1
|
Miyake A, Ohmori T, Murakawa Y. Fgf22 and Fgfr2b are required for neurogenesis and gliogenesis in the zebrafish forebrain. Biochem Biophys Res Commun 2023; 681:212-217. [PMID: 37783119 DOI: 10.1016/j.bbrc.2023.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factors (Fgfs) play crucial roles in various developmental processes including brain development. We previously identified Fgf22 in zebrafish and found that fgf22 is involved in midbrain patterning during embryogenesis. Here, we investigated the role of Fgf22 in the formation of the zebrafish forebrain. We found that fgf22 was essential for determining the ventral properties of the telencephalon and diencephalon but not for cell proliferation. In addition, the knockdown of fgf22 inhibited the generation of glutamatergic neurons, γ-aminobutyric acid (GABA)ergic interneurons and astrocytes. Recently, Fgf signaling has received much attention because of its importance in the pathogenesis of multiple sclerosis, in which oligodendrocytes and myelin are destroyed. However, the effects of each Fgf on oligodendrocytes remain largely unknown. Therefore, we also investigated the role of Fgf22 in oligodendrocyte development and explored whether there is a difference between Fgf22 and other Fgfs. Knockdown of fgf22 promoted the generation of oligodendrocytes. Conversely, overexpression of fgf22 inhibited the generation of oligodendrocytes. Furthermore, the forebrain phenotypes of fgfr2b knockdown zebrafish were remarkably similar to those of fgf22 knockdown zebrafish. This establishes the Fgf22-Fgfr2b axis as a key ligand‒receptor partnership in neurogenesis and gliogenesis in the forebrain. Our results indicate that Fgf22 has a unique function in suppressing oligodendrocyte differentiation through Fgfr2b without affecting cell proliferation.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan; Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama, 640-8156, Japan.
| | - Takatoshi Ohmori
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan; Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama, 640-8156, Japan
| | - Yuka Murakawa
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
3
|
Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, Kita Y, Wang Y, Kim DW, Blackshaw S, Schultz SR, Brickley S, Shimogori T, Delogu A. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 2021; 10:e59272. [PMID: 33522480 PMCID: PMC7906600 DOI: 10.7554/elife.59272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.
Collapse
Affiliation(s)
- Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Gerald Moore
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | - Padraic Calpin
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Xhuljana Durmishi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | | | - Yan Wang
- RIKEN, Center for Brain Science (CBS)SaitamaJapan
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Simon R Schultz
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College LondonLondonUnited Kingdom
| | | | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Puelles L, Diaz C, Stühmer T, Ferran JL, Martínez‐de la Torre M, Rubenstein JLR. LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus. J Comp Neurol 2021; 529:367-420. [PMID: 32420617 PMCID: PMC7671952 DOI: 10.1002/cne.24952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | - Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology and IMIB‐Arrixaca InstituteUniversity of MurciaMurciaSpain
| | | | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of PsychiatryUCSF Medical SchoolSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Nakagawa Y. Development of the thalamus: From early patterning to regulation of cortical functions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e345. [PMID: 31034163 DOI: 10.1002/wdev.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is a brain structure of the vertebrate diencephalon that plays a central role in regulating diverse functions of the cerebral cortex. In traditional view of vertebrate neuroanatomy, the thalamus includes three regions, dorsal thalamus, ventral thalamus, and epithalamus. Recent molecular embryological studies have redefined the thalamus and the associated axial nomenclature of the diencephalon in the context of forebrain patterning. This new view has provided a useful conceptual framework for studies on molecular mechanisms of patterning, neurogenesis and fate specification in the thalamus as well as the guidance mechanisms for thalamocortical axons. Additionally, the availability of genetic tools in mice has led to important findings on how thalamic development is linked to the development of other brain regions, particularly the cerebral cortex. This article will give an overview of the organization of the embryonic thalamus and how progenitor cells in the thalamus generate neurons that are organized into discrete nuclei. I will then discuss how thalamic development is orchestrated with the development of the cerebral cortex and other brain regions. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
6
|
Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One 2017; 12:e0176036. [PMID: 28448525 PMCID: PMC5407822 DOI: 10.1371/journal.pone.0176036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Bmps regulate numerous neural functions with their regulators. We previously identified Brorin, a neural-specific secreted antagonist of Bmp signaling, in humans, mice, and zebrafish. Mouse Brorin has two cysteine-rich domains containing 10 cysteine residues in its core region, and these are located in similar positions to those in the cysteine-rich domains of Chordin family members, which are secreted Bmp antagonists. Zebrafish Brorin had two cysteine-rich domains with high similarity to those of mouse Brorin. We herein examined zebrafish brorin in order to elucidate its in vivo actions. Zebrafish brorin was predominantly expressed in developing neural tissues. The overexpression of brorin led to the inactivation of Bmp signaling. On the other hand, the knockdown of brorin resulted in the activation of Bmp signaling and brorin morphants exhibited defective development of the ventral domain in the forebrain. Furthermore, the knockdown of brorin inhibited the generation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes and promoted the generation of astrocytes in the forebrain. In addition, brorin was required for axon guidance in the forebrain. The present results suggest that Brorin is a secreted Bmp antagonist predominantly expressed in developing neural tissues and that it plays multiple roles in the development of the zebrafish forebrain.
Collapse
|
7
|
Di Curzio DL, Turner-Brannen E, Mao X, Del Bigio MR. Magnesium sulfate treatment for juvenile ferrets following induction of hydrocephalus with kaolin. Fluids Barriers CNS 2016; 13:7. [PMID: 27121710 PMCID: PMC4848861 DOI: 10.1186/s12987-016-0031-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Previous work with 3-week hydrocephalic rats showed that white matter damage could be reduced by the calcium channel antagonist magnesium sulfate (MgSO4). We hypothesized that MgSO4 therapy would improve outcomes in ferrets with hydrocephalus induced with kaolin at 15 days. Methods MRI was performed at 29 days to assess ventricle size and stratify ferrets to treatment conditions. Beginning at 31 days age, they were treated daily for 14 days with MgSO4 (9 mM/kg/day) or sham saline therapy, and then imaged again before sacrifice. Behavior was examined thrice weekly. Histological and biochemical ELISA and myelin enzyme activity assays were performed at 46 days age. Results Hydrocephalic ferrets exhibited some differences in weight and behavior between treatment groups. Those receiving MgSO4 weighed less, were more lethargic, and displayed reduced activity compared to those receiving saline injections. Hydrocephalic ferrets developed ventriculomegaly, which was not modified by MgSO4 treatment. Histological examination showed destruction of periventricular white matter. Glial fibrillary acidic protein content, myelin basic protein content, and myelin enzyme activity did not differ significantly between treatment groups. Conclusion The hydrocephalus-associated disturbances in juvenile ferret brains are not ameliorated by MgSO4 treatment, and lethargy is a significant side effect.
Collapse
Affiliation(s)
- Domenico L Di Curzio
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Xiaoyan Mao
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada. .,Department of Pathology, University of Manitoba Brodie 401-727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
8
|
Miyake A, Chitose T, Kamei E, Murakami A, Nakayama Y, Konishi M, Itoh N. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 2014; 9:e110836. [PMID: 25357195 PMCID: PMC4214708 DOI: 10.1371/journal.pone.0110836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
- * E-mail:
| | - Tatsuya Chitose
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Eriko Kamei
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Atsuko Murakami
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
9
|
Golding B, Pouchelon G, Bellone C, Murthy S, Di Nardo AA, Govindan S, Ogawa M, Shimogori T, Lüscher C, Dayer A, Jabaudon D. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 2014; 81:1057-1069. [PMID: 24607228 DOI: 10.1016/j.neuron.2014.01.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Inhibitory interneurons (INs) critically control the excitability and plasticity of neuronal networks, but whether activity can direct INs into specific circuits during development is unknown. Here, we report that in the dorsal lateral geniculate nucleus (dLGN), which relays retinal input to the cortex, circuit activity is required for the migration, molecular differentiation, and functional integration of INs. We first characterize the prenatal origin and molecular identity of dLGN INs, revealing their recruitment from an Otx2(+) neuronal pool located in the adjacent ventral LGN. Using time-lapse and electrophysiological recordings, together with genetic and pharmacological perturbation of retinal waves, we show that retinal activity directs the navigation and circuit incorporation of dLGN INs during the first postnatal week, thereby regulating the inhibition of thalamocortical circuits. These findings identify an input-dependent mechanism regulating IN migration and circuit inhibition, which may account for the progressive recruitment of INs into expanding excitatory circuits during evolution.
Collapse
Affiliation(s)
- Bruno Golding
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gabrielle Pouchelon
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Sahana Murthy
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ariel A Di Nardo
- Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Subashika Govindan
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Masahuro Ogawa
- Riken Brain Science Institute, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Tomomi Shimogori
- Riken Brain Science Institute, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland.
| |
Collapse
|
10
|
Di Curzio DL, Buist RJ, Del Bigio MR. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 2013; 248:112-28. [PMID: 23769908 DOI: 10.1016/j.expneurol.2013.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/27/2023]
Abstract
Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain.
Collapse
Affiliation(s)
- Domenico L Di Curzio
- Department of Human Anatomy & Cell Science, University of Manitoba, Canada; Manitoba Institute of Child Health, Canada
| | | | | |
Collapse
|
11
|
Singh R, Su J, Brooks J, Terauchi A, Umemori H, Fox MA. Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. Front Mol Neurosci 2012; 4:61. [PMID: 22363257 PMCID: PMC3306139 DOI: 10.3389/fnmol.2011.00061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022] Open
Abstract
At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Yuge K, Kataoka A, Yoshida AC, Itoh D, Aggarwal M, Mori S, Blackshaw S, Shimogori T. Region-specific gene expression in early postnatal mouse thalamus. J Comp Neurol 2011; 519:544-61. [PMID: 21192083 DOI: 10.1002/cne.22532] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus.
Collapse
Affiliation(s)
- Kazuya Yuge
- RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Manger PR, Restrepo CE, Innocenti GM. The superior colliculus of the ferret: Cortical afferents and efferent connections to dorsal thalamus. Brain Res 2010; 1353:74-85. [PMID: 20682301 DOI: 10.1016/j.brainres.2010.07.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
|
14
|
Dual chemoarchitectonic lamination of the visual sector of the thalamic reticular nucleus. Neuroscience 2009; 165:801-18. [PMID: 19909790 DOI: 10.1016/j.neuroscience.2009.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
The chemoanatomical organization of the visual sector of the cat's thalamic reticular nucleus (TRN)-that is at the dorsal lateral geniculate nucleus (dLGN) and at the pulvinar nucleus (Pul)-was investigated with two novel cytoarchitectonic markers. The Wisteria floribunda agglutinin (WFA) binding reaction visualized the extracellular perineuronal net (PN) and the SMI 32 immunoreaction stained intracellular neurofilaments. Two distinct layers of the TRN could be detected, particularly by WFA- but also by SMI 32-staining. The outer tier outlined a canopy of labeling placed a bit detached from the diencephalon dorsolaterally, while the inner TRN tier is very tightly attached to the thalamic lamina limitans externa. The labeled neurons showed typically fusiform morphology with dendrites orienting in the plane of TRN. Additionally, these chemoarchitectural reactions identified a chain of structures in the ventral diencephalon connected to the TRN tiers. One stained string is formed by the subthalamic nucleus bound laterally to the peripeduncular nucleus extending further dorsolateral into the outer TRN tier. The other chain laced up the field of Forel, the zona incerta, the ventral LGN, the perigeniculate nucleus (PGN) and the previously-overlooked peripulvinar nucleus (PPulN) and so formed the inner TRN tier. In the third most distanced TRN tier, in the perireticular nucleus, a very few WFA-binding presenting neuron were found. In addition to the PN possessing TRN neurons, WFA-reactive presumable interneurons were also labeled within the visual thalamus. Following tracer injections into the feline Pul, two stripes of cells were retrogradely labeled in the neighboring visual TRN sector. The location of these reticular neurons coincided precisely with the chemoanatomically identified inner and outer TRN tiers. On the analogy of the PGN-TRN duality at the dLGN, the chemoanatomical and tract tracing findings strongly suggest a similar dual organization in the pulvinoprojecting TRN portion.
Collapse
|
15
|
Mueller T, Guo S. The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J Comp Neurol 2009; 516:553-68. [PMID: 19673006 DOI: 10.1002/cne.22122] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We used in situ hybridization on sections to examine the distribution of GAD67-expressing cell populations in the entire forebrain of the adult zebrafish. GAD67 is predominantly expressed in the olfactory bulb (OB), all regions of the subpallium (including the dorsal, ventral, central, and lateral nucleus of the area ventralis [Vd, Vv, Vc, and Vl, respectively]), as well as preoptic (PPa, PPp, and PM), pretectal (PPd, PPv, PCN, PSp, and PSm), ventral (= pre-) thalamic (I, VM, and VL), hypothalamic (Hr, Hi, and Hc), preglomerular (P, PGa, PGl, PGm, and RT), and posterior tubercular (TPp and TPm) nuclei. Only scattered GAD67-expressing cells are seen in all pallial zones (Dm, Dd, Dc, Dl, and Dp) and in the previously unidentified bed nucleus of the stria medullaris (BNSM). The BNSM appears to be the adult teleostean derivative of the larval eminentia thalami (EmT). We identify the GAD67-positive entopeduncular nucleus proper (EN) as being homologous to the entopeduncular nucleus of nonprimate mammals. GAD67 is strongly expressed in the anterior thalamic nucleus (A). The anterior thalamic nucleus is laterally bordered by a distinct GAD67-expressing cell population, which we interpret as the previously unidentified reticular thalamic nucleus (RTN) of teleosts. Furthermore, we identified a GAD67-positive thalamic nucleus, the intercalated nucleus (IC), which is sandwiched between the GAD67-negative dorsal (DP) and central posterior (CP) thalamic nuclei. Overall, the distribution of GAD67-expressing cells highly resembles the distribution of gamma-aminobutyric acid (GABA)/GAD67-expressing cells found in the early zebrafish (teleost) forebrain and thus allows us to propose a prosomeric fate map of GABAergic cell populations.
Collapse
Affiliation(s)
- Thomas Mueller
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, School of Pharmacy, University of California, San Francisco, California 94143-2811, USA.
| | | |
Collapse
|
16
|
Paradoxical effects of the hypnotic Zolpidem in the neonatal ferret. Behav Brain Res 2009; 201:233-6. [DOI: 10.1016/j.bbr.2009.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 11/22/2022]
|
17
|
Mikula S, Manger PR, Jones EG. The thalamus of the monotremes: cyto- and myeloarchitecture and chemical neuroanatomy. Philos Trans R Soc Lond B Biol Sci 2008; 363:2415-40. [PMID: 17553780 PMCID: PMC2606803 DOI: 10.1098/rstb.2007.2133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Echidna and platypus brains were sectioned and stained by Nissl or myelin stains or immunocytochemically for calcium-binding proteins, gamma aminobutyric acid (GABA) or other antigens. Cyto- and myeloarchitecture revealed thalami that are fundamentally mammalian in organization, with the three principal divisions of the thalamus (epithalamus, dorsal thalamus and ventral thalamus) identifiable as in marsupials and eutherian mammals. The dorsal thalamus exhibits more nuclear parcellation than hitherto described, but lack of an internal medullary lamina, caused by splaying out of afferent fibre tracts that contribute to it in other mammals, makes identification of anterior, medial and intralaminar nuclear groups difficult. Differentiation of the ventral nuclei is evident with the ventral posterior nucleus of the platypus enormously expanded into the interior of the cerebral hemisphere, where it adopts a relationship to the striatum not seen in other mammals. Other nuclei such as the lateral dorsal become identifiable by expression of patterns of calcium-binding proteins identical to those found in other mammals. GABA cells are present in the ventral and dorsal thalamic nuclei, and in the ventral thalamus form a remarkable continuum with GABA cells of the two segments of the globus pallidus and pars reticulata of the substantia nigra.
Collapse
|
18
|
Mueller T, Wullimann MF, Guo S. Early teleostean basal ganglia development visualized by ZebrafishDlx2a,Lhx6,Lhx7,Tbr2 (eomesa), andGAD67 gene expression. J Comp Neurol 2008; 507:1245-57. [DOI: 10.1002/cne.21604] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Sita LV, Elias CF, Bittencourt JC. Connectivity pattern suggests that incerto-hypothalamic area belongs to the medial hypothalamic system. Neuroscience 2007; 148:949-69. [PMID: 17707116 DOI: 10.1016/j.neuroscience.2007.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 06/13/2007] [Accepted: 07/13/2007] [Indexed: 11/17/2022]
Abstract
The incerto-hypothalamic area (IHy) is a poorly defined diencephalic region located at the junction of the medial hypothalamus and zona incerta (ZI). This region is characterized by the presence of the A13 dopaminergic group and also cells expressing melanin-concentrating hormone (MCH) and cocaine- and amphetamine-regulated transcript (CART). The dopaminergic neurons appear to influence luteinizing hormone secretion, but the role of the MCH/CART-expressing cells is unclear. Even though IHy presents a singular neurochemistry, it has long been assumed that it is also part of the zona incerta. By injecting biotinylated dextran amine into the IHy and ZI of adult male Wistar rats, we analyzed the efferent projections from the IHy in comparison to the ZI. We have found that ZI projects mainly to laterally located brain stem structures, whereas the main efferents from the IHy are the reuniens thalamic nucleus, precommissural nucleus, posterior hypothalamic area and dorsolateral periaqueductal gray matter. The IHy projection pattern is quite similar to that of the anterior hypothalamic area and our hodological results suggest that IHy belongs to the medial hypothalamic system and might be part of the defensive behavior system. The IHy could be an integrative area associated with the regulation of neuroendocrine functions related to motivated behaviors, which are mediated by the medial hypothalamus.
Collapse
Affiliation(s)
- L V Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 Ed. B-III, São Paulo SP, 05508-900, Brazil
| | | | | |
Collapse
|
20
|
Dragich JM, Kim YH, Arnold AP, Schanen NC. Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 2007; 501:526-42. [PMID: 17278130 DOI: 10.1002/cne.21264] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) are the primary cause of the neurodevelopmental disorder Rett syndrome (RTT). Mecp2-deficient mice develop a neurological phenotype that recapitulates many of the symptoms of RTT, including postnatal onset of the neurological deficits. MeCP2 has two isoforms, MeCP2e1 and MeCP2e2, with distinct amino termini, which are generated by alternative splicing. We examined the distribution of the Mecp2 splice variants in the postnatal mouse brain by in situ hybridization and found regional and age-related differences in transcript abundance. In newborn mice, signals for total Mecp2 and the Mecp2e2 transcripts were widely distributed, with overlapping expression patterns throughout the brain. Expression of the Mecp2e2 splice variant became largely restricted to nuclei within the dorsal thalamus (DT) and cortical layer V in juvenile animals, a pattern that was maintained into adulthood. In contrast, the total Mecp2 riboprobe only weakly labeled the DT and cortical layer V in juvenile and adult animals, although it heavily labeled surrounding brain regions, suggesting that Mecp2e1 is the predominant transcript outside the thalamus. Quantitative real-time PCR was used to measure Mecp2e1 and Mecp2e2 abundance in the diencephalon of adult mice, demonstrating significantly more Mecp2e2 in the DT than in the hypothalamus, which is in agreement with the Mecp2e2 in situ hybridization. The differential distribution of the Mecp2e1 and Mecp2e2 transcripts indicates regional and developmental regulation of Mecp2 splicing in the postnatal mouse brain.
Collapse
Affiliation(s)
- Joanna M Dragich
- Neuroscience Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, California 90095-1761, USA
| | | | | | | |
Collapse
|
21
|
Inverardi F, Beolchi MS, Ortino B, Moroni RF, Regondi MC, Amadeo A, Frassoni C. GABA immunoreactivity in the developing rat thalamus and Otx2 homeoprotein expression in migrating neurons. Brain Res Bull 2007; 73:64-74. [PMID: 17499638 DOI: 10.1016/j.brainresbull.2007.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
We investigated the expression of gamma-aminobutyric acid (GABA) in the developing rat thalamus by immunohistochemistry, using light, confocal and electron microscopy. We also examined the relationship between the expression of the homeoprotein Otx2, a transcription factor implicated in brain regionalization, and the radial and non-radial migration of early generated thalamic neurons, identified by the neuronal markers calretinin (CR) and GABA. The earliest thalamic neurons generated between embryonic days (E) 13 and 15 include those of the reticular nucleus, entirely composed by GABAergic neurons. GABA immunoreactivity appeared at E14 in immature neurons and processes laterally to the neuroepithelium of the diencephalic vesicle. The embryonic and perinatal periods were characterized by the presence of abundant GABA-immunoreactive fibers, mostly tangentially oriented, and of growth cones. At E15 and E16, GABA was expressed in radially and non-radially oriented neurons in the region of the reticular thalamic migration, between the dorsal and ventral thalamic primordia, and within the dorsal thalamus. At these embryonic stages, some CR- and GABA-immunoreactive migrating-like neurons, located in the migratory stream and in the dorsal thalamus, expressed the homeoprotein Otx2. In the perinatal period, the preponderance of GABAergic neurons was restricted to the reticular nucleus and several GABAergic fibers were still detectable throughout the thalamus. The immunolabeling of fibers progressively decreased and was no longer visible by postnatal day 10, when the adult configuration of GABA immunostaining was achieved. These results reveal the spatio-temporal features of GABA expression in the developing thalamus and suggest a novel role of Otx2 in thalamic cell migration.
Collapse
Affiliation(s)
- F Inverardi
- Dipartimento di Epilettologia Clinica e Neurofisiologia Sperimentale, Fondazione I.R.C.C.S. Istituto Nazionale Neurologico C. Besta, via Celoria 11, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Ramos-Moreno T, Galazo MJ, Porrero C, Martínez-Cerdeño V, Clascá F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 2006; 23:401-22. [PMID: 16420448 DOI: 10.1111/j.1460-9568.2005.04567.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Ave. Arzobispo Morcillo s/n., Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
23
|
Mueller T, Vernier P, Wullimann MF. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. J Comp Neurol 2006; 494:620-34. [PMID: 16374795 DOI: 10.1002/cne.20824] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A recent comparison of early forebrain gene expression in mouse and zebrafish revealed highly comparable expression patterns of developmentally relevant genes, for example, of proneural (Neurogenin1, NeuroD, Mash1/Zash1a) genes involved in neurogenesis at a particular time window (mouse: embryonic day 12.5/13.5; zebrafish: 3 days). Here we extend this analysis to the description of gamma-aminobutyric acid (GABA) cell patterns in the early postembryonic zebrafish brain (i.e., during early secondary neurogenesis). We find again an astonishing degree of correspondences of GABA cell patterns between zebrafish and mouse during this previously established critical time window, for example, regarding absence of GABA cells in certain forebrain regions (pallium, dorsal thalamus, eminentia thalami) or with respect to the spatiotemporal occurrence of GABA cells (e.g., late cerebellar GABA cells). Furthermore, there is perfect correlation with previously established proneural gene expression patterns (i.e., absence of Mash1/Zash1a gene expression in GABA-cell-free forebrain regions) between mouse and zebrafish. The available information in additional vertebrate species, especially in Xenopus, is also highly consistent with our analysis here and suggests that a "phylotypic stage" of neurogenesis during vertebrate brain development may be present.
Collapse
Affiliation(s)
- Thomas Mueller
- Centre National de la Recherche Scientifique, Institute of Neurobiology A. Fessard, "Development, Evolution, and Plasticity of the Nervous System," Research Unit 2197, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
24
|
Miyake A, Nakayama Y, Konishi M, Itoh N. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development. Dev Biol 2005; 288:259-75. [PMID: 16256099 DOI: 10.1016/j.ydbio.2005.09.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/16/2005] [Accepted: 09/27/2005] [Indexed: 01/21/2023]
Abstract
Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
25
|
Trujillo CM, Alonso A, Delgado AC, Damas C. The rostral and caudal boundaries of the diencephalon. ACTA ACUST UNITED AC 2005; 49:202-10. [PMID: 16111550 DOI: 10.1016/j.brainresrev.2005.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 11/22/2022]
Abstract
Knowledge of nature and features of the boundaries between the main neural regions seems to be essential to understand the rules of brain regionalization. On the light of several current and classical criteria used to define cerebral boundaries, we examine the features of the places recognized as rostral and caudal boundaries in the developing diencephalon and provide new images about the glial features of these boundaries. One demonstrated property of some embryonic boundaries is the prevention of the crossing cells in the early ventricular zone (clonal restriction), while the intermediate zone seems to lack it. Data available so far indicate that the early boundary between diencephalon and mesencephalon (d/m) is a clonal restriction limit, but not between diencephalon and telencephalon (d/t). Later, while diencephalic nuclei form, cellular dispersion does not occur through the alar part of d/m, but it achieves in the corresponding d/t alar portion. The relationship between origin, migration, and cell-type specification of neural cells is being the object of special attention in the telencephalon, where specific cellular fenotipes can migrate to distant regions following non-radial routes. Such is the case of most GABAergic interneurons of avian and mammalian pallium and oligodendrocytes of the forebrain. In this regard, little attention has been devoted to the diencephalon, where this type of migration, specially those through the rostral boundary, has been reported by different authors. We introduce increasing evidence about non-conventional neuronal migration in the developing diencephalon and compare the reported migratory behavior with respect to both boundaries.
Collapse
Affiliation(s)
- Carmen Maria Trujillo
- Microbiology and Cellular Biology, University of La Laguna (Tenerife, Spain), Avda. Astrofisico Fco. Sanchez sn, La Laguna Tenerife 38.206, Spain.
| | | | | | | |
Collapse
|
26
|
Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 2005; 8:1013-21. [PMID: 16025110 PMCID: PMC2652399 DOI: 10.1038/nn1505] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/23/2005] [Indexed: 11/09/2022]
Abstract
Axon guidance cues contributing to the development of eye-specific visual projections to the lateral geniculate nucleus (LGN) have not previously been identified. Here we show that gradients of ephrin-As and their receptors (EphAs) direct retinal ganglion cell (RGC) axons from the two eyes into their stereotyped pattern of layers in the LGN. Overexpression of EphAs in ferret RGCs using in vivo electroporation induced axons from both eyes to misproject within the LGN. The effects of EphA overexpression were competition-dependent and restricted to the early postnatal period. These findings represent the first demonstration of eye-specific pathfinding mediated by axon guidance cues and, taken with other reports, indicate that ephrin-As can mediate several mapping functions within individual target structures.
Collapse
Affiliation(s)
- Andrew D Huberman
- Center for Neuroscience, 1544 Newton Ct., University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Jones EG, Rubenstein JLR. Expression of regulatory genes during differentiation of thalamic nuclei in mouse and monkey. J Comp Neurol 2004; 477:55-80. [PMID: 15281080 DOI: 10.1002/cne.20234] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Expression patterns of genes implicated in development of the thalamus were examined in mice and monkeys, using in situ hybridization with RNA probes complementary to Cad6, Dlx1, Dlx2, Dlx5, Gbx2, Id2, and Lef1 cDNAs. Expression patterns were related to the evolving cytoarchitecture in mice at birth (P0) and in adulthood, and in fetal monkeys early and late in the period of gestation when thalamic nuclei are becoming histologically differentiated out of a series of pronuclear masses. At the earlier developmental stage, each gene was expressed in a pattern that appeared to be pronucleus-specific and maintained a nucleus-specific pattern into adulthood, with the possible exception of Gbx2. Each gene displayed a unique expression pattern in the dorsal thalamus, ventral thalamus, and epithalamus, and no gene was expressed throughout all three divisions or in every nucleus of a division. With the exception of Dlx2, whose expression disappeared at the later time point, all continued to be expressed into adulthood at higher levels and with identical patterns. Despite late appearance of gamma-aminobutyric acid (GABA)ergic cells in the dorsal lateral geniculate nucleus of mice, no Dlx genes, which promote formation of a GABAergic phenotype elsewhere, were detected in dorsal thalamus. Each thalamic nucleus was distinguished by expression of a combination of genes, and homologous nuclei in mouse and monkey exhibited the same combination. The presence of a centre médian nucleus and four pulvinar nuclei in monkeys was marked by patterns of expression not found in mice. The centre médian nucleus was marked by high expression of Id2, which was expressed only weakly in very few nuclei of mice.
Collapse
Affiliation(s)
- Edward G Jones
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA.
| | | |
Collapse
|