen Z, Li J, Luo J, Huang G, Gu J. Immunoglobulin G expression and its colocalization with complement proteins in papillary thyroid cancer. Mod Pathol 2012; 25:36-45. [PMID: 21909078 DOI: 10.1038/modpathol.2011.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Except for the well-known immunoglobulin G (IgG) producing cell types, ie, mature B lymphocytes and plasma cells, various non-lymphoid cell types, including human cancer cells, neurons, and some specified epithelial cells, have been found to express IgG. In this study, we detected the expression of the heavy chain of IgG (IgGγ) and kappa light chain (Igκ) in papillary thyroid cancer cells. Using in situ hybridization, we detected the constant region of human IgG1 (IGHG1) in papillary thyroid cancer cells. With laser capture microdissection followed by RT-PCR, mRNA transcripts of IGHG1, Igκ, recombination activating gene 1 (RAG1), RAG2, and activation-induced cytidine deaminase genes were successfully amplified from isolated papillary thyroid cancer cells. We further confirmed IgG protein expression with immunohistochemistry and found that none of the IgG receptors was expressed in papillary thyroid cancer. Differences in the level of IgGγ expression between tumor size, between papillary thyroid cancer and normal thyroid tissue, as well as between papillary thyroid cancer with and without lymph node metastasis were significant. Taken together, these results indicate that IgG is produced by papillary thyroid cancer cells and that it might be positively related to the growth and metastasis of papillary thyroid cancer cells. Furthermore, it was demonstrated that IgGγ colocalized with complement proteins in the same cancer cells, which could indicate that immune complexes were formed. Such immune complexes might consist of IgG synthesized by the host against tumor surface antigens and locally produced anti-idiotypic IgG with specificity for the variable region of these 'primary' antibodies. The cancer cells might thus escape the host tumor-antigen-specific immune responses, hence promoting tumor progression.
Collapse
Affiliation(s)
- Yamei Qiu
- Department of Pathology, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang L, Hu S, Korteweg C, Chen Z, Qiu Y, Su M, Gu J. Expression of immunoglobulin G in esophageal squamous cell carcinomas and its association with tumor grade and Ki67. Hum Pathol 2011; 43:423-34. [PMID: 21855109 DOI: 10.1016/j.humpath.2011.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/16/2022]
Abstract
We and other research groups have previously shown that various cancer types can express immunoglobulin G, but investigation on of immunoglobulin G expression in esophageal cancer, a highly malignant tumor, and its biological significance has been lacking. In this study, we examined immunoglobulin G protein and its messenger RNA, as well as the expressions of recombination-activating gene 1, recombination-activating gene 2, and activation-induced cytidine deaminase in 142 cases of esophageal cancer tissues, and 2 esophageal cancer cell lines (Eca109, SHEEC). We also compared their expressions with tumor grade and a proliferation marker, Ki67. We used immunohistochemistry, immunofluorescence, in situ hybridization, laser microdissection coupled with reverse transcriptase polymerase chain reaction, and Western blot analysis. We detected transcripts of immunoglobulin G 1 heavy-chain constant region, immunoglobulin-κ and λ-light chains, immunoglobulin G variable region, and recombination-activating genes 1 and 2 in both esophageal cancer tissues and cell lines, whereas activation-induced cytidine deaminase was not detected. No immunoglobulin G receptor subtypes were detected. Statistic analysis revealed that immunoglobulin G expression correlated well with tumor grades (P < .001) and with the proliferation marker Ki67 (P < .001). Our results indicate that human esophageal cancer cells are capable of synthesizing immunoglobulin G, which is likely involved in the growth and proliferation of this highly malignant cancer and might also be used as a prognostic indicator in esophageal squamous cell carcinomas.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Pathology, Peking University Health Science Center, Beijing 100191, PR of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Chang W, Wu L, Cao F, Liu Y, Ma L, Wang M, Zhao D, Li P, Zhang Q, Tan X, Yu Y, Lou Z, Zhao J, Zhang H, Fu C, Cao G. Development of autoantibody signatures as biomarkers for early detection of colorectal carcinoma. Clin Cancer Res 2011; 17:5715-24. [PMID: 21771877 DOI: 10.1158/1078-0432.ccr-11-0199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To select autoantibody signatures for early detection of colorectal cancer (CRC). EXPERIMENTAL DESIGN A phage cDNA expression library was constructed with fresh tumors from 30 CRC patients and biopanned by using serum pools of 20 CRC patients and 20 healthy controls. A classifier was discovered in the training set of 30 CRC patients at stages I and II and 30 matched healthy controls and then blindly validated in an independent set of 60 CRC patients, 60 healthy controls, 52 polyps patients, and 30 autoimmune diseases patients. Expression of proteins was examined by using immunohistochemistry. RESULTS Five-phage peptide clones showing higher discriminatory power than others in training set were selected for validation. The five-phage peptide classifier was able to discriminate between early CRC patients and healthy controls, with sensitivities of 90.0% to 92.7% and specificities of 91.7% to 93.3%. In those with serum carcinoembryonic antigen less than 5 ng/mL, the classifier was efficient in discriminating CRC from healthy controls, with an area under the curve of 0.975. The classifier was able to discriminate all of the 9 patients with serrated adenoma from healthy controls. Thirteen (43.3%) of the patients with autoimmune diseases were misclassified. Of the five phage peptides, one encoded a peptide identical to immunoglobulin G (IgG) heavy-chain constant region. IgG immunostaining was stronger in mesenchymal cells than in cancer cells in the tumors and was apparent in serrated adenoma. CONCLUSIONS The five-phage peptide classifier stands out as promising early diagnostic biomarkers for CRC, but it is unsuitable for discriminating CRC from autoimmune diseases. Truncated IgGs generated from the tumors might be novel CRC-associated antigens.
Collapse
Affiliation(s)
- Wenjun Chang
- Department of Epidemiology, College of Basic Medicine, First Affiliated Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rodeberg DA, Garcia-Henriquez N, Lyden ER, Davicioni E, Parham DM, Skapek SX, Hayes-Jordan AA, Donaldson SS, Brown KL, Triche TJ, Meyer WH, Hawkins DS. Prognostic significance and tumor biology of regional lymph node disease in patients with rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol 2011; 29:1304-11. [PMID: 21357792 DOI: 10.1200/jco.2010.29.4611] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Regional lymph node disease (RLND) is a component of the risk-based treatment stratification in rhabdomyosarcoma (RMS). The purpose of this study was to determine the contribution of RLND to prognosis for patients with RMS. PATIENTS AND METHODS Patient characteristics and survival outcomes for patients enrolled onto Intergroup Rhabdomyosarcoma Study IV (N = 898, 1991 to 1997) were evaluated among the following three patient groups: nonmetastatic patients with clinical or pathologic negative nodes (N0, 696 patients); patients with clinical or pathologic positive nodes (N1, 125 patients); and patients with a single site of metastatic disease (77 patients). RESULTS Outcomes for patients with nonmetastatic alveolar N0 RMS were significantly better than for patients with N1 RMS (5-year failure-free survival [FFS], 73% v 43%, respectively; 5-year overall survival [OS], 80% v 46%, respectively; P < .001). Patients with a single site of alveolar metastasis had even worse FFS and OS (23% FFS and OS, P = .01) when compared with patients with N1 RMS; however, the differences was not as large as the differences between patients with N0 RMS and N1 RMS. For embryonal RMS, there was no statistically significant difference in FFS or OS (P = .41 and P = .77, respectively) for patients with N1 versus N0 RMS. Gene array analysis of primary tumor specimens identified that genes associated with the immune system and antigen presentation were significantly increased in N1 versus N0 alveolar RMS. CONCLUSION RLND alters prognosis for alveolar but not embryonal RMS. For patients with N1 disease and alveolar histology, outcomes were more similar to distant metastatic disease rather than local disease. Current data suggest that more aggressive therapy for patients with alveolar N1 RMS may be warranted.
Collapse
Affiliation(s)
- David A Rodeberg
- Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen Z, Xiao Y, Zhang J, Li J, Liu Y, Zhao Y, Ma C, Luo J, Qiu Y, Huang G, Korteweg C, Gu J. Transcription factors E2A, FOXO1 and FOXP1 regulate recombination activating gene expression in cancer cells. PLoS One 2011; 6:e20475. [PMID: 21655267 PMCID: PMC3105062 DOI: 10.1371/journal.pone.0020475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/26/2011] [Indexed: 02/05/2023] Open
Abstract
It has long been accepted that immunoglobulins (Igs) were produced by B lymphoid cells only. Recently Igs have been found to be expressed in various human cancer cells and promote tumor growth. Recombination activating gene 1 (RAG1) and RAG2, which are essential enzymes for initiating variable-diversity-joining segment recombination, have also been found to be expressed in cancer cells. However, the mechanism of RAG activation in these cancer cells has not been elucidated. Here, we investigated the regulatory mechanism of RAG expression in four human cancer cell lines by analyzing transcription factors that induce RAG activation in B cells. By RT-PCR, Western blot and immunofluorescence, we found that transcription factors E2A, FOXO1 and FOXP1 were expressed and localized to the nuclei of these cancer cells. Over-expression of E2A, FOXO1 or Foxp1 increased RAG expression, while RNA interference of E2A, FOXO1 or FOXP1 decreased RAG expression in the cancer cells. Chromatin immunoprecipitation experiments showed acetylation of RAG enhancer (Erag) and E2A, FOXO1 or FOXP1 were bound to Erag in vivo. These results indicate that in these cancer cells the transcription factors E2A, FOXO1 and FOXP1 regulate RAG expression, which initiates Ig gene rearrangement much in the way similar to B lymphocytes.
Collapse
Affiliation(s)
- Zhengshan Chen
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yanna Xiao
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Junjun Zhang
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Li
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yuxuan Liu
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
| | - Yingying Zhao
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
| | - Changchun Ma
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jin Luo
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yamei Qiu
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Christine Korteweg
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology, Shantou University Medical College, Shantou, China
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|