1
|
Liu Q, Huang B, Guiberson NGL, Chen S, Zhu D, Ma G, Ma XM, Crittenden JR, Yu J, Graybiel AM, Dawson TM, Dawson VL, Xiong Y. CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration. SCIENCE ADVANCES 2024; 10:eadn5417. [PMID: 39576856 PMCID: PMC11584015 DOI: 10.1126/sciadv.adn5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known. Here, we identified CalDAG-GEFI (CDGI) as a physiological GEF for LRRK2. CDGI interacts with LRRK2 and increases its GDP to GTP exchange activity. CDGI modulates LRRK2 cellular functions and LRRK2-induced neurodegeneration in both LRRK2 Drosophila and mouse models. Together, this study identified the physiological GEF for LRRK2 and provides strong evidence that LRRK2 GTPase is regulated by GAPs and GEFs. The LRRK2 GTPase, GAP, or GEF activities have the potential to serve as therapeutic targets, which is distinct from the direct LRRK2 kinase inhibition.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingxu Huang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noah Guy Lewis Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shifan Chen
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dong Zhu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gang Ma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn AC, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochem Int 2023; 162:105438. [PMID: 36351540 DOI: 10.1016/j.neuint.2022.105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.
Collapse
Affiliation(s)
- Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan; Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, 06519, United States
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
3
|
RasGRP1 promotes the acute inflammatory response and restricts inflammation-associated cancer cell growth. Nat Commun 2022; 13:7001. [PMID: 36385095 PMCID: PMC9669001 DOI: 10.1038/s41467-022-34659-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
An acute inflammatory response needs to be properly regulated to promote the elimination of pathogens and prevent the risk of tumorigenesis, but the relevant regulatory mechanism has not been fully elucidated. Here, we report that Ras guanine nucleotide-releasing protein 1 (RasGRP1) is a bifunctional regulator that promotes acute inflammation and inhibits inflammation-associated cancer. At the mRNA level, Rasgrp1 activates the inflammatory response by functioning as a competing endogenous RNA to specifically promote IL-6 expression by sponging let-7a. In vivo overexpression of the Rasgrp1 3' untranslated region enhances lipopolysaccharide-induced systemic inflammation and dextran sulphate sodium-induced colitis in Il6+/+ mice but not in Il6-/- mice. At the protein level, RasGRP1 overexpression significantly inhibits the tumour-promoting effect of IL-6 in hepatocellular carcinoma progenitor cell-like spheroids. Examination of the EGFR signalling pathway shows that RasGRP1 inhibits inflammation-associated cancer cell growth by disrupting the EGFR-SOS1-Ras-AKT signalling pathway. Tumour patients with high RasGRP1 expression have better clinical outcomes than those with low RasGRP1 expression. Considering that acute inflammation rarely leads to tumorigenesis, this study suggests that RasGRP1 may be an important bifunctional regulator of the acute inflammatory response and tumour growth.
Collapse
|
4
|
Crittenden JR, Zhai S, Sauvage M, Kitsukawa T, Burguière E, Thomsen M, Zhang H, Costa C, Martella G, Ghiglieri V, Picconi B, Pescatore KA, Unterwald EM, Jackson WS, Housman DE, Caine SB, Sulzer D, Calabresi P, Smith AC, Surmeier DJ, Graybiel AM. CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiol Dis 2021; 158:105473. [PMID: 34371144 PMCID: PMC8486000 DOI: 10.1016/j.nbd.2021.105473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington’s disease and levodopa-induced dyskinesia in Parkinson’s disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI’s therapeutic potential.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Magdalena Sauvage
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Leibniz Institute for Neurobiology, Functional Architecture of Memory Dept., Magdeburg, Germany
| | - Takashi Kitsukawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eric Burguière
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM U 1127, UPMC-P6 UMR S, 1127, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, Paris, France
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University, DK-2100, Copenhagen, Denmark; Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Hui Zhang
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cinzia Costa
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della misericordia, University of Perugia, 06100 Perugia, Italy
| | - Giuseppina Martella
- Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | | - Karen A Pescatore
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - David E Housman
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - S Barak Caine
- Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - David Sulzer
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168 Rome, Italy
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Berg DJ, Kartheiser K, Leyrer M, Saali A, Berson DM. Transcriptomic Signatures of Postnatal and Adult Intrinsically Photosensitive Ganglion Cells. eNeuro 2019; 6:ENEURO.0022-19.2019. [PMID: 31387875 PMCID: PMC6712207 DOI: 10.1523/eneuro.0022-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are rare mammalian photoreceptors essential for non-image-forming vision functions, such as circadian photoentrainment and the pupillary light reflex. They comprise multiple subtypes distinguishable by morphology, physiology, projections, and levels of expression of melanopsin (Opn4), their photopigment. The molecular programs that distinguish ipRGCs from other ganglion cells and ipRGC subtypes from one another remain elusive. Here, we present comprehensive gene expression profiles of early postnatal and adult mouse ipRGCs purified from two lines of reporter mice that mark different sets of ipRGC subtypes. We find dozens of novel genes highly enriched in ipRGCs. We reveal that Rasgrp1 and Tbx20 are selectively expressed in subsets of ipRGCs, though these molecularly defined groups imperfectly match established ipRGC subtypes. We demonstrate that the ipRGCs regulating circadian photoentrainment are diverse at the molecular level. Our findings reveal unexpected complexity in gene expression patterns across mammalian ipRGC subtypes.
Collapse
Affiliation(s)
- Daniel J Berg
- Molecular Biology, Cellular Biology, and Biochemistry Program, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | - Megan Leyrer
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Alexandra Saali
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
6
|
Nakamura H, Shimamura S, Yasuda S, Kono M, Kono M, Fujieda Y, Kato M, Oku K, Bohgaki T, Shimizu T, Iwasaki N, Atsumi T. Ectopic RASGRP2 (CalDAG-GEFI) expression in rheumatoid synovium contributes to the development of destructive arthritis. Ann Rheum Dis 2018; 77:1765-1772. [PMID: 30076153 DOI: 10.1136/annrheumdis-2018-213588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune polyarthritis, in which fibroblast-like synoviocytes (FLS) play a key role in cartilage and bone destruction through tumour-like proliferation and invasiveness. Considering still unsatisfactory remission rate in RA even under treatment with biological disease-modifying antirheumatic drugs, novel therapeutic strategy for treatment-resistant RA is still awaited. In this study, we analysed the expression and function of Ras guanine nucleotide-releasing proteins (RASGRPs), guanine exchange factors for small GTPase Ras, in FLS as a potential therapeutic target for RA. METHODS The expression of RASGRPs mRNA was quantified by a real-time PCR assay in FLS isolated from synovial tissue samples. RASGRP2 protein was also evaluated immunohistochemically. Then, we transiently transfected FLS with RASGRP2 expression vector and assessed their proliferation, adhesion, migration and invasion by cellular functional assays and downstream signalling activation using immunoblot. Finally, the therapeutic effect of RASGRP2 silencing was evaluated in type-II collagen-induced arthritis rats. RESULTS RASGRP2 was abundantly expressed in FLS from RA synovium, whereas scarcely found in those from osteoarthritis. Expression of RASGRP2 in RA-FLS was enhanced by transforming growth factor-beta. RASGRP2 activated RAP-1, subsequently affecting nuclear factor kappa-light-chain-enhancer of activated B cells pathway and actin dynamics in FLS. RASGRP2-overexpressed FLS had increased abilities of adhesion, migration and interleukin (IL)-6 production. Silencing of RASGRP2 using the intra-articular injection of Rasgrp2-specific siRNAs dampened experimental arthritis in rats by inhibiting pannus formation. CONCLUSIONS RASGRP2 was identified to be involved in the pathogenesis of RA by promoting adhesion, migration and IL-6 production from FLS, proposed as a potential novel non-immunosuppressive therapeutic target for RA.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sanae Shimamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michihiro Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiyuki Bohgaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C, Santos R, Hammer C, Ortiz Y, Opitz L, Grönlund H, Rogler G, Boyman O, Reynolds R, Lutterotti A, Khademi M, Olsson T, Piehl F, Sospedra M, Martin R. Memory B Cells Activate Brain-Homing, Autoreactive CD4 + T Cells in Multiple Sclerosis. Cell 2018; 175:85-100.e23. [PMID: 30173916 PMCID: PMC6191934 DOI: 10.1016/j.cell.2018.08.011] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as “autoproliferation” of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies. Autoproliferation of CD4+ T cells and B cells is involved in multiple sclerosis The main genetic factor of MS, HLA-DR15, plays a central role in autoproliferation Memory B cells drive autoproliferation of Th1 brain-homing CD4+ T cells Autoproliferating T cells recognize antigens expressed in B cells and brain lesions
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Faiez Al Nimer
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Verena Lentsch
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Aleksandar Madjovski
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sabrina Ruhrmann
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies (TPIMS), San Diego, CA, USA
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies (TPIMS), Port St. Lucie, FL, USA
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Yaneth Ortiz
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Hans Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andreas Lutterotti
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
8
|
Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm (Vienna) 2018; 125:1171-1186. [PMID: 29396608 PMCID: PMC6060907 DOI: 10.1007/s00702-018-1847-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
A large number of signaling abnormalities have been implicated in the emergence and expression of l-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of l-DOPA, through a variety of mechanisms affecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of l-DOPA leads to intermittent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifications of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis. Enhanced levels of multiple effector targets, including several transcription factors have been implicated in LID and associated changes in synaptic plasticity and morphology. This article provides an overview of the intracellular modifications occurring in SPN and associated with LID.
Collapse
|
9
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
10
|
Nagai T, Nakamuta S, Kuroda K, Nakauchi S, Nishioka T, Takano T, Zhang X, Tsuboi D, Funahashi Y, Nakano T, Yoshimoto J, Kobayashi K, Uchigashima M, Watanabe M, Miura M, Nishi A, Kobayashi K, Yamada K, Amano M, Kaibuchi K. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo. Neuron 2016; 89:550-65. [DOI: 10.1016/j.neuron.2015.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/17/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
|
11
|
Girault JA. Integrating neurotransmission in striatal medium spiny neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:407-29. [PMID: 22351066 DOI: 10.1007/978-3-7091-0932-8_18] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.
Collapse
Affiliation(s)
- Jean-Antoine Girault
- Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
12
|
Girault JA. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:33-62. [PMID: 22340713 DOI: 10.1016/b978-0-12-396456-4.00006-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The striatum is a deep region of the forebrain involved in action selection, control of movement, and motivation. It receives a convergent excitatory glutamate input from the cerebral cortex and the thalamus, controlled by dopamine (DA) released in response to unexpected rewards and other salient stimuli. Striatal function and its dysfunction in drug addiction or Parkinson's disease depend on the interplay between these neurotransmitters. Signaling cascades in striatal medium-sized spiny neurons (MSNs) involve multiple kinases, phosphatases, and phosphoproteins, some of which are highly enriched in these neurons. They control the properties of ion channels and the plasticity of MSNs, in part through their effects on gene transcription. This chapter summarizes signaling in MSNs and focuses on the regulation of multiple protein phosphatases through DA and glutamate receptors and the role of ERK. It is hypothesized that these pathways are particularly adapted to the specific computing properties of MSNs and the function of the basal ganglia circuits in which they participate.
Collapse
|
13
|
Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission. Front Behav Neurosci 2011; 5:71. [PMID: 22028687 PMCID: PMC3199545 DOI: 10.3389/fnbeh.2011.00071] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson's disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies.
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
15
|
Matamales M, Girault JA. Signaling from the cytoplasm to the nucleus in striatal medium-sized spiny neurons. Front Neuroanat 2011; 5:37. [PMID: 21779236 PMCID: PMC3133824 DOI: 10.3389/fnana.2011.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/13/2011] [Indexed: 12/13/2022] Open
Abstract
Striatal medium-sized spiny neurons (MSNs) receive massive glutamate inputs from the cerebral cortex and thalamus and are a major target of dopamine projections. Interaction between glutamate and dopamine signaling is crucial for the control of movement and reward-driven learning, and its alterations are implicated in several neuropsychiatric disorders including Parkinson's disease and drug addiction. Long-lasting forms of synaptic plasticity are thought to depend on transcription of gene products that alter the structure and/or function of neurons. Although multiple signal transduction pathways regulate transcription, little is known about signal transmission between the cytoplasm and the nucleus of striatal neurons and its regulation. Here we review the current knowledge of the signaling cascades that target the nucleus of MSNs, most of which are activated by cAMP and/or Ca(2+). We outline the mechanisms by which signals originating at the plasma membrane and amplified in the cytoplasm are relayed to the nucleus, through the regulation of several protein kinases and phosphatases and transport through the nuclear pore. We also summarize the identified mechanisms of transcription regulation and chromatin remodeling in MSNs that appear to be important for behavioral adaptations, and discuss their relationships with epigenetic regulation.
Collapse
Affiliation(s)
- Miriam Matamales
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
16
|
Chen L, Fu Y, Ren M, Xiao B, Rubin CS. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 2011; 70:51-65. [PMID: 21482356 PMCID: PMC3081643 DOI: 10.1016/j.neuron.2011.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
Abstract
RasGRPs, which load GTP onto Ras and Rap1, are expressed in vertebrate and invertebrate neurons. The functions, regulation, and mechanisms of action of neuronal RasGRPs are unknown. Here, we show how C. elegans RGEF-1b, a prototypical neuronal RasGRP, regulates a critical behavior. Chemotaxis to volatile odorants was disrupted in RGEF-1b-deficient (rgef-1⁻/⁻) animals and wild-type animals expressing dominant-negative RGEF-1b in AWC sensory neurons. AWC-specific expression of RGEF-1b-GFP restored chemotaxis in rgef-1⁻/⁻ mutants. Signals disseminated by RGEF-1b in AWC neurons activated a LET-60 (Ras)-MPK-1 (ERK) signaling cascade. Other RGEF-1b and LET-60 effectors were dispensable for chemotaxis. A bifunctional C1 domain controlled intracellular targeting and catalytic activity of RGEF-1b and was essential for sensory signaling in vivo. Chemotaxis was unaffected when Ca²+-binding EF hands and a conserved phosphorylation site of RGEF-1b were inactivated. Diacylglycerol-activated RGEF-1b links external stimuli (odorants) to behavior (chemotaxis) by activating the LET-60-MPK-1 pathway in specific neurons.
Collapse
Affiliation(s)
- Lu Chen
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Carbo C, Duerschmied D, Goerge T, Hattori H, Sakai J, Cifuni SM, White GC, Chrzanowska-Wodnicka M, Luo HR, Wagner DD. Integrin-independent role of CalDAG-GEFI in neutrophil chemotaxis. J Leukoc Biol 2010; 88:313-9. [PMID: 20413728 DOI: 10.1189/jlb.0110049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis and integrin activation are essential processes for neutrophil transmigration in response to injury. CalDAG-GEFI plays a key role in the activation of beta1, beta2, and beta3 integrins in platelets and neutrophils by exchanging a GDP for a GTP on Rap1. Here, we explored the role of CalDAG-GEFI and Rap1b in integrin-independent neutrophil chemotaxis. In a transwell assay, CalDAG-GEFI-/- neutrophils had a 46% reduction in transmigration compared with WT in response to a low concentration of LTB4. Visualization of migrating neutrophils in the presence of 10 mM EDTA revealed that CalDAG-GEFI-/- neutrophils had abnormal chemotactic behavior compared with WT neutrophils, including reduced speed and directionality. Interestingly, Rap1b-/- neutrophils had a similar phenotype in this assay, suggesting that CalDAG-GEFI may be acting through Rap1b. We investigated whether the deficit in integrin-independent chemotaxis in CalDAG-GEFI-/- neutrophils could be explained by defective cytoskeleton rearrangement. Indeed, we found that CalDAG-GEFI-/- neutrophils had reduced formation of F-actin pseudopodia after LTB4 stimulation, suggesting that they have a defect in polarization. Overall, our studies show that CalDAG-GEFI helps regulate neutrophil chemotaxis, independent of its established role in integrin activation, through a mechanism that involves actin cytoskeleton and cellular polarization.
Collapse
Affiliation(s)
- Carla Carbo
- Immune Disease Institute, Program in Cellular and Molecular Medicine, Department of Laboratory Medicine, Children's Hospital, and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Crittenden JR, Dunn DE, Merali FI, Woodman B, Yim M, Borkowska AE, Frosch MP, Bates GP, Housman DE, Lo DC, Graybiel AM. CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease. Hum Mol Genet 2010; 19:1756-65. [PMID: 20147317 DOI: 10.1093/hmg/ddq055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntingtin protein (Htt) is ubiquitously expressed, yet Huntington's disease (HD), a fatal neurologic disorder produced by expansion of an Htt polyglutamine tract, is characterized by neurodegeneration that occurs primarily in the striatum and cerebral cortex. Such discrepancies between sites of expression and pathology occur in multiple neurodegenerative disorders associated with expanded polyglutamine tracts. One possible reason is that disease-modifying factors are tissue-specific. Here, we show that the striatum-enriched protein, CalDAG-GEFI, is severely down-regulated in the striatum of mouse HD models and is down-regulated in HD individuals. In the R6/2 transgenic mouse model of HD, striatal neurons with the largest aggregates of mutant Htt have the lowest levels of CalDAG-GEFI. In a brain-slice explant model of HD, knock-down of CalDAG-GEFI expression rescues striatal neurons from pathology induced by transfection of polyglutamine-expanded Htt exon 1. These findings suggest that the striking down-regulation of CalDAG-GEFI in HD could be a protective mechanism that mitigates Htt-induced degeneration.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, MIT, 43 Vassar Street, Building 46-6133, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proc Natl Acad Sci U S A 2009; 106:2892-6. [PMID: 19171906 DOI: 10.1073/pnas.0812822106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voluntary movement difficulties in Parkinson's disease are initially relieved by l-DOPA therapy, but with disease progression, the repeated l-DOPA treatments can produce debilitating motor abnormalities known as l-DOPA-induced dyskinesias. We show here that 2 striatum-enriched regulators of the Ras/Rap/ERK MAP kinase signal transduction cascade, matrix-enriched CalDAG-GEFI and striosome-enriched CalDAG-GEFII (also known as RasGRP), are strongly and inversely dysregulated in proportion to the severity of abnormal movements induced by l-DOPA in a rat model of parkinsonism. In the dopamine-depleted striatum, the l-DOPA treatments produce down-regulation of CalDAG-GEFI and up-regulation of CalDAG-GEFII mRNAs and proteins, and quantification of the mRNA levels shows that these changes are closely correlated with the severity of the dyskinesias. As these CalDAG-GEFs control ERK cascades, which are implicated in l-DOPA-induced dyskinesias, and have differential compartmental expression patterns in the striatum, we suggest that they may be key molecules involved in the expression of the dyskinesias. They thus represent promising new therapeutic targets for limiting the motor complications induced by l-DOPA therapy.
Collapse
|
21
|
Norum JH, Dawood H, Mattingly RR, Sandnes D, Levy FO. Epac- and Rap- independent ERK1/2 phosphorylation induced by Gs-coupled receptor stimulation in HEK293 cells. FEBS Lett 2006; 581:15-20. [PMID: 17174312 DOI: 10.1016/j.febslet.2006.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/28/2006] [Indexed: 11/26/2022]
Abstract
Serotonin activates Ras and Ras-dependent ERK1/2 phosphorylation in HEK293 cells expressing G(s)-coupled 5-HT(4) or 5-HT(7) serotonin receptors through unknown mechanisms. Both Epac/Rap-dependent and -independent pathways for Ras-dependent ERK1/2 activation have been suggested. Epac overexpression or Epac-specific 8-CPT-2'-O-Me-cAMP did not cause ERK1/2 phosphorylation, despite Rap activation. The data did not support a role for PLCepsilon or DAG-dependent Ras GEFs of the Ras-GRP family in Ras-dependent ERK1/2 phosphorylation. However, serotonin stimulated phosphorylation of endogenous and recombinant Ras-GRF1, increased [Ca(2+)](i) and caused Ca(2+)- and calmodulin-dependent ERK1/2 phosphorylation. Different signalling pathways seem to be utilised by G(s)-coupled receptors in various isolates of HEK293 cells.
Collapse
|
22
|
The effects of PACAP on neural cell proliferation. ACTA ACUST UNITED AC 2006; 137:50-7. [PMID: 17011642 DOI: 10.1016/j.regpep.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/20/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
PACAP and its receptors are expressed in growth zones of the brain. By stimulating PAC(1)-receptors PACAP can enhance, as well as reduce, the proliferation rate in a cell-type dependent manner. PACAP can enhance the proliferation rate by activating phospholipase C and protein kinase C, although other signal transduction pathways may also be responsible. PACAP can suppress proliferation by inhibiting protein complexes of the cyclins D and E with the cyclin-dependent kinases 4/6 and 2, respectively, which are necessary for entry into the cell cycle. PACAP seems to exert these inhibitory effects by acting via the Sonic hedgehog glycoprotein and the small GTPase RhoA. Also, the activation of a cyclin-dependent kinase inhibitor has been suggested. The signal transduction pathways mediating the effects of PACAP on proliferation are discussed.
Collapse
|
23
|
Lambert QT, Reuther GW. Activation of Ras Proteins by Ras Guanine Nucleotide Releasing Protein Family Members. Methods Enzymol 2006; 407:82-98. [PMID: 16757316 DOI: 10.1016/s0076-6879(05)07008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ras guanine nucleotide releasing proteins (RasGRPs) function as guanine nucleotide exchange factors for Ras proteins. Thus, RasGRPs are direct activators of Ras proteins and contribute an important role in various cell-signaling pathways that are regulated by the activation state of Ras proteins. RasGRPs are regulated by the second messengers diacylglycerol and intracellular calcium and are also known as CalDAG-GEFs or calcium and diacylglycerol-regulated guanine nucleotide exchange factors. RasGRPs couple signaling events that generate these second messengers in the cell into activation of signaling pathways that are regulated by Ras. RasGRPs, therefore, increase the repertoire of extracellular stimuli that lead to activation of Ras. Analyzing the regulation of RasGRP activity should continue to play an important role in understanding the mechanisms by which signal transduction pathways use RasGRP proteins to activate Ras proteins in cells.
Collapse
Affiliation(s)
- Que T Lambert
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | | |
Collapse
|
24
|
Norum JH, Méthi T, Mattingly RR, Levy FO. Endogenous expression and protein kinase A-dependent phosphorylation of the guanine nucleotide exchange factor Ras-GRF1 in human embryonic kidney 293 cells. FEBS J 2005; 272:2304-16. [PMID: 15853814 DOI: 10.1111/j.1742-4658.2005.04658.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.
Collapse
|
25
|
Kennedy MB, Beale HC, Carlisle HJ, Washburn LR. Integration of biochemical signalling in spines. Nat Rev Neurosci 2005; 6:423-34. [PMID: 15928715 DOI: 10.1038/nrn1685] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Short-term and long-term changes in the strength of synapses in neural networks underlie working memory and long-term memory storage in the brain. These changes are regulated by many biochemical signalling pathways in the postsynaptic spines of excitatory synapses. Recent findings about the roles and regulation of the small GTPases Ras, Rap and Rac in spines provide new insights into the coordination and cooperation of different pathways to effect synaptic plasticity. Here, we present an initial working representation of the interactions of five signalling cascades that are usually studied individually. We discuss their integrated function in the regulation of postsynaptic plasticity.
Collapse
Affiliation(s)
- Mary B Kennedy
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
26
|
Stone JC, Stang SL, Zheng Y, Dower NA, Brenner SE, Baryza JL, Wender PA. Synthetic Bryostatin Analogues Activate the RasGRP1 Signaling Pathway. J Med Chem 2004; 47:6638-44. [PMID: 15588099 DOI: 10.1021/jm0495069] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The functional properties of four diacylglycerol (DAG) analogues were compared using cell-signaling assays based on the protein RasGRP1, a DAG-regulated Ras activator. Compounds 1 and 2, synthetic analogues of bryostatin 1, were compared to authentic bryostatin 1 and phorbol 12-myristate-13-acetate (PMA). The two "bryologues" were able to activate RasGRP1 signaling rapidly in cultured cells and isolated mouse thymocytes. They elicited expression of the T cell activation marker CD69 in human T cells. DAG analogues promptly recruited RasGRP1 to cell membranes, but they did not induce RasGRP1 proteolysis. Bryostatin 1 and compounds 1 and 2 appeared to be less potent than PMA at inducing aggregation of mouse thymocytes, a PKC-dependent, RasGRP1-independent response. In addition to sharing potential anticancer properties with bryostatin 1, compounds 1 and 2 might be clinically useful as modulators of the immune system.
Collapse
Affiliation(s)
- James C Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Caloca MJ, Zugaza JL, Vicente-Manzanares M, Sánchez-Madrid F, Bustelo XR. F-actin-dependent Translocation of the Rap1 GDP/GTP Exchange Factor RasGRP2. J Biol Chem 2004; 279:20435-46. [PMID: 14988412 DOI: 10.1074/jbc.m313013200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.
Collapse
Affiliation(s)
- Mariía J Caloca
- Centro de Investigación del Cáncer, University of Salamanca-Consejo Superior de Investigaciones Cientiíficas, Campus Unamuno, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
28
|
Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:391-444. [PMID: 12102558 DOI: 10.1016/s0079-6603(02)71047-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GTPases of the Ras subfamily regulate a diverse array of cellular-signaling pathways, coupling extracellular signals to the intracellular response machinery. Guanine nucleotide exchange factors (GEFs) are primarily responsible for linking cell-surface receptors to Ras protein activation. They do this by catalyzing the dissociation of GDP from the inactive Ras proteins. GTP can then bind and induce a conformational change that permits interaction with downstream effectors. Over the past 5 years, approximately 20 novel Ras-family GEFs have been identified and characterized. These data indicate that a variety of different signaling mechanisms can be induced to activate Ras, enabling tyrosine kinases, G-protein-coupled receptors, adhesion molecules, second messengers, and various protein-interaction modules to relocate and/or activate GEFs and elevate intracellular Ras-GTP levels. This review discusses the structure and function of the catalytic or CDC25 homology domain common to almost all Ras-family GEFs. It also details our current knowledge about the regulation and function of this rapidly growing family of enzymes that include Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, BCAR3, Smg GDS, and phospholipase C(epsilon).
Collapse
Affiliation(s)
- Lawrence A Quilliam
- Department of Biochemistry and Molecular, Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
29
|
Pierret P, Mechawar N, Vallée A, Patel J, Priestley JV, Dunn RJ, Dower NA, Stone JC, Richardson PM. Presence of Ras guanyl nucleotide-releasing protein in striosomes of the mature and developing rat. Neuroscience 2002; 111:83-94. [PMID: 11955714 DOI: 10.1016/s0306-4522(01)00597-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ras signal transduction pathways have been implicated as key regulators in neuroplasticity and synaptic transmission in the brain. These pathways can be modulated by Ras guanyl nucleotide exchange factors, (GEF) which activate Ras proteins by catalysing the exchange of GDP for GTP. Ras guanyl nucleotide-releasing protein (RasGRP), a recently discovered Ras GEF, that links diacylglycerol and probably calcium to Ras signaling pathways, is expressed in brain as well as in T-cells. Here, we have used a highly selective monoclonal antibody against RasGRP to localize this protein within the striatum and related forebrain structures of developing and adult rats. RasGRP immunolabeling was found to be widespread in the mature and developing rat forebrain. Most notably, it presented a prominent patchy distribution throughout the striatum at birth and at all postnatal ages examined. These patches were found to correspond with the striosomal compartment of the striatum, as identified by micro-opioid receptor labeling in the adult. RasGRP-immunoreactivity was also observed in the matrix-like compartment surrounding these patches/striosomes but appeared later in development and was always weaker than in the patches. In both striatal compartments, RasGRP was exclusively expressed by medium-sized spiny neurons and showed no preference for neurons that project either directly or indirectly to the substantia nigra. At the ultrastructural level, immunogold labeling of RasGRP was confined to the cell bodies and dendritic shafts of these output neurons. We conclude that the prominent expression of RasGRP in striosomes may be of significance for diacylglycerol signaling in the striatum, and could be of importance for the processing of limbic-related activity within the basal ganglia.
Collapse
Affiliation(s)
- P Pierret
- Department of Neuroscience, Neuroscience and Intensive Care, University of London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|