1
|
Marty S, Couto A, Dawson EH, Brard N, d'Ettorre P, Montgomery SH, Sandoz JC. Ancestral complexity and constrained diversification of the ant olfactory system. Proc Biol Sci 2025; 292:20250662. [PMID: 40300630 PMCID: PMC12040470 DOI: 10.1098/rspb.2025.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
Communication is a cornerstone of social living, allowing the exchange of information to align goals and synchronize behaviour. Ants, a group of highly successful social insects, have heightened olfactory abilities that are integral to their evolutionary success. Essential for colony cohesion and cooperation, a female-specific olfactory subsystem processes information about nestmate recognition cues (cuticular hydrocarbons), including basiconic sensilla on the antenna and a cluster of specific glomeruli in the antennal lobe. While it has often been linked to ants' social lifestyle, the evolutionary origins and phylogenetic distribution of this system remain unknown. We conducted a comparative exploration of the ant olfactory system across eight major subfamilies, integrating neuroanatomical, chemical and behavioural analyses. Our findings reveal that sophistication of the ant olfactory system has deep evolutionary roots. Moreover, antennal lobe investment is not associated with social traits such as colony size, polygyny or foraging strategies, but correlates with cuticular hydrocarbon profile complexity. Despite neuroanatomical differences, different ant species consistently excel in nestmate discrimination, indicating adaptation to chemical diversity while maintaining reliable social recognition. This suggests that cuticular hydrocarbon profile and neuronal investment in olfactory neuropil have co-evolved to sustain discrimination performance.
Collapse
Affiliation(s)
- Simon Marty
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Antoine Couto
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Erika H. Dawson
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Neven Brard
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | | | - Jean-Christophe Sandoz
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Thomas A, Roy M, Gupta N. Olfactory coding in the mosquito antennal lobe: labeled lines or combinatorial code? CURRENT OPINION IN INSECT SCIENCE 2025; 68:101299. [PMID: 39550060 DOI: 10.1016/j.cois.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Odors serve as important cues for many behaviors in mosquitoes, including host-seeking, foraging, and oviposition. They are detected by olfactory receptor neurons present in the sensory organs, whose axons take this signal to the antennal lobe, the first olfactory processing center in the insect brain. We review the organization and the functioning of the antennal lobe in mosquitoes, focusing on two populations of interneurons present there: the local neurons (LNs) and the projection neurons (PNs). LNs enable information processing in the antennal lobe by providing lateral inhibition and excitation. PNs carry the processed output to downstream neurons in the lateral horn and the mushroom body. We compare the ideas of labeled lines and combinatorial codes, and argue that the PN population encodes odors combinatorially. Throughout this review, we discuss the observations from Aedes, Anopheles, and Culex mosquitoes in the context of previous findings from Drosophila and other insects.
Collapse
Affiliation(s)
- Abin Thomas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Madhurima Roy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
3
|
Shankar S, Giraldo D, Tauxe GM, Spikol ED, Li M, Akbari OS, Wohl MP, McMeniman CJ. Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system. G3 (BETHESDA, MD.) 2025; 15:jkae307. [PMID: 39853276 PMCID: PMC11917485 DOI: 10.1093/g3journal/jkae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025]
Abstract
The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A. aegypti olfactory co-receptor genes Ir8a and orco via canonical homology-directed repair and the CO2 receptor complex gene Gr1 via noncanonical homology-directed repair involving duplication of the intended T2A-QF2 integration cassette separated by intervening donor plasmid sequence. Using Gr1+ olfactory sensory neurons as an example, we show that introgression of such T2A-QF2 driver and QUAS responder transgenes into a yellow cuticular pigmentation mutant strain facilitates transcuticular calcium imaging of CO2-evoked neural activity on the maxillary palps with enhanced sensitivity relative to wild-type mosquitoes enveloped by dark melanized cuticle. We further apply Cre-loxP excision to derive marker-free T2A-QF2 in-frame fusions to clearly map axonal projection patterns from olfactory sensory neurons expressing these 3 chemoreceptors into the A. aegypti antennal lobe devoid of background interference from 3xP3-based fluorescent transgenesis markers. The marker-free Gr1 T2A-QF2 driver facilitates clear recording of CO2-evoked responses in this central brain region using the genetically encoded calcium indicators GCaMP6s and CaMPARI2. Systematic application of these optimized methods to different chemoreceptors stands to enable mapping A. aegypti olfactory circuits at peripheral and central levels of olfactory coding at high resolution.
Collapse
Affiliation(s)
- Shruti Shankar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Genevieve M Tauxe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Emma D Spikol
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Lu Y, Yang Y, Yu LY, Jin HB, Ren BZ, Chen Q. Glomerular organization of the antennal lobe in the fall webworm Hyphantria cunea (Drury, 1770). ARTHROPOD STRUCTURE & DEVELOPMENT 2025; 85:101422. [PMID: 39983656 DOI: 10.1016/j.asd.2025.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
The fall webworm (Hyphantria cunea), a typical destructive invasive pest, has caused substantial damage to both the ecological environment and economy in China. H. cunea uses primarily its antennae to locate food and perceive pheromones through stimulation of olfactory receptor neurons. These receptor neurons project their axons into glomeruli within the antennal lobes, the primary olfactory center in the brain. The projection patterns of sensory antennal neurons into the antennal lobe and its precise structure have not been described so far. To decipher the primary organization behind olfactory recognition in H. cunea, this study employed synaptic antibody immunostaining, as well as mass staining of olfactory sensory neurons (OSNs), and computer-based reconstruction to establish a three-dimensional olfactory glomerular map of the moth's antennal lobes. A total of 74 male and 81 female antennal lobe glomeruli were identified, including 3 male-specific glomeruli (Macroglomerular complex, MGC) and 8 female-specific glomeruli (DL1-DL8). While the Cumulus (Cu) volume was largest in MGC, the differences in volume among dorsomedial anterior and dorsomedial posterior were minimal. These findings lay the groundwork for a better understanding of the olfactory anatomical organization in H. cunea.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Economical and Applied Entomology of the Education Department of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lu-Yao Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hong-Bo Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Bing-Zhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
5
|
Fernández-Chiappe F, Ocker GK, Younger MA. Prospects on non-canonical olfaction in the mosquito and other organisms: why co-express? CURRENT OPINION IN INSECT SCIENCE 2025; 67:101291. [PMID: 39471910 DOI: 10.1016/j.cois.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The Aedes aegypti mosquito utilizes olfaction during the search for humans to bite. The attraction to human body odor is an innate behavior for this disease-vector mosquito. Many well-studied model species have olfactory systems that conform to a particular organization that is sometimes referred to as the 'one-receptor-to-one-neuron' organization because each sensory neuron expresses only a single type of olfactory receptor that imparts the neuron's chemical selectivity. This sensory architecture has become the canon in the field. This review will focus on the recent finding that the olfactory system of Ae. aegypti has a different organization, with multiple olfactory receptors co-expressed in many of its olfactory sensory neurons. We will discuss the canonical organization and how this differs from the non-canonical organization, examine examples of non-canonical olfactory systems in other species, and discuss the possible roles of receptor co-expression in odor coding in the mosquito and other organisms.
Collapse
Affiliation(s)
- Florencia Fernández-Chiappe
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA
| | - Gabriel K Ocker
- Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02143, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA.
| |
Collapse
|
6
|
Lukenge M, Ignell R, Hill SR. Differential sensitivity and specificity of Aedes aegypti and Anopheles gambiae to adenine nucleotide phagostimulants-an all-or-none response? Parasit Vectors 2024; 17:450. [PMID: 39497168 PMCID: PMC11536708 DOI: 10.1186/s13071-024-06482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The decision to imbibe a blood meal is predominantly dependent on the sensitivity and specificity of haematophagous arthropods to blood-derived adenine nucleotides, in particular adenosine triphosphate (ATP). Despite previous efforts to identify and characterise the specificity and sensitivity to ATP and other adenine nucleotides, as well as the role of other blood-derived phagostimulants across the Culicidae, comparisons across species remain difficult. METHODS The feeding response of the yellow fever mosquito Aedes aegypti and the African malaria vector Anopheles gambiae to adenine nucleotides in the presence of a carbonate buffer was assessed using a membrane feeding assay. The proportion of mosquitoes engorged and the volume imbibed by all mosquitoes was scored visually and spectrophotometrically. In addition, the proportion of prediuresing An. gambiae, as well as the volume engorged and prediuresed, was examined. RESULTS Aedes aegypti was more sensitive to adenine nucleotides than An. gambiae, but both species maintained specificity to these phagostimulants, demonstrating a dose-dependent bimodal feeding pattern, thereby expanding our understanding of the all-or-none blood-feeding hypothesis. Feeding on the bicarbonate buffer by An. gambiae-but not that of Ae. aegypti-demonstrated a species-specific variation in how blood phagostimulants are encoded. Adenine nucleotides, with and without bovine serum albumin, were observed to dose-dependently regulate the proportion of An. gambiae prediuresing and the volumes prediuresed but not volumes engorged. CONCLUSIONS Taken together, the results of this study expand our understanding of how mosquitoes differentially assess and respond to blood meal constituents, and provide a basis for further physiological and molecular studies.
Collapse
Affiliation(s)
- Matthew Lukenge
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon Rose Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
7
|
Tung GA, Fonseca DM. Internal and external drivers interact to create highly dynamic mosquito blood-feeding behaviour. Proc Biol Sci 2024; 291:20241105. [PMID: 39196275 DOI: 10.1098/rspb.2024.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Blood-feeding, which is necessary for most female mosquitoes to reproduce, provides an opportunity for pathogen transmission. Blood-feeding is influenced by external factors such as light, temperature, humidity and intra- and inter-specific interactions. Physiologically, blood-feeding cycles are linked to nutritional conditions and governed by conserved hormonal signalling pathways that prepare mosquito sensory systems to locate and evaluate hosts. Human activities also alter mosquito blood-feeding behaviour through selection pressures such as insecticide usage, habitat and ecosystem alterations, and climate change. Notably, blood-feeding behaviour changes within a mosquito's lifespan, an underexplored phenomenon from an epidemiological standpoint. A review of the literature indicates that our understanding of mosquito biology and blood-feeding behaviour is predominantly based on studies of a handful of primarily tropical species. This focus likely skews our comprehension of the diversity of critical drivers of blood-feeding behaviour, especially under constraints imposed by harsh conditions. We found evidence of remarkable adaptability in blood-feeding and significant knowledge gaps regarding the determinants of host use. Specifically, epidemiological analyses assume host use is modified by external factors, while neglecting internal physiology. Integrating all significant factors is essential for developing effective models of mosquito-borne disease transmission in a rapidly changing world.
Collapse
Affiliation(s)
- Grayson A Tung
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Guerina FV, Patkar AP, Younger MA. Introduction to Techniques Used to Study Mosquito Neuroanatomy and Neural Circuitry. Cold Spring Harb Protoc 2024; 2024:pdb.top108305. [PMID: 37816602 DOI: 10.1101/pdb.top108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Mosquitoes transmit deadly pathogens from person to person as they obtain the blood meal that is essential for their life cycle. Female mosquitoes of many species are unable to reproduce without consuming protein that they obtain from blood. This developmental stage makes them highly efficient disease vectors of deadly pathogens. They can transmit pathogens between members of the same species and different species that can provide a route for evolving zoonotic viruses to jump from animals to humans. One possible way to develop novel strategies to combat pathogen transmission by mosquitoes is to study the sensory systems that drive mosquito reproductive behaviors, in particular the neural architecture and circuits of mosquito sensory afferent neurons, the central circuits that process sensory information, and the downstream circuits that drive reproductive behaviors. The study of mosquito neuroanatomy and circuitry also benefits basic neuroscience, allowing for comparative neuroanatomy in insect species, which has great value in the current model species-heavy landscape of neuroscience. Here, we introduce two important techniques that are used to study neuroanatomy and neural circuitry-namely, immunofluorescent labeling and neural tracing. We describe how to apply these approaches to study mosquito neuroanatomy and describe considerations for researchers using the techniques.
Collapse
Affiliation(s)
- Florence V Guerina
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Ameya P Patkar
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Singh P, Goyal S, Gupta S, Garg S, Tiwari A, Rajput V, Bates AS, Gupta AK, Gupta N. Combinatorial encoding of odors in the mosquito antennal lobe. Nat Commun 2023; 14:3539. [PMID: 37322224 PMCID: PMC10272161 DOI: 10.1038/s41467-023-39303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Among the cues that a mosquito uses to find a host for blood-feeding, the smell of the host plays an important role. Previous studies have shown that host odors contain hundreds of chemical odorants, which are detected by different receptors on the peripheral sensory organs of mosquitoes. But how individual odorants are encoded by downstream neurons in the mosquito brain is not known. We developed an in vivo preparation for patch-clamp electrophysiology to record from projection neurons and local neurons in the antennal lobe of Aedes aegypti. Combining intracellular recordings with dye-fills, morphological reconstructions, and immunohistochemistry, we identify different sub-classes of antennal lobe neurons and their putative interactions. Our recordings show that an odorant can activate multiple neurons innervating different glomeruli, and that the stimulus identity and its behavioral preference are represented in the population activity of the projection neurons. Our results provide a detailed description of the second-order olfactory neurons in the central nervous system of mosquitoes and lay a foundation for understanding the neural basis of their olfactory behaviors.
Collapse
Affiliation(s)
- Pranjul Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Shefali Goyal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Smith Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Sanket Garg
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Abhinav Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Varad Rajput
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Alexander Shakeel Bates
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
10
|
Loh YM, Su MP, Ellis DA, Andrés M. The auditory efferent system in mosquitoes. Front Cell Dev Biol 2023; 11:1123738. [PMID: 36923250 PMCID: PMC10009176 DOI: 10.3389/fcell.2023.1123738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - David A. Ellis
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Marta Andrés
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Wolff GH, Lahondère C, Vinauger C, Rylance E, Riffell JA. Neuromodulation and differential learning across mosquito species. Proc Biol Sci 2023; 290:20222118. [PMID: 36629098 PMCID: PMC9832544 DOI: 10.1098/rspb.2022.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Mosquitoes can change their feeding behaviours based on past experiences, such as shifting from biting animals to biting humans or avoiding defensive hosts (Wolff & Riffell 2018 J. Exp. Biol. 221, jeb157131. (doi:10.1242/jeb.157131)). Dopamine is a critical neuromodulator for insects, allowing flexibility in their feeding preferences, but its role in the primary olfactory centre, the antennal lobe (AL), remains unclear (Vinauger et al. 2018 Curr. Biol. 28, 333-344.e8. (doi:10.1016/j.cub.2017.12.015)). It is also unknown whether mosquitoes can learn some odours and not others, or whether different species learn the same odour cues. We assayed aversive olfactory learning in four mosquito species with different host preferences, and found that they differentially learn odours salient to their preferred host. Mosquitoes that prefer humans learned odours found in mammalian skin, but not a flower odour, and a nectar-feeding species only learned a floral odour. Comparing the brains of these four species revealed significantly different innervation patterns in the AL by dopaminergic neurons. Calcium imaging in the Aedes aegypti AL and three-dimensional image analyses of dopaminergic innervation show that glomeruli tuned to learnable odours have significantly higher dopaminergic innervation. Changes in dopamine expression in the insect AL may be an evolutionary mechanism to adapt olfactory learning circuitry without changing brain structure and confer to mosquitoes an ability to adapt to new hosts.
Collapse
Affiliation(s)
- Gabriella H. Wolff
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Elizabeth Rylance
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| |
Collapse
|
12
|
Xu YYJ, Loh YM, Lee TT, Ohashi TS, Su MP, Kamikouchi A. Serotonin modulation in the male Aedes aegypti ear influences hearing. Front Physiol 2022; 13:931567. [PMID: 36105279 PMCID: PMC9465180 DOI: 10.3389/fphys.2022.931567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Male Aedes aegypti (Ae. aegypti) mosquitoes rely on hearing to identify conspecific females for mating, with the male attraction to the sound of flying females (“phonotaxis”) an important behavior in the initial courtship stage. Hearing thus represents a promising target for novel methods of mosquito control, and hearing behaviors (such as male phonotaxis) can be targeted via the use of sound traps. These traps unfortunately have proven to be relatively ineffective during field deployment. Shifting the target from hearing behavior to hearing function could therefore offer a novel method of interfering with Ae. aegypti mating. Numerous neurotransmitters, including serotonin (5-hydroxytryptamine, or 5-HT) and octopamine, are expressed in the male ear, with modulation of the latter proven to influence the mechanical responses of the ear to sound. The effect of serotonin modulation however remains underexplored despite its significant role in determining many key behaviors and biological processes of animals. Here we investigated the influence of serotonin on the Ae. aegypti hearing function and behaviors. Using immunohistochemistry, we found significant expression of serotonin in the male and female Ae. aegypti ears. In the male ear, presynaptic sites identified via antibody labelling showed only partial overlap with serotonin. Next, we used RT-qPCR to identify and quantify the expression levels of three different serotonin receptor families (5-HT1, 5-HT2, and 5-HT7) in the mosquito heads and ears. Although all receptors were identified in the ears of both sexes, those from the 5-HT7 family were significantly more expressed in the ears relative to the heads. We then thoracically injected serotonin-related compounds into the mosquitoes and found a significant, reversible effect of serotonin exposure on the male ear mechanical tuning frequency. Finally, oral administration of a serotonin-synthesis inhibitor altered male phonotaxis. The mosquito serotonergic system and its receptors thus represent interesting targets for novel methods of mosquito, and thus disease, control.
Collapse
Affiliation(s)
- Yifeng Y. J. Xu
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tai-Ting Lee
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| |
Collapse
|
13
|
Herre M, Goldman OV, Lu TC, Caballero-Vidal G, Qi Y, Gilbert ZN, Gong Z, Morita T, Rahiel S, Ghaninia M, Ignell R, Matthews BJ, Li H, Vosshall LB, Younger MA. Non-canonical odor coding in the mosquito. Cell 2022; 185:3104-3123.e28. [PMID: 35985288 PMCID: PMC9480278 DOI: 10.1016/j.cell.2022.07.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Olivia V Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriela Caballero-Vidal
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Yanyan Qi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary N Gilbert
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Zhongyan Gong
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Saher Rahiel
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Majid Ghaninia
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Ignell R, Hill SR. Golgi Silver Staining of Mosquito Central Neuropils. Cold Spring Harb Protoc 2022; 2022:pdb.prot107840. [PMID: 35562110 DOI: 10.1101/pdb.prot107840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Golgi silver staining procedure relies on three interdependent stages: fixation, chromation, and metal impregnation. Each of these stages can be modified. This protocol describes a method demonstrated to stain neurons within the mosquito central nervous system. The resulting preparations are stable at room temperature.
Collapse
Affiliation(s)
- Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422 Alnarp, Sweden
| | - Sharon Rose Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422 Alnarp, Sweden
| |
Collapse
|
15
|
Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A, Younger MA, Matthews BJ, Merhof D, Thiberge S, Ignell R, Strauch M, McBride CS. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022; 605:706-712. [PMID: 35508661 PMCID: PMC9725754 DOI: 10.1038/s41586-022-04675-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
A globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient disease vector1. Host-seeking female mosquitoes strongly prefer human odour over the odour of animals2,3, but exactly how they distinguish between the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components4-7, making discrimination an interesting sensory coding challenge. Here we show that human and animal odours evoke activity in distinct combinations of olfactory glomeruli within the Ae. aegypti antennal lobe. One glomerulus in particular is strongly activated by human odour but responds weakly, or not at all, to animal odour. This human-sensitive glomerulus is selectively tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in human odour and which probably originate from unique human skin lipids. Using synthetic blends, we further demonstrate that signalling in the human-sensitive glomerulus significantly enhances long-range host-seeking behaviour in a wind tunnel, recapitulating preference for human over animal odours. Our research suggests that animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals targets for the design of next-generation mosquito-control strategies.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Jessica L Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Annika Hinze
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexis L Kriete
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Graduate Program in Entomology, North Carolina State University, Raleigh, NC, USA
| | - Azwad Iqbal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Stephan Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Coutinho-Abreu IV, Riffell JA, Akbari OS. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol 2022; 38:246-264. [PMID: 34674963 PMCID: PMC10789295 DOI: 10.1016/j.pt.2021.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Female mosquitoes use chemical and physical cues, including vision, smell, heat, and humidity, to orient toward hosts. Body odors are produced by skin resident bacteria that convert metabolites secreted in sweat into odorants that confer the characteristic body scent. Mosquitoes detect these compounds using olfactory receptors in their antennal olfactory receptor neurons. Such information is further integrated with the senses of temperature and humidity, as well as vision, processed in the brain into a behavioral output, leading to host finding. Knowledge of human scent components unveils a variety of odorants that are attractive to mosquitoes, but also odor-triggering repellency. Finding ways to divert human-seeking behavior by female mosquitoes using odorants can possibly mitigate mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Couto A, Arnold G, Ai H, Sandoz JC. Interspecific variation of antennal lobe composition among four hornet species. Sci Rep 2021; 11:20883. [PMID: 34686710 PMCID: PMC8536693 DOI: 10.1038/s41598-021-00280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Olfaction is a crucial sensory modality underlying foraging, social and mating behaviors in many insects. Since the olfactory system is at the interface between the animal and its environment, it receives strong evolutionary pressures that promote neuronal adaptations and phenotypic variations across species. Hornets are large eusocial predatory wasps with a highly developed olfactory system, critical for foraging and intra-specific communication. In their natural range, hornet species display contrasting ecologies and olfactory-based behaviors, which might match to adaptive shifts in their olfactory system. The first olfactory processing center of the insect brain, the antennal lobe, is made of morphological and functional units called glomeruli. Using fluorescent staining, confocal microscopy and 3D reconstructions, we compared antennal lobe structure, glomerular numbers and volumes in four hornet species (Vespa crabro, Vespa velutina, Vespa mandarinia and Vespa orientalis) with marked differences in nesting site preferences and predatory behaviors. Despite a conserved organization of their antennal lobe compartments, glomeruli numbers varied strongly between species, including in a subsystem thought to process intraspecific cuticular signals. Moreover, specific adaptations involving enlarged glomeruli appeared in two species, V. crabro and V. mandarinia, but not in the others. We discuss the possible function of these adaptations based on species-specific behavioral differences.
Collapse
Affiliation(s)
- Antoine Couto
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France.,School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Gérard Arnold
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
19
|
Menezes KMF, Oliveira Filho JGD, Ferreira LL, Borges LMF. First neuronal projection from Haller's organ to the synganglion and three-dimensional reconstruction of Amblyomma sculptum olfactory lobe. Ticks Tick Borne Dis 2021; 12:101690. [PMID: 33667831 DOI: 10.1016/j.ttbdis.2021.101690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Because information regarding neural and sensory functions of ticks is scarce, the aim of the present study was to ascertain the neuronal projection patterns of olfactory sensilla from Haller's organ to the olfactory lobes of the synganglion in Amblyomma sculptum adults. Additionally, the aim was to perform three-dimensional (3D) reconstruction of the glomeruli in the olfactory lobes. Unfed female and male adults of this tick species were immobilized, Haller's organ was sectioned, and the olfactory nerves were labelled with a neuronal tracer (1% dextran tetramethylrhodamine). The labelled olfactory lobes were observed under a confocal laser scanning microscope and the images were analyzed using the Reconstruct software. The neuronal projection originating from the olfactory sensilla of Haller's organ was found to be strictly confined to the olfactory lobes of the synganglion, which were organized into glomeruli. Males and females presented corresponding round-shaped glomeruli in the olfactory lobes. The number of glomeruli ranged from 26 to 30 in the males and 24-29 in the females. Positive correlations regarding the glomeruli volumes (μm3) intrasexually (females: r = 0.85, P < 0.05) and intersexually (r = 0.81, P < 0.05) were observed. This is the first report on 3D reconstruction of the olfactory lobes of a tick species.
Collapse
Affiliation(s)
| | | | - Lorena Lopes Ferreira
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás - UFG, Goiânia, Goiás, Brazil.
| | | |
Collapse
|
20
|
Ye Z, Liu F, Liu N. Three-dimensional structure of the antennal lobe in the Southern house mosquito Culex quinquefasciatus. INSECT SCIENCE 2021; 28:93-102. [PMID: 32091165 DOI: 10.1111/1744-7917.12767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The Southern house mosquito Culex quinquefasciatus relies on its olfactory system to locate the human hosts for blood meals, by which several deadly diseases are transmitted. Olfactory sensory neurons (OSNs) housed in the sensilla on the olfactory appendages send their axons into the antennal lobes (ALs), the primary olfactory center in the brain, where the OSNs expressing the same olfactory receptors converge upon the same spherical structures known as glomeruli in the AL. The structure of the antennal lobe, that is, the spatial organization of the glomeruli, governs the insect's odor identification and discrimination. Drosophila studies have demonstrated the specific connections between receptors and glomeruli based on the 3D structure of the antennal lobe, deepening our understanding of the relationships between glomerular activities and behaviors, but as yet the structure of the Cx. quinquefasciatus antennal lobe remains unknown. We therefore constructed a 3D model of the Cx. quinquefasciatus antennal lobe using nc82 antibody staining, identifying 62 and 44 glomeruli in the female and male mosquito antennal lobe, respectively, with a significant sexual dimorphism in terms of the antennal lobe volume and glomerulus number. These results demonstrate the structural basis of mosquito odor coding and provide a platform for future studies of the mosquito olfactory signal processing mechanism.
Collapse
Affiliation(s)
- Zi Ye
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Feng Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
21
|
Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021; 383:75-90. [PMID: 33475852 PMCID: PMC7873006 DOI: 10.1007/s00441-020-03407-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
There are 3559 species of mosquitoes in the world (Harbach 2018) but, so far, only a handful of them have been a focus of olfactory neuroscience and neurobiology research. Here we discuss mosquito olfactory anatomy and function and connect these to mosquito ecology. We highlight the least well-known and thus most interesting aspects of mosquito olfactory systems and discuss promising future directions. We hope this review will encourage the insect neuroscience community to work more broadly across mosquito species instead of focusing narrowly on the main disease vectors.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Catherine R Whittle
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Olena Riabinina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
22
|
Grob R, Tritscher C, Grübel K, Stigloher C, Groh C, Fleischmann PN, Rössler W. Johnston's organ and its central projections in
Cataglyphis
desert ants. J Comp Neurol 2020; 529:2138-2155. [DOI: 10.1002/cne.25077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Clara Tritscher
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | | | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|
23
|
An updated antennal lobe atlas for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008729. [PMID: 33079925 PMCID: PMC7575095 DOI: 10.1371/journal.pntd.0008729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is a prolific vector of arboviral and filarial diseases that largely relies on its sense of smell to find humans. To facilitate in-depth analysis of the neural circuitry underlying Ae. aegypti olfactory-driven behaviors, we generated an updated in vitro atlas for the antennal lobe olfactory brain region of this disease vector using two independent neuronal staining methods. We performed morphological reconstructions with replicate fixed, dissected and stained brain samples from adult male and female Ae. aegypti of the LVPib12 genome reference strain and determined that the antennal lobe in both sexes is comprised of approximately 80 discrete glomeruli. Guided by landmark features in the antennal lobe, we found 63 of these glomeruli are stereotypically located in spatially invariant positions within these in vitro preparations. A posteriorly positioned, mediodorsal glomerulus denoted MD1 was identified as the largest spatially invariant glomerulus in the antennal lobe. Spatial organization of glomeruli in a recently field-derived strain of Ae. aegypti from Puerto Rico was conserved, despite differences in antennal lobe shape relative to the inbred LVPib12 strain. This model in vitro atlas will serve as a useful community resource to improve antennal lobe annotation and anatomically map projection patterns of neurons expressing target genes in this olfactory center. It will also facilitate the development of chemotopic maps of odor representation in the mosquito antennal lobe to decode the molecular and cellular basis of Ae. aegypti attraction to human scent and other chemosensory cues. The olfactory system of the yellow fever mosquito Aedes aegypti is highly tuned for the detection of human odorants, as well as other chemical cues influencing host and food-search behavior, egg-laying and mating. To provide insights into the neuroanatomical organization of the olfactory system of this globally important disease vector, we have generated an updated in vitro atlas for the primary smell processing center of the Ae. aegypti brain, called the antennal lobe. These new guide maps facilitate systematic interrogation of antennal lobe morphology and naming of associated substructures in dissected brain samples of this species labeled with two common neural staining methods. We report that landmark features of the Ae. aegypti antennal lobe morphology and spatial organization appear conserved between mosquito sexes and across geographically divergent strains of this mosquito species. An improved understanding of Ae. aegypti antennal lobe neuroanatomy and how attractive or repellent odorant stimuli are encoded in this brain center has the potential to rapidly accelerate reverse engineering of synthetic chemical blends that effectively lure, confuse or repel this major disease vector.
Collapse
|
24
|
Chemosensory and Behavioural Responses of Ixodes scapularis to Natural Products: Role of Chemosensory Organs in Volatile Detection. INSECTS 2020; 11:insects11080502. [PMID: 32759735 PMCID: PMC7469143 DOI: 10.3390/insects11080502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/26/2023]
Abstract
Simple Summary Ticks are responsible of transmitting serious disease agents of importance to human and veterinary health. Despite the importance of repellents, deterrents and acaricides in tick management, little is understood about the types of chemicals recognized and the mechanism behind chemoreception. Being almost totally blind, ticks rely on chemosensation to identify and locate hosts for a successful blood meal and to detect chemical signals in the environment. We explored the neurophysiology of tick chemosensory system in the context of behaviourally-relevant volatile stimuli, including essential oil components, to evaluate how the combination of attractants and plant volatile compounds is detected and processed. The observed inhibition (or deterrent effect) in tick electrophysiological response and behavioural activity, after the tick has been exposed to a binary mixture of attractant and volatile compound, represents an important advancement in understanding how tick olfaction works and what may be the mechanism behind detecting unpleasant odor stimuli and consequently been deterred. These information will provide more insights in developing new natural product-based deterrents for self-protection. Abstract Blacklegged ticks, Ixodes scapularis, represent a significant public health concern due to their vectoring of tick-borne disease. Despite their medical importance, there is still limited knowledge of the chemosensory system of this species, and thus a poor understanding of host-seeking behaviour and chemical ecology. We investigated the electrophysiological sensitivity of adult female blacklegged ticks to attractants and plant-derived compounds via an electrode inserted into the scutum. The response of female ticks to binary mixtures with a constant concentration of a selected attractant (butyric acid) and increasing concentration of volatile organic compounds (VOCs) (geraniol, phenethyl alcohol, β-citronellol, and citral) was recorded. A strict relationship between increasing volatile concentration and a decreasing response was observed for each VOC. Y-tube bioassays confirmed that tick attraction towards butyric acid decreased with the presence of a VOC, which exerted a deterrent effect. To determine the specific role of sensory appendages involved in the detection of attractant chemical stimuli, we tested tick electrophysiological response after removing appendages that house chemosensory sensilla (foretarsi, pedipalps, or both). The chemosensory response was related to the molecular structure of attractant odorant, and the lack of pedipalps significantly reduced olfactory responses, suggesting they play an important role in detecting attractants. This study provides new insight into the neurophysiological mechanisms underlying tick olfaction and the potential for interactions between attractant and deterrent chemical detection.
Collapse
|
25
|
Abstract
Nectar feeding by mosquitoes is important for survival and reproduction, and hence disease transmission. However, we know little about the sensory mechanisms that mediate mosquito attraction to sources of nectar, like those of flowers, or how this information is processed in the mosquito brain. Using a unique mutualism between Aedes mosquitoes and Platanthera obtusata orchids, we reveal that the orchid’s scent mediates this mutualism. Furthermore, lateral inhibition in the mosquito’s antennal (olfactory) lobe—via the neurotransmitter GABA—is critical for the representation of the scent. These results have implications for understanding the olfactory basis of mosquito nectar-seeking behaviors. Mosquitoes are important vectors of disease and require sources of carbohydrates for reproduction and survival. Unlike host-related behaviors of mosquitoes, comparatively less is understood about the mechanisms involved in nectar-feeding decisions, or how this sensory information is processed in the mosquito brain. Here we show that Aedes spp. mosquitoes, including Aedes aegypti, are effective pollinators of the Platanthera obtusata orchid, and demonstrate this mutualism is mediated by the orchid’s scent and the balance of excitation and inhibition in the mosquito’s antennal lobe (AL). The P. obtusata orchid emits an attractive, nonanal-rich scent, whereas related Platanthera species—not visited by mosquitoes—emit scents dominated by lilac aldehyde. Calcium imaging experiments in the mosquito AL revealed that nonanal and lilac aldehyde each respectively activate the LC2 and AM2 glomerulus, and remarkably, the AM2 glomerulus is also sensitive to N,N-diethyl-meta-toluamide (DEET), a mosquito repellent. Lateral inhibition between these 2 glomeruli reflects the level of attraction to the orchid scents. Whereas the enriched nonanal scent of P. obtusata activates the LC2 and suppresses AM2, the high level of lilac aldehyde in the other orchid scents inverts this pattern of glomerular activity, and behavioral attraction is lost. These results demonstrate the ecological importance of mosquitoes beyond operating as disease vectors and open the door toward understanding the neural basis of mosquito nectar-seeking behaviors.
Collapse
|
26
|
Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, Riffell JA, DeGennaro M, Stensmyr MC. Geosmin Attracts Aedes aegypti Mosquitoes to Oviposition Sites. Curr Biol 2019; 30:127-134.e5. [PMID: 31839454 PMCID: PMC7144812 DOI: 10.1016/j.cub.2019.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
Abstract
Melo et al. show that geosmin mediates egg laying in the yellow fever mosquito Aedes aegypti, which associates geosmin with microbes present in the larval aquatic habitat. The authors further show that geosmin can be used as bait in oviposition traps and that geosmin can be substituted by beetroot peel for mosquito trapping in developing countries.
Collapse
Affiliation(s)
- Nadia Melo
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert Arribas
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Merybeth Fernandez Triana
- Department of Biology, Lund University, 22362 Lund, Sweden; Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Maceio 5702-970, Brazil
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75015 Paris, France
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
27
|
Xie GY, Ma BW, Liu XL, Chang YJ, Chen WB, Li GP, Feng HQ, Zhang YJ, Berg BG, Zhao XC. Brain Organization of Apolygus lucorum: A Hemipteran Species With Prominent Antennal Lobes. Front Neuroanat 2019; 13:70. [PMID: 31379518 PMCID: PMC6654032 DOI: 10.3389/fnana.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The anatomical organization of distinct regions in the insect brain often reflects their functions. In the present study, the brain structure of Apolygus lucorum was examined by using immunolabeling and three-dimensional reconstruction. The results revealed the location and volume of prominent neuropils, such as the antennal lobes (AL), optic lobes (OL), anterior optic tubercles (AOTU), central body (CB), lateral accessory lobes (LAL), mushroom lobes, and distinct tritocerebral neuropils. As expected, this brain is similar to that of other insects. One exception, however, is that the antennal lobes were found to be the most prominent neuropils. Their size relative to the entire brain is the largest among all insect species studied so far. In contrast, the calyx, a region getting direct input from the antennal lobe, has a smaller size relative to the brain than that of other species. These findings may suggest that olfaction plays an essential role for A. lucorum.
Collapse
Affiliation(s)
- Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Chang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guo-Ping Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Hong-Qiang Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Vinauger C, Van Breugel F, Locke LT, Tobin KKS, Dickinson MH, Fairhall AL, Akbari OS, Riffell JA. Visual-Olfactory Integration in the Human Disease Vector Mosquito Aedes aegypti. Curr Biol 2019; 29:2509-2516.e5. [PMID: 31327719 DOI: 10.1016/j.cub.2019.06.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022]
Abstract
Mosquitoes rely on the integration of multiple sensory cues, including olfactory, visual, and thermal stimuli, to detect, identify, and locate their hosts [1-4]. Although we increasingly know more about the role of chemosensory behaviors in mediating mosquito-host interactions [1], the role of visual cues is comparatively less studied [3], and how the combination of olfactory and visual information is integrated in the mosquito brain remains unknown. In the present study, we used a tethered-flight light-emitting diode (LED) arena, which allowed for quantitative control over the stimuli, and a control theoretic model to show that CO2 modulates mosquito steering responses toward vertical bars. To gain insight into the neural basis of this olfactory and visual coupling, we conducted two-photon microscopy experiments in a new GCaMP6s-expressing mosquito line. Imaging revealed that neuropil regions within the lobula exhibited strong responses to objects, such as a bar, but showed little response to a large-field motion. Approximately 20% of the lobula neuropil we imaged were modulated when CO2 preceded the presentation of a moving bar. By contrast, responses in the antennal (olfactory) lobe were not modulated by visual stimuli presented before or after an olfactory stimulus. Together, our results suggest that asymmetric coupling between these sensory systems provides enhanced steering responses to discrete objects.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Floris Van Breugel
- Department of Mechanical Engineering, University of Nevada-Reno, Reno, NV 89557, USA
| | - Lauren T Locke
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kennedy K S Tobin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, San Diego, CA 92093, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Ortega Insaurralde I, Minoli S, Toloza AC, Picollo MI, Barrozo RB. The Sensory Machinery of the Head Louse Pediculus humanus capitis: From the Antennae to the Brain. Front Physiol 2019; 10:434. [PMID: 31057423 PMCID: PMC6482248 DOI: 10.3389/fphys.2019.00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/29/2019] [Indexed: 12/29/2022] Open
Abstract
Insect antennae are sophisticated sensory organs, usually covered with sensory structures responsible for the detection of relevant signals of different modalities coming from the environment. Despite the relevance of the head louse Pediculus humanus capitis as a human parasite, the role of its antennal sensory system in the highly dependent relation established with their hosts has been barely studied. In this work, we present a functional description of the antennae of these hematophagous insects by applying different approaches, including scanning electron microscopy (SEM), anterograde antennal fluorescent backfills, and behavioral experiments with intact or differentially antennectomized lice. Results constitute a first approach to identify and describe the head louse antennal sensilla and to determine the role of the antenna in host recognition. SEM images allowed us to identify a total of 35-40 sensilla belonging to seven different morphological types that according to their external architecture are candidates to bear mechano-, thermo-, hygro-, or chemo-receptor functions. The anterograde backfills revealed a direct neural pathway to the ipsilateral antennal lobe, which includes 8-10 glomerular-like diffuse structures. In the two-choice behavioral experiments, intact lice chose scalp chemicals and warm surfaces (i.e., 32°C) and avoided wet substrates. Behavioral preferences disappeared after ablation of the different flagellomeres of their antenna, allowing us to discuss about the location and function of the different identified sensilla. This is the first study that integrates morphological and behavioral aspects of the sensory machinery of head lice involved in host perception.
Collapse
Affiliation(s)
- Isabel Ortega Insaurralde
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - Sebastián Minoli
- Laboratorio Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - María Inés Picollo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN), CONICET- CITEDEF, Buenos Aires, Argentina
| | - Romina B Barrozo
- Laboratorio Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Yan X, Wang Z, Xie J, Deng C, Sun X, Hao C. Glomerular Organization of the Antennal Lobes of the Diamondback Moth, Plutella xylostella L. Front Neuroanat 2019; 13:4. [PMID: 30804761 PMCID: PMC6371844 DOI: 10.3389/fnana.2019.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
The antennal lobe of the moth brain is the primary olfactory center processing information concerning pheromones and plant odors. Plutella xylostella is a major worldwide pest of cruciferous vegetables and its behavior is highly dependent on their olfactory system. However, detailed knowledge of the anatomy and function of the P. xylostella olfactory system remains limited. In the present study, we present the 3-Dimentional (3-D) map of the antennal lobe of P. xylostella, based on confocal microscopic analysis of glomerular segmentation and Neurobiotin backfills of Olfactory Receptor Neurons (ORNs). We identified 74–76 ordinary glomeruli and a macroglomerular complex (MGC) situated at the entrance of the antennal nerve in males. The MGC contained three glomeruli. The volumes of glomeruli in males ranged from 305.83 ± 129.53 to 25440.00 ± 1377.67 μm3. In females, 74–77 glomeruli were found, with the largest glomerulus ELG being situated at the entrance of the antennal nerve. The volumes of glomeruli in females ranged from 802.17 ± 95.68 to 8142.17 ± 509.46 μm3. Sexual dimorphism was observed in anomalous supernumerary, anomalous missing, shape, size, and array of several of the identified glomeruli in both sexes. All glomeruli, except one in the antennal lobe (AL), received projections of antennal ORNs. The glomeruli PV1 in both sexes received input from the labial palp nerve and was assumed as the labial pit organ glomerulus (LPOG). These results provide a foundation for better understanding of coding mechanisms of odors in this important pest insect.
Collapse
Affiliation(s)
- Xizhong Yan
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Zhiyu Wang
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Jiaoxin Xie
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Caiping Deng
- Department of Entomology, Forestry College, Shanxi Agricultural University, Taigu, China
| | - Xuejun Sun
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China.,Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Chi Hao
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
31
|
Goldammer J, Dürr V. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:465-481. [PMID: 30076912 DOI: 10.1016/j.asd.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.
Collapse
Affiliation(s)
- Jens Goldammer
- Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Volker Dürr
- Dept. Biological Cybernetics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
32
|
Lin T, Li C, Liu J, Smith BH, Lei H, Zeng X. Glomerular Organization in the Antennal Lobe of the Oriental Fruit Fly Bactrocera dorsalis. Front Neuroanat 2018; 12:71. [PMID: 30233333 PMCID: PMC6127620 DOI: 10.3389/fnana.2018.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis is one of the most destructive pests of horticultural crops in tropical and subtropical Asia. The insect relies heavily on its olfactory system to select suitable hosts for development and reproduction. To understand the neural basis of its odor-driven behaviors, it is fundamental to characterize the anatomy of its olfactory system. In this study, we investigated the anatomical organization of the antennal lobe (AL), the primary olfactory center, in B. dorsalis, and constructed a 3D glomerular atlas of the AL based on synaptic antibody staining combined with computerized 3D reconstruction. To facilitate identification of individual glomeruli, we also applied mass staining of olfactory sensory neurons (OSNs) and projection neurons (PNs). In total, 64 or 65 glomeruli are identifiable in both sexes based on their shape, size, and relative spatial relationship. The overall glomerular volume of two sexes is not statistically different. However, eight glomeruli are sexually dimorphic: four (named AM2, C1, L2, and L3) are larger in males, and four are larger in females (A3, AD1, DM3, and M1). The results from anterograde staining, obtained by applying dye in the antennal lobe, show that three typical medial, media lateral, and lateral antennal-lobe tracts form parallel connections between the antennal lobe and protocerebrum. In addition to these three tracts, we also found a transverse antennal-lobe tract. Based on the retrograde staining of the calyx in the mushroom body, we also characterize the arrangement of roots and cell body clusters linked to the medial antennal-lobe tracts. These data provide a foundation for future studies on the olfactory processing of host odors in B. dorsalis.
Collapse
Affiliation(s)
- Tao Lin
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Chaofeng Li
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. ACTA ACUST UNITED AC 2018; 221:221/4/jeb157131. [PMID: 29487141 DOI: 10.1242/jeb.157131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Ma BW, Zhao XC, Berg BG, Xie GY, Tang QB, Wang GR. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata. Front Cell Neurosci 2017; 11:370. [PMID: 29209176 PMCID: PMC5702295 DOI: 10.3389/fncel.2017.00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.
Collapse
Affiliation(s)
- Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gui-Ying Xie
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Taparia T, Ignell R, Hill SR. Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics 2017; 18:393. [PMID: 28525982 PMCID: PMC5437716 DOI: 10.1186/s12864-017-3779-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background The southern house mosquito, Culex quinquefasciatus, is one of the most prevalent vectors of lymphatic filariasis and flavivirus-induced encephalitis. Its vectorial capacity is directly affected by its reproductive feeding behaviors, such as host seeking, blood feeding, resting, and egg laying. In mosquitoes, these gonotrophic behaviors are odor-mediated and regulated following blood feeding. Immediately after a blood meal, female mosquitoes show reduced olfactory responsiveness and flight activity, as they enter a resting state. Insights into antennal chemosensory gene regulation at this time period can provide a foundation to identify targets involved in the state switch between host seeking and resting. Results This study used quantitative gene expression analyses to explore blood meal induced regulation of chemosensory gene families in the antennae of 6 days post-emergence C. quinquefasciatus females. Improved annotations for multiple chemosensory gene families, and a quantitative differential gene expression analysis between host seeking and 24 h post- blood fed females of the same age, allowed for the detection of transcripts that potentially play a role in the switch from host seeking to resting, in C. quinquefasciatus. The expression profiles of chemosensory genes varied significantly between the two treatments. Conclusions Annotations for chemosensory gene repertoires in C. quinquefasciatus have been manually curated and corrected for 3’ exon choice and transcript length, through sequence and transcriptome analyses. The gene expression analyses identified various molecular components of the peripheral olfactory system in C. quinquefasciatus, including odorant receptors, ionotropic receptors, odorant binding proteins and chemosensory proteins, that are regulated in response to blood feeding, and could be critical for the behavioral switch from host seeking to resting. Functional characterization of these proteins in the future can identify targets essential for the females’ gonotrophic behaviors, and can be used to design novel vector control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3779-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanvi Taparia
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Present Address: Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon Rose Hill
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
36
|
Lutz EK, Lahondère C, Vinauger C, Riffell JA. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective. CURRENT OPINION IN INSECT SCIENCE 2017; 20:75-83. [PMID: 28602240 PMCID: PMC5492930 DOI: 10.1016/j.cois.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Mosquitoes transmit many debilitating diseases including malaria, dengue and Zika. Odors mediate behaviors that directly impact disease transmission (blood-feeding) as well as life history events that contribute to mosquito survival and fitness (mating and oviposition, nectar foraging, larval foraging and predator avoidance). In addition to innate olfaction-mediated behaviors, mosquitoes rely on olfactory experience throughout their life to inform advantageous choices in many of these important behaviors. Previous reviews have addressed either the chemical ecology of mosquitoes, or olfactory-driven behaviors including host-feeding or oviposition. Adding to this literature, we use a holistic life history perspective to integrate and compare innate and learned olfactory behavior at various stages of mosquito development.
Collapse
Affiliation(s)
- Eleanor K Lutz
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
37
|
Carle T, Watanabe H, Yamawaki Y, Yokohari F. Organization of the antennal lobes in the praying mantis (Tenodera aridifolia). J Comp Neurol 2017; 525:1685-1706. [PMID: 28001299 DOI: 10.1002/cne.24159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/08/2022]
Abstract
Olfaction in insects plays pivotal roles in searching for food and/or for sexual partners. Although many studies have focused on the olfactory processes of nonpredatory insect species, little is known about those in predatory insects. Here, we investigated the anatomical features of the primary olfactory center (antennal lobes) in an insect predator whose visual system is well developed, the praying mantis Tenodera aridifolia. Both sexes of T. aridifolia were found to possess 54 glomeruli, and each glomerulus was identified based on its location and size. Moreover, we found a sexual dimorphism in three glomeruli (macroglomeruli) located at the entrance of the antennal nerves, which are 15 times bigger in males than their homologs in females. We additionally deduced the target glomeruli of olfactory sensory neurons housed in cognate types of sensilla by degenerating the sensory afferents. The macroglomeruli received sensory inputs from grooved peg sensilla, which are present in a large number at the proximal part of the males' antennae. Furthermore, our findings suggest that glomeruli at the posteriodorsal part of the antennal lobes receive sensory information from putative hygro- and thermosensitive sensilla. The origins of projections connected to the protocerebrum are also discussed. J. Comp. Neurol. 525:1685-1706, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Carle
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
38
|
Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center. BMC Biol 2016; 14:90. [PMID: 27751175 PMCID: PMC5067906 DOI: 10.1186/s12915-016-0304-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems. RESULTS Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception. Our study revealed that besides the antennae, also the mouthparts are highly involved in olfaction and that their respective contribution is processed separately. In this beetle, olfactory sensory neurons from the mouthparts project to the lobus glomerulatus, a structure so far only characterized in hemimetabolous insects, as well as to a so far non-described unpaired glomerularly organized olfactory neuropil in the gnathal ganglion, which we term the gnathal olfactory center. The high number of functional odorant receptor genes expressed in the mouthparts also supports the importance of the maxillary and labial palps in olfaction of this beetle. Moreover, gustatory perception seems equally distributed between antenna and mouthparts, since the number of expressed gustatory receptors is similar for both organs. CONCLUSIONS Our analysis of the T. castaneum chemosensory system confirms that olfactory and gustatory perception are not organotopically separated to the antennae and mouthparts, respectively. The identification of additional olfactory processing centers, the lobus glomerulatus and the gnathal olfactory center, is in contrast to the current picture that in holometabolous insects all olfactory inputs allegedly converge in the antennal lobe. These findings indicate that Holometabola have evolved a wider variety of solutions to chemoreception than previously assumed.
Collapse
|
39
|
A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera. Sci Rep 2016; 6:35204. [PMID: 27725758 PMCID: PMC5057091 DOI: 10.1038/srep35204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
By using immunostaining and three-dimensional reconstruction, the anatomical organization of the antennal lobe glomeruli of the female cotton bollworm Helicoverpa armigera was investigated. Eighty-one glomeruli were identified, 15 of which were not previously discovered. The general anatomical organization of the AL of female is similar to that of male and all glomeruli were classified into four sub-groups, including the female-specific glomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. A global-wide comparison on the complete glomerular map of female and male was performed and for the first time the quantitative difference in volume for each individual homologous glomerulus was analyzed. We found that the sexual dimorphism includes not only the sex-specific glomeruli but also some of the other glomeruli. The findings in the present study may provide a reference to examine the antennal-lobe organization more in detail and to identify new glomeruli in other moth species. In addition, the complete identification and global-wide comparison of the sexes provide an important basis for mapping the function of distinct glomeruli and for understanding neural mechanisms underlying sexually dimorphic olfactory behaviors.
Collapse
|
40
|
Riabinina O, Task D, Marr E, Lin CC, Alford R, O'Brochta DA, Potter CJ. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun 2016; 7:13010. [PMID: 27694947 PMCID: PMC5063964 DOI: 10.1038/ncomms13010] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 02/01/2023] Open
Abstract
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.
Collapse
Affiliation(s)
- Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Robert Alford
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - David A O'Brochta
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| |
Collapse
|
41
|
Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür). PLoS One 2016; 11:e0160161. [PMID: 27478892 PMCID: PMC4968828 DOI: 10.1371/journal.pone.0160161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70–80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.
Collapse
|
42
|
Andrés M, Seifert M, Spalthoff C, Warren B, Weiss L, Giraldo D, Winkler M, Pauls S, Göpfert M. Auditory Efferent System Modulates Mosquito Hearing. Curr Biol 2016; 26:2028-2036. [DOI: 10.1016/j.cub.2016.05.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
|
43
|
Learning and Memory in Disease Vector Insects. Trends Parasitol 2016; 32:761-771. [PMID: 27450224 DOI: 10.1016/j.pt.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022]
Abstract
Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies.
Collapse
|
44
|
Namiki S, Kanzaki R. Comparative Neuroanatomy of the Lateral Accessory Lobe in the Insect Brain. Front Physiol 2016; 7:244. [PMID: 27445837 PMCID: PMC4917559 DOI: 10.3389/fphys.2016.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/03/2016] [Indexed: 11/13/2022] Open
Abstract
The lateral accessory lobe (LAL) mediates signals from the central complex to the thoracic motor centers. The results obtained from different insects suggest that the LAL is highly relevant to the locomotion. Perhaps due to its deep location and lack of clear anatomical boundaries, few studies have focused on this brain region. Systematic data of LAL interneurons are available in the silkmoth. We here review individual neurons constituting the LAL by comparing the silkmoth and other insects. The survey through the connectivity and intrinsic organization suggests potential homology in the organization of the LAL among insects.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| |
Collapse
|
45
|
Meyers JI, Gray M, Kuklinski W, Johnson LB, Snow CD, Black WC, Partin KM, Foy BD. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae. ACTA ACUST UNITED AC 2016; 218:1478-86. [PMID: 25994631 DOI: 10.1242/jeb.118570] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.
Collapse
Affiliation(s)
- Jacob I Meyers
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Meg Gray
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Wojtek Kuklinski
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Lucas B Johnson
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523-1370, USA
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523-1370, USA
| | - William C Black
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Kathryn M Partin
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| |
Collapse
|
46
|
Borges LMF, Li AY, Olafson PU, Renthal R, Bauchan GR, Lohmeyer KH, León AAPD. Neuronal projections from the Haller's organ and palp sensilla to the synganglion of Amblyomma americanum§. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2016; 25:217-24. [DOI: 10.1590/s1984-29612016039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
Abstract The present study was conducted to elucidate the neuronal pathways between peripheral olfactory and taste sensilla and the synganglion in an Ixodidae tick species. The tarsus of the front legs (olfactory nerves) and the fourth palpal segment (gustatory nerves) of unfed Amblyomma americanum males and females were excised. A neuronal tracer, dextran tetramethylrhodamine, was used for filling of the sensory neurons. The synganglion preparations were examined using a confocal microscope. Neuronal arborizations from the Haller’s organ were confined to the olfactory lobes and the first pedal ganglion. The estimated number of olfactory glomeruli ranged from 16 to 22 per olfactory lobe in the females. The number of glomeruli was not counted in males because they were densely packed. Sensory neurons associated with sensilla at the distal end of the palpal organ projected into the palpal ganglion in the synganglion through the palpal nerve. Gustatory sensory neurons associated with palpal sensilla projected into a commissure with several bulges, which are confined in the palpal ganglion. The findings of distinct projection patterns of sensory neurons associated with the Haller’s organ and palpal organ in the lone star tick from this study advanced our knowledge on mechanisms of sensory information processing in ticks.
Collapse
|
47
|
Zhao XC, Chen QY, Guo P, Xie GY, Tang QB, Guo XR, Berg BG. Glomerular identification in the antennal lobe of the male mothHelicoverpa armigera. J Comp Neurol 2016; 524:2993-3013. [DOI: 10.1002/cne.24003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qiu-Yan Chen
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Pei Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Xian-Ru Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
- Collaborative Innovation Center of Henan Grain Crops; Zhengzhou 450002 China
| | - Bente G. Berg
- Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| |
Collapse
|
48
|
Solari P, Corda V, Sollai G, Kreissl S, Galizia CG, Crnjar R. Morphological characterization of the antennal lobes in the Mediterranean fruit fly Ceratitis capitata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:131-46. [PMID: 26660070 DOI: 10.1007/s00359-015-1059-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022]
Abstract
The medfly Ceratitis capitata is one of the most important pests for horticulture worldwide. The knowledge about anatomy and function of the medfly olfactory system is still limited. The first brain structure to process olfactory information in insects is the antennal lobe (AL), which is composed of its functional and morphological units, the olfactory glomeruli. Here, we present a morphological three-dimensional reconstruction of AL glomeruli in adult brains. We used unilateral antennal backfills of olfactory receptor neurons (ORNs) with neural tracers, revealing the AL structure. We recorded confocal stacks acquired from whole-mount specimens, and analyzed them with the software AMIRA. The ALs in C. capitata are organized in glomeruli which are more tightly packed in the anterior part than the posterior one. Axons of ORNs bilaterally connect the ALs through a commissure between the two ALs. This commissure is formed by several distinct fascicles. Contralateral dye transfer suggests the presence of gap junctions connecting ORNs from both antennae. There was no statistical difference between the average volumes of female ALs (204,166 ± 12,554 μm(3)) and of male ALs (190,287 ± 11,823 μm(3)). In most specimens, we counted 53 glomeruli in each AL, seven of which were sexually dimorphic in size.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Valentina Corda
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Sabine Kreissl
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy.
| |
Collapse
|
49
|
van der Woude E, Smid HM. How to escape from Haller's rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps. J Comp Neurol 2015; 524:1876-91. [PMID: 26560192 DOI: 10.1002/cne.23927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
While Haller's rule states that small animals have relatively larger brains, minute Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) parasitic wasps scale brain size linearly with body size. This linear brain scaling allows them to decrease brain size beyond the predictions of Haller's rule, and is facilitated by phenotypic plasticity in brain size. In the present study we addressed whether this plasticity resulted in adaptations to the complexity of the morphology of the olfactory system of small and large T. evanescens. We used confocal laser scanning microscopy to compare size and number of glomeruli in the antennal lobe in the brain, and scanning electron microscopy to compare length and number of olfactory sensilla on the antennae. The results show a similar level of complexity of the olfactory system morphology of small and large wasps. Wasps with a similar genotype but very different brain and body size have similarly sized olfactory sensilla and most of them occur in equal numbers on the antennae. Small and large wasps also have a similar number of glomeruli in the antennal lobe. Glomeruli in small brains are, however, smaller in both absolute and relative volume. These similarities between small and large wasps may indicate that plasticity in brain size does not require plasticity in the gross morphology of the olfactory system. It may be vital for wasps of all sizes to have a large number of olfactory receptor types, to maintain olfactory precision in their search for suitable hosts, and consequently maintain their reproductive success and Darwinian fitness.
Collapse
Affiliation(s)
- Emma van der Woude
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
50
|
Kollmann M, Rupenthal AL, Neumann P, Huetteroth W, Schachtner J. Novel antennal lobe substructures revealed in the small hive beetle Aethina tumida. Cell Tissue Res 2015; 363:679-92. [PMID: 26496732 DOI: 10.1007/s00441-015-2282-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 08/17/2015] [Indexed: 12/28/2022]
Abstract
The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Anna Lena Rupenthal
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Wolf Huetteroth
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.,Department of Biology, Neurobiology, University of Konstanz, 78457, Konstanz, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|