1
|
Savoldi LMB, Heringer LDS, Carneiro MB, Martinez AMB, Mendonça HR. Hydrocortisone Attenuates the Development of Malformations of the Polymicrogyria Spectrum. Int J Dev Neurosci 2025; 85:e10414. [PMID: 39873286 DOI: 10.1002/jdn.10414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/22/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile. Thus, we have identified a promising treatment to minimize the development of cortical developmental malformations.
Collapse
Affiliation(s)
- Laura Maria Borges Savoldi
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
2
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
3
|
Kumari R, Hammers GV, Hammons RH, Stewart AN, MacLean SM, Niedzielko T, Schneider LE, Floyd CL, Gensel JC. Cross-species comparisons between pigs and mice reveal conserved sex-specific intraspinal inflammatory responses after spinal cord injury. J Neuroinflammation 2025; 22:16. [PMID: 39849507 PMCID: PMC11759441 DOI: 10.1186/s12974-025-03338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025] Open
Abstract
OBJECTIVE Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology. The purpose of this study was to evaluate the effect of sex on inflammation and outcomes in a pig thoracic contusion/compression SCI model. METHODS Adult (gonad-intact) male and female Yucatan miniature swine were subjected to either SCI or sham (laminectomy-only) injury. RESULTS SCI caused locomotor dysfunction (measured with the Porcine Thoracic Injury Behavior Score) with some recovery over 6 weeks and limited tissue sparing at 6 weeks with no difference between sexes. Immunohistological evaluations of spinal cord tissue at 2 days and 6 weeks post-injury revealed intraspinal microglia/macrophage (IBA-1, CD68) and lymphocyte responses (T-cells (CD3) and B-cells (CD79a)) consistent with observations in rodents and humans. Astrocyte (GFAP) immunoreactivity was observed within the lesion core at 6 weeks in contrast to observations in rodents. No differences were seen for astrocytes, microglia, macrophages, B-cells, and neutrophil infiltration between males and females. Intraspinal CD3 + T-cell counts and T-cell microclusters were significantly higher in females compared to males 6 weeks post-injury. Interestingly, we observed a similar significant increase in intraspinal CD3 + T-cell accumulation in female vs. male mice at 6 weeks post-thoracic contusion SCI. INTERPRETATION Our observations indicate that sex is a potential biological variable for T-cell infiltration and may contribute to sex-based differences in SCI pathophysiology and recovery outcomes.
Collapse
Affiliation(s)
- Reena Kumari
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA
| | - Gabrielle V Hammers
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA
| | - Robert H Hammons
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA
| | - Andrew N Stewart
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington Kentucky, USA
| | - Steven M MacLean
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA
| | - Tracy Niedzielko
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta Georgia, USA
| | - Lonnie E Schneider
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta Georgia, USA
| | - Candace L Floyd
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta Georgia, USA.
- , Whitehead Biomedical Research Building, Room 605L 615 Michael Street, Atlanta, GA, 30322, USA.
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA.
- University of Kentucky College of Medicine, B483 Biomedical & Biological Sciences Research Building (BBSRB), 741 S. Limestone Street, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
4
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wen X, Ye Y, Yu Z, Shen H, Cui G, Chen G. The role of nitric oxide and hydrogen sulfide in spinal cord injury: an updated review. Med Gas Res 2024; 14:96-101. [PMID: 39073336 PMCID: PMC466995 DOI: 10.4103/2045-9912.385946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/16/2022] [Accepted: 04/04/2023] [Indexed: 07/30/2024] Open
Abstract
Medical gases play an important role in the pathophysiology of human diseases and have received extensive attention for their role in neuroprotection. Common pathological mechanisms of spinal cord injury include excitotoxicity, inflammation, cell death, glial scarring, blood-spinal cord barrier disruption, and ischemia/reperfusion injury. Nitric oxide and hydrogen sulfide are important gaseous signaling molecules in living organisms; their pathological role in spinal cord injury models has received more attention in recent years. This study reviews the possible mechanisms of spinal cord injury and the role of nitric oxide and hydrogen sulfide in spinal cord injury.
Collapse
Affiliation(s)
- Xiaoliang Wen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Ye
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Cui
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Gottipati MK, D'Amato AR, Saksena J, Popovich PG, Wang Y, Gilbert RJ. Delayed administration of interleukin-4 coacervate alleviates the neurotoxic phenotype of astrocytes and promotes functional recovery after a contusion spinal cord injury. J Neural Eng 2024; 21:046052. [PMID: 39029499 DOI: 10.1088/1741-2552/ad6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration. The cytokine interleukin-4 (IL-4) has shown significant promise in preclinical models of SCI by alleviating the macrophage-mediated inflammation and promoting functional recovery. However, its effect on neurotoxic reactive astrocytes remains to be elucidated, which we explored in this study. We also studied the beneficial effects of a sustained release of IL-4 from an injectable biomaterial compared to bolus administration of IL-4.Approach. We fabricated a heparin-based coacervate capable of anchoring and releasing bioactive IL-4 and tested its efficacyin vitroandin vivo. Main results. We show that IL-4 coacervate is biocompatible and drives a robust anti-inflammatory macrophage phenotype in culture. We also show that IL-4 and IL-4 coacervate can alleviate the reactive neurotoxic phenotype of astrocytes in culture. Finally, using a murine model of contusion SCI, we show that IL-4 and IL-4 coacervate, injected intraspinally 2 d post-injury, can reduce macrophage-mediated inflammation, and alleviate neurotoxic astrocyte phenotype, acutely and chronically, while also promoting neuroprotection with significant improvements in hindlimb locomotor recovery. We observed that IL-4 coacervate can promote a more robust regenerative macrophage phenotypein vitro, as well as match its efficacyin vivo,compared to bolus IL-4.Significance. Our work shows the promise of coacervate as a great choice for local and prolonged delivery of cytokines like IL-4. We support this by showing that the coacervate can release bioactive IL-4, which acts on macrophages and astrocytes to promote a pro-regenerative environment following a SCI leading to robust neuroprotective and functional outcomes.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Anthony R D'Amato
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Jayant Saksena
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
- Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, United States of America
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 134 Hollister Drive, 283 Kimball Hall, Ithaca, NY 14853, United States of America
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States of America
| |
Collapse
|
8
|
Yang WW, Matyas JJ, Li Y, Lee H, Lei Z, Renn CL, Faden AI, Dorsey SG, Wu J. Dissecting Genetic Mechanisms of Differential Locomotion, Depression, and Allodynia after Spinal Cord Injury in Three Mouse Strains. Cells 2024; 13:759. [PMID: 38727295 PMCID: PMC11083625 DOI: 10.3390/cells13090759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Strain differences have been reported for motor behaviors, and only a subset of spinal cord injury (SCI) patients develop neuropathic pain, implicating genetic or genomic contribution to this condition. Here, we evaluated neuropsychiatric behaviors in A/J, BALB/c, and C57BL/6 male mice and tested genetic or genomic alterations following SCI. A/J and BALB/c naive mice showed significantly less locomotor activity and greater anxiety-like behavior than C57BL/6 mice. Although SCI elicited locomotor dysfunction, C57BL/6 and A/J mice showed the best and the worst post-traumatic recovery, respectively. Mild (m)-SCI mice showed deficits in gait dynamics. All moderate/severe SCI mice exhibited similar degrees of anxiety/depression. mSCI in BALB/c and A/J mice resulted in depression, whereas C57BL/6 mice did not exhibit depression. mSCI mice had significantly lower mechanical thresholds than their controls, indicating high cutaneous hypersensitivity. C57BL/6, but not A/J and BLAB/c mice, showed significantly lower heat thresholds than their controls. C57BL/6 mice exhibited spontaneous pain. RNAseq showed that genes in immune responses and wound healing were upregulated, although A/J mice showed the largest increase. The cell cycle and the truncated isoform of trkB genes were robustly elevated in SCI mice. Thus, different genomics are associated with post-traumatic recovery, underscoring the likely importance of genetic factors in SCI.
Collapse
Affiliation(s)
- Wendy W. Yang
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Yun Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Hangnoh Lee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Zhuofan Lei
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (W.W.Y.); (J.J.M.); (Y.L.); (Z.L.); (A.I.F.)
| |
Collapse
|
9
|
Cortes DE, Escudero M, Korgan AC, Mitra A, Edwards A, Aydin SC, Munger SC, Charland K, Zhang ZW, O'Connell KMS, Reinholdt LG, Pera MF. An in vitro neurogenetics platform for precision disease modeling in the mouse. SCIENCE ADVANCES 2024; 10:eadj9305. [PMID: 38569042 PMCID: PMC10990289 DOI: 10.1126/sciadv.adj9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
Collapse
Affiliation(s)
| | | | | | - Arojit Mitra
- The Jackson Laboratory, Bar Harbor, ME 04660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gao Y, Liu W, Liu P, Li M, Ni B. Effects of Psychological Stress on Multiple Sclerosis via HPA Axis-mediated Modulation of Natural Killer T Cell Activity. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1450-1462. [PMID: 38818912 DOI: 10.2174/0118715273315953240528075542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The involvement of psychological stress and Natural Killer T (NKT) cells in the pathophysiology of multiple sclerosis has been identified in the progression of this disease. Psychological stress can impact disease occurrence, relapse, and severity through its effects on the Hypothalamic- Pituitary-Adrenal (HPA) axis and immune responses. NKT cells are believed to play a pivotal role in the pathogenesis of multiple sclerosis, with recent evidence suggesting their distinct functional alterations following activation of the HPA axis under conditions of psychological stress. This review summarizes the associations between psychological stress, NKT cells, and multiple sclerosis while discussing the potential mechanism for how NKT cells mediate the effects of psychological stress on this disease.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Wenying Liu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Paiyu Liu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Min Li
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
11
|
St-Pierre MK, González Ibáñez F, Kroner A, Tremblay MÈ. Microglia/macrophages are ultrastructurally altered by their proximity to spinal cord injury in adult female mice. J Neuroinflammation 2023; 20:273. [PMID: 37990235 PMCID: PMC10664529 DOI: 10.1186/s12974-023-02953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Clement J. Zablocki Veterans Affairs Medical Center, 5000 W. National Ave, Milwaukee, WI, 53295, USA.
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
12
|
Walsh CM, Wychowaniec JK, Costello L, Brougham DF, Dooley D. An In Vitro and Ex Vivo Analysis of the Potential of GelMA Hydrogels as a Therapeutic Platform for Preclinical Spinal Cord Injury. Adv Healthc Mater 2023; 12:e2300951. [PMID: 37114899 PMCID: PMC11468190 DOI: 10.1002/adhm.202300951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition with no curative therapy currently available. Immunomodulation can be applied as a therapeutic strategy to drive alternative immune cell activation and promote a proregenerative injury microenvironment. Locally injected hydrogels carrying immunotherapeutic cargo directly to injured tissue offer an encouraging treatment approach from an immunopharmacological perspective. Gelatin methacrylate (GelMA) hydrogels are promising in this regard, however, detailed analysis on the immunogenicity of GelMA in the specific context of the SCI microenvironment is lacking. Here, the immunogenicity of GelMA hydrogels formulated with a translationally relevant photoinitiator is analyzed in vitro and ex vivo. 3% (w/v) GelMA, synthesized from gelatin type-A, is first identified as the optimal hydrogel formulation based on mechanical properties and cytocompatibility. Additionally, 3% GelMA-A does not alter the expression profile of key polarization markers in BV2 microglia or RAW264.7 macrophages after 48 h. Finally, it is shown for the first time that 3% GelMA-A can support the ex vivo culture of primary murine organotypic spinal cord slices for 14 days with no direct effect on glial fibrillary acidic protein (GFAP+ ) astrocyte or ionized calcium-binding adaptor molecule 1 (Iba-1+ ) microglia reactivity. This provides evidence that GelMA hydrogels can act as an immunotherapeutic hydrogel-based platform for preclinical SCI.
Collapse
Affiliation(s)
- Ciara M. Walsh
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | - Louise Costello
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dermot F. Brougham
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dearbhaile Dooley
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| |
Collapse
|
13
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
14
|
Metcalfe M, Steward O. PTEN deletion in spinal pathways via retrograde transduction with AAV-rg enhances forelimb motor recovery after cervical spinal cord injury; sex differences and late-onset pathophysiologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533502. [PMID: 36993317 PMCID: PMC10055283 DOI: 10.1101/2023.03.20.533502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Spinal cord injuries (SCI) cause permanent functional impairments due to interruption of motor and sensory pathways. Regeneration of axons does not occur due to lack of intrinsic growth capacity of adult neurons and extrinsic inhibitory factors, especially at the injury site. However, some regeneration can be achieved via deletion of the phosphatase and tensin homolog (PTEN) in cells of origin of spinal pathways. Here, we deployed an AAV variant that is retrogradely transported (AAV-rg) to deliver gene modifying cargos to the cells of origin of multiple pathways interrupted by SCI, testing whether this promoted recovery of motor function. PTEN f/f ;Rosa tdTomato mice and control Rosa tdTomato mice received injections of different doses (number of genome copies, GCs) of AAV-rg/Cre into the cervical spinal cord at the time of a C5 dorsal hemisection injury. Forelimb grip strength was tested over time using a grip strength meter. PTEN f/f ;Rosa tdTomato mice with AAV-rg/Cre (PTEN-deleted) exhibited substantial improvements in forelimb gripping ability in comparison to controls. Of note, there were major sex differences in the extent of recovery, with male mice exhibiting greater recovery than females. However, at around 5-7 weeks post-injury/injection, many mice with SCI and AAV-rg-mediated PTEN deletion began to exhibit pathophysiologies involving excessive scratching of the ears and back of the neck and rigid forward extension of the hindlimbs. These pathophysiologies increased in incidence and severity over time. Our results reveal that although intra-spinal injections of AAV-rg/Cre in PTEN f/f ;Rosa tdTomato mice can enhance forelimb motor recovery after SCI, late-developing functional abnormalities occur with the experimental conditions used here. Mechanisms underlying late-developing pathophysiologies remain to be defined.
Collapse
|
15
|
Raghupathi R, Prasad R, Fox D, Huh JW. Repeated mild closed head injury in neonatal rats results in sustained cognitive deficits associated with chronic microglial activation and neurodegeneration. J Neuropathol Exp Neurol 2023; 82:707-721. [PMID: 37390808 PMCID: PMC10357947 DOI: 10.1093/jnen/nlad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.05 compared to sham-injured animals) up to 5 weeks postinjury. In the first week following single or repetitive brain injury, axonal and neuronal degeneration, and microglial activation were observed in the cortex, white matter, thalamus, and subiculum; the extent of the histopathologic damage was significantly greater in the repetitive-injured animals compared to single-injured animals. At 40 days postinjury, loss of cortical, white matter and hippocampal tissue was evident only in the repetitive-injured animals, along with evidence of microglial activation in the white matter tracts and thalamus. Axonal injury and neurodegeneration were evident in the thalamus up to 40 days postinjury in the repetitive-injured rats. These data demonstrate that while single closed head injury in the neonate rat is associated with pathologic alterations in the acute post-traumatic period, repetitive closed head injury results in sustained behavioral and pathologic deficits reminiscent of infants with abusive head trauma.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rupal Prasad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas Fox
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Lund MC, Clausen BH, Brambilla R, Lambertsen KL. The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 PMCID: PMC11414445 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kate Lykke Lambertsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 21 st., 5000, Odense, Denmark.
| |
Collapse
|
17
|
Gärtner Y, Bitar L, Zipp F, Vogelaar CF. Interleukin-4 as a therapeutic target. Pharmacol Ther 2023; 242:108348. [PMID: 36657567 DOI: 10.1016/j.pharmthera.2023.108348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine mainly known for its role in type 2 immunity. Therapies antagonizing or blocking IL-4 activity have been developed to counteract diseases such as atopic dermatitis and asthma. In contrast, other disorders experimentally benefit from IL-4-related effects and IL-4 recently demonstrated beneficial activity in experimental stroke, spinal cord injury and the animal model of multiple sclerosis. To exploit IL-4-related activity for therapeutic concepts, current experimental efforts include modifying the pathway without inducing type 2 immune response and targeting of the cytokine to specific tissues. Here, we review different activities of IL-4 as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
18
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
19
|
Jin Y, Song Y, Lin J, Liu T, Li G, Lai B, Gu Y, Chen G, Xing L. Role of inflammation in neurological damage and regeneration following spinal cord injury and its therapeutic implications. BURNS & TRAUMA 2023; 11:tkac054. [PMID: 36873284 PMCID: PMC9976751 DOI: 10.1093/burnst/tkac054] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 12/01/2022] [Indexed: 03/06/2023]
Abstract
Spinal cord injury (SCI) is an incurable trauma that frequently results in partial or complete loss of motor and sensory function. Massive neurons are damaged after the initial mechanical insult. Secondary injuries, which are triggered by immunological and inflammatory responses, also result in neuronal loss and axon retraction. This results in defects in the neural circuit and a deficiency in the processing of information. Although inflammatory responses are necessary for spinal cord recovery, conflicting evidence of their contributions to specific biological processes have made it difficult to define the specific role of inflammation in SCI. This review summarizes our understanding of the complex role of inflammation in neural circuit events following SCI, such as cell death, axon regeneration and neural remodeling. We also review the drugs that regulate immune responses and inflammation in the treatment of SCI and discuss the roles of these drugs in the modulation of neural circuits. Finally, we provide evidence about the critical role of inflammation in facilitating spinal cord neural circuit regeneration in zebrafish, an animal model with robust regenerative capacity, to provide insights into the regeneration of the mammalian central nervous system.
Collapse
Affiliation(s)
- Yan Jin
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China.,School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Jiaqi Lin
- School of Medicine, Nantong University, Nantong 226006, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510275, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226006, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Gang Chen
- School of Medicine, Nantong University, Nantong 226006, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| |
Collapse
|
20
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
21
|
Rosas Almanza J, Stehlik KE, Page JJ, Xiong SH, Tabor EG, Aperi B, Patel K, Kodali R, Kurpad S, Budde MD, Tarima S, Swartz K, Kroner A. IL-12p40 promotes secondary damage and functional impairment after spinal cord contusional injury. J Neurosci Res 2022; 100:2213-2231. [PMID: 36089917 DOI: 10.1002/jnr.25122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023]
Abstract
Secondary damage obstructs functional recovery for individuals who have sustained a spinal cord injury (SCI). Two processes significantly contributing to tissue damage after trauma are spinal cord hemorrhage and inflammation: more specifically, the recruitment and activation of immune cells, frequently driven by pro-inflammatory factors. Cytokines are inflammatory mediators capable of modulating the immune response. While cytokines are necessary to elicit inflammation for proper healing, excessive inflammation can result in destructive processes. The pro-inflammatory cytokines IL-12 and IL-23 are pathogenic in multiple autoimmune diseases. The cytokine subunit IL-12p40 is necessary to form bioactive IL-12 and IL-23. In this study, we examined the relationship between spinal cord hemorrhage and IL-12-related factors, as well as the impact of IL-12p40 (IL-12/IL-23) on secondary damage and functional recovery after SCI. Using in vivo magnetic resonance imaging and protein tissue analyses, we demonstrated a positive correlation between IL-12 and tissue hemorrhage. Receptor and ligand subunits of IL-12 were significantly upregulated after injury and colocalized with astrocytes, demonstrating a myriad of opportunities for IL-12 to induce an inflammatory response. IL-12p40-/- mice demonstrated significantly improved functional recovery and reduced lesion sizes compared to wild-type mice. Targeted gene array analysis in wild-type and IL-12p40-/- female mice after SCI revealed an upregulation of genes associated with worsened recovery after SCI. Taken together, our data reveal a pathogenic role of IL-12p40 in the secondary damage after SCI, hindering functional recovery. IL-12p40 (IL-12/IL-23) is thus an enticing neuroinflammatory target for further study as a potential therapeutic target to benefit recovery in acute SCI.
Collapse
Affiliation(s)
- Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Justin J Page
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shuana H Xiong
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Emma G Tabor
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Brandy Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kishan Patel
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Rajiv Kodali
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Swartz
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMID: 36333772 PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
23
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
24
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
25
|
Eller OC, Willits AB, Young EE, Baumbauer KM. Pharmacological and non-pharmacological therapeutic interventions for the treatment of spinal cord injury-induced pain. FRONTIERS IN PAIN RESEARCH 2022; 3:991736. [PMID: 36093389 PMCID: PMC9448954 DOI: 10.3389/fpain.2022.991736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurophysiological disorder, which can result in many long-term complications including changes in mobility, bowel and bladder function, cardiovascular function, and metabolism. In addition, most individuals with SCI experience some form of chronic pain, with one-third of these individuals rating their pain as severe and unrelenting. SCI-induced chronic pain is considered to be "high impact" and broadly affects a number of outcome measures, including daily activity, physical and cognitive function, mood, sleep, and overall quality of life. The majority of SCI pain patients suffer from pain that emanates from regions located below the level of injury. This pain is often rated as the most severe and the underlying mechanisms involve injury-induced plasticity along the entire neuraxis and within the peripheral nervous system. Unfortunately, current therapies for SCI-induced chronic pain lack universal efficacy. Pharmacological treatments, such as opioids, anticonvulsants, and antidepressants, have been shown to have limited success in promoting pain relief. In addition, these treatments are accompanied by many adverse events and safety issues that compound existing functional deficits in the spinally injured, such as gastrointestinal motility and respiration. Non-pharmacological treatments are safer alternatives that can be specifically tailored to the individual and used in tandem with pharmacological therapies if needed. This review describes existing non-pharmacological therapies that have been used to treat SCI-induced pain in both preclinical models and clinical populations. These include physical (i.e., exercise, acupuncture, and hyper- or hypothermia treatments), psychological (i.e., meditation and cognitive behavioral therapy), and dietary interventions (i.e., ketogenic and anti-inflammatory diet). Findings on the effectiveness of these interventions in reducing SCI-induced pain and improving quality of life are discussed. Overall, although studies suggest non-pharmacological treatments could be beneficial in reducing SCI-induced chronic pain, further research is needed. Additionally, because chronic pain, including SCI pain, is complex and has both emotional and physiological components, treatment should be multidisciplinary in nature and ideally tailored specifically to the patient.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Adam B. Willits
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle M. Baumbauer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
26
|
Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 2022; 13:4096. [PMID: 35835751 PMCID: PMC9283484 DOI: 10.1038/s41467-022-31797-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.
Collapse
Affiliation(s)
- Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yang Li
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Qi Guo
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nicole Pukos
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Erens C, Van Broeckhoven J, Hoeks C, Schabbauer G, Cheng PN, Chen L, Hellings N, Broux B, Lemmens S, Hendrix S. L-Arginine Depletion Improves Spinal Cord Injury via Immunomodulation and Nitric Oxide Reduction. Biomedicines 2022; 10:biomedicines10020205. [PMID: 35203413 PMCID: PMC8869469 DOI: 10.3390/biomedicines10020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injury (SCI) elicits robust neuroinflammation that eventually exacerbates the initial damage to the spinal cord. L-arginine is critical for the responsiveness of T cells, which are important contributors to neuroinflammation after SCI. Furthermore, L-arginine is the substrate for nitric oxide (NO) production, which is a known inducer of secondary damage. Methods: To accomplish systemic L-arginine depletion, repetitive injections of recombinant arginase-1 (rArg-I) were performed. Functional recovery and histopathological parameters were analyzed. Splenic immune responses were evaluated by flow cytometry. Pro-inflammatory gene expression and nitrite concentrations were measured. Results: We show for the first time that systemic L-arginine depletion improves locomotor recovery. Flow cytometry and immunohistological analysis showed that intraspinal T-cell infiltration was reduced by 65%, and peripheral numbers of Th1 and Th17 cells were suppressed. Moreover, rArg-I treatment reduced the intraspinal NO production by 40%. Histopathological analyses revealed a 37% and 36% decrease in the number of apoptotic neurons and neuron-macrophage/microglia contacts in the spinal cord, respectively. Conclusions: Targeting detrimental T-cell responses and NO-production via rArg-I led to a reduced neuronal cell death and an improved functional recovery. These findings indicate that L-arginine depletion holds promise as a therapeutic strategy after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Centre of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Paul N. Cheng
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Li Chen
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
28
|
Perez JC, Gerber YN, Perrin FE. Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Front Aging Neurosci 2021; 13:769548. [PMID: 34899275 PMCID: PMC8662749 DOI: 10.3389/fnagi.2021.769548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The glial scar that forms after traumatic spinal cord injury (SCI) is mostly composed of microglia, NG2 glia, and astrocytes and plays dual roles in pathophysiological processes induced by the injury. On one hand, the glial scar acts as a chemical and physical obstacle to spontaneous axonal regeneration, thus preventing functional recovery, and, on the other hand, it partly limits lesion extension. The complex activation pattern of glial cells is associated with cellular and molecular crosstalk and interactions with immune cells. Interestingly, response to SCI is diverse among species: from amphibians and fishes that display rather limited (if any) glial scarring to mammals that exhibit a well-identifiable scar. Additionally, kinetics of glial activation varies among species. In rodents, microglia become activated before astrocytes, and both glial cell populations undergo activation processes reflected amongst others by proliferation and migration toward the injury site. In primates, glial cell activation is delayed as compared to rodents. Here, we compare the spatial and temporal diversity of the glial response, following SCI amongst species. A better understanding of mechanisms underlying glial activation and scar formation is a prerequisite to develop timely glial cell-specific therapeutic strategies that aim to increase functional recovery.
Collapse
Affiliation(s)
| | - Yannick N Gerber
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
29
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 2021; 18:284. [PMID: 34876174 PMCID: PMC8653609 DOI: 10.1186/s12974-021-02337-2] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 03/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Charles M Quinn
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Zachariah J Piper
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Carolyn N Morehouse
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Jordyn A Fixel
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
30
|
Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells 2021; 10:cells10123296. [PMID: 34943804 PMCID: PMC8699545 DOI: 10.3390/cells10123296] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) leads to irreversible functional impairment caused by neuronal loss and the disruption of neuronal connections across the injury site. While several experimental strategies have been used to minimize tissue damage and to enhance axonal growth and regeneration, the corticospinal projection, which is the most important voluntary motor system in humans, remains largely refractory to regenerative therapeutic interventions. To date, one of the most promising pre-clinical therapeutic strategies has been neural stem cell (NSC) therapy for SCI. Over the last decade we have found that host axons regenerate into spinal NSC grafts placed into sites of SCI. These regenerating axons form synapses with the graft, and the graft in turn extends very large numbers of new axons from the injury site over long distances into the distal spinal cord. Here we discuss the pathophysiology of SCI that makes the spinal cord refractory to spontaneous regeneration, the most recent findings of neural stem cell therapy for SCI, how it has impacted motor systems including the corticospinal tract and the implications for sensory feedback.
Collapse
|
31
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Hodgetts SI, Lovett SJ, Baron-Heeris D, Fogliani A, Sturm M, Van den Heuvel C, Harvey AR. Effects of amyloid precursor protein peptide APP96-110, alone or with human mesenchymal stromal cells, on recovery after spinal cord injury. Neural Regen Res 2021; 17:1376-1386. [PMID: 34782585 PMCID: PMC8643048 DOI: 10.4103/1673-5374.327357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Delivery of a peptide (APP96-110), derived from amyloid precursor protein (APP), has been shown to elicit neuroprotective effects following cerebral stroke and traumatic brain injury. In this study, the effect of APP96-110 or a mutant version of this peptide (mAPP96-110) was assessed following moderate (200 kdyn, (2 N)) thoracic contusive spinal cord injury (SCI) in adult Nude rats. Animals received a single tail vein injection of APP96-110 or mAPP96-110 at 30 minutes post-SCI and were then assessed for functional improvements over the next 8 weeks. A cohort of animals also received transplants of either viable or non-viable human mesenchymal stromal cells (hMSCs) into the SC lesion site at one week post-injury to assess the effect of combining intravenous APP96-110 delivery with hMSC treatment. Rats were perfused 8 weeks post-SCI and longitudinal sections of spinal cord analyzed for a number of factors including hMSC viability, cyst size, axonal regrowth, glial reactivity and macrophage activation. Analysis of sensorimotor function revealed occasional significant differences between groups using Ladderwalk or Ratwalk tests, however there were no consistent improvements in functional outcome after any of the treatments. mAPP96-110 alone, and APP96-110 in combination with both viable and non-viable hMSCs significantly reduced cyst size compared to SCI alone. Combined treatments with donor hMSCs also significantly increased βIII tubulin+, glial fibrillary acidic protein (GFAP+) and laminin+ expression, and decreased ED1+ expression in tissues. This preliminary study demonstrates that intravenous delivery of APP96-110 peptide has selective, modest neuroprotective effects following SCI, which may be enhanced when combined with hMSC transplantation. However, the effects are less pronounced and less consistent compared to the protective morphological and cognitive impact that this same peptide has on neuronal survival and behaviour after stroke and traumatic brain injury. Thus while the efficacy of a particular therapeutic approach in one CNS injury model may provide justification for its use in other neurotrauma models, similar outcomes may not necessarily occur and more targeted approaches suited to location and severity are required. All animal experiments were approved by The University of Western Australia Animal Ethics Committee (RA3/100/1460) on April 12, 2016.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sarah J Lovett
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - D Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - A Fogliani
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - Marian Sturm
- Cell and Tissue Therapies WA (CTTWA), Royal Perth Hospital, Perth, WA, Australia
| | - C Van den Heuvel
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
33
|
The Role of Microglia in Modulating Neuroinflammation after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22189706. [PMID: 34575871 PMCID: PMC8470129 DOI: 10.3390/ijms22189706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
The pathobiology of traumatic and nontraumatic spinal cord injury (SCI), including degenerative myelopathy, is influenced by neuroinflammation. The neuroinflammatory response is initiated by a multitude of injury signals emanating from necrotic and apoptotic cells at the lesion site, recruiting local and infiltrating immune cells that modulate inflammatory cascades to aid in the protection of the lesion site and encourage regenerative processes. While peripheral immune cells are involved, microglia, the resident immune cells of the central nervous system (CNS), are known to play a central role in modulating this response. Microglia are armed with numerous cell surface receptors that interact with neurons, astrocytes, infiltrating monocytes, and endothelial cells to facilitate a dynamic, multi-faceted injury response. While their origin and essential nature are understood, their mechanisms of action and spatial and temporal profiles warrant extensive additional research. In this review, we describe the role of microglia and the cellular network in SCI, discuss tools for their investigation, outline their spatiotemporal profile, and propose translationally-relevant therapeutic targets to modulate neuroinflammation in the setting of SCI.
Collapse
|
34
|
Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A 2021; 118:2017282118. [PMID: 33627402 DOI: 10.1073/pnas.2017282118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.
Collapse
|
35
|
Milich LM, Choi JS, Ryan C, Cerqueira SR, Benavides S, Yahn SL, Tsoulfas P, Lee JK. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med 2021; 218:e20210040. [PMID: 34132743 PMCID: PMC8212781 DOI: 10.1084/jem.20210040] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
The wound healing process that occurs after spinal cord injury is critical for maintaining tissue homeostasis and limiting tissue damage, but eventually results in a scar-like environment that is not conducive to regeneration and repair. A better understanding of this dichotomy is critical to developing effective therapeutics that target the appropriate pathobiology, but a major challenge has been the large cellular heterogeneity that results in immensely complex cellular interactions. In this study, we used single-cell RNA sequencing to assess virtually all cell types that comprise the mouse spinal cord injury site. In addition to discovering novel subpopulations, we used expression values of receptor-ligand pairs to identify signaling pathways that are predicted to regulate specific cellular interactions during angiogenesis, gliosis, and fibrosis. Our dataset is a valuable resource that provides novel mechanistic insight into the pathobiology of not only spinal cord injury but also other traumatic disorders of the CNS.
Collapse
Affiliation(s)
- Lindsay M. Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - James S. Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Christine Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Susana R. Cerqueira
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Sofia Benavides
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Stephanie L. Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Jae K. Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
36
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
37
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Wahane S, Zhou X, Zhou X, Guo L, Friedl MS, Kluge M, Ramakrishnan A, Shen L, Friedel CC, Zhang B, Friedel RH, Zou H. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. SCIENCE ADVANCES 2021; 7:eabd8811. [PMID: 33637528 PMCID: PMC7909890 DOI: 10.1126/sciadv.abd8811] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
The innate immune response influences neural repair after spinal cord injury (SCI). Here, we combined myeloid-specific transcriptomics and single-cell RNA sequencing to uncover not only a common core but also temporally distinct gene programs in injury-activated microglia and macrophages (IAM). Intriguingly, we detected a wide range of microglial cell states even in healthy spinal cord. Upon injury, IAM progressively acquired overall reparative, yet diversified transcriptional profiles, each comprising four transcriptional subtypes with specialized tasks. Notably, IAM have both distinct and common gene signatures as compared to neurodegeneration-associated microglia, both engaging phagocytosis, autophagy, and TyroBP pathways. We also identified an immediate response microglia subtype serving as a source population for microglial transformation and a proliferative subtype controlled by the epigenetic regulator histone deacetylase 3 (HDAC3). Together, our data unveil diversification of myeloid and glial subtypes in SCI and an extensive influence of HDAC3, which may be exploited to enhance functional recovery.
Collapse
Affiliation(s)
- Shalaka Wahane
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiang Zhou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marie-Sophie Friedl
- Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021; 6:5. [PMID: 33479258 PMCID: PMC7820607 DOI: 10.1038/s41536-020-00114-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death among young people, and is increasingly prevalent in the aging population. Survivors of TBI face a spectrum of outcomes from short-term non-incapacitating injuries to long-lasting serious and deteriorating sequelae. TBI is a highly complex condition to treat; many variables can account for the observed heterogeneity in patient outcome. The limited success of neuroprotection strategies in the clinic has led to a new emphasis on neurorestorative approaches. In TBI, it is well recognized clinically that patients with similar lesions, age, and health status often display differences in recovery of function after injury. Despite this heterogeneity of outcomes in TBI, restorative treatment has remained generic. There is now a new emphasis on developing a personalized medicine approach in TBI, and this will require an improved understanding of how genetics impacts on long-term outcomes. Studies in animal model systems indicate clearly that the genetic background plays a role in determining the extent of recovery following an insult. A candidate gene approach in human studies has led to the identification of factors that can influence recovery. Here we review studies of the genetic basis for individual differences in functional recovery in the CNS in animals and man. The application of in vitro modeling with human cells and organoid cultures, along with whole-organism studies, will help to identify genes and networks that account for individual variation in recovery from brain injury, and will point the way towards the development of new therapeutic approaches.
Collapse
|
40
|
Brennan FH, Noble BT, Wang Y, Guan Z, Davis H, Mo X, Harris C, Eroglu C, Ferguson AR, Popovich PG. Acute post-injury blockade of α2δ-1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Rep 2021; 34:108667. [PMID: 33503436 PMCID: PMC8817229 DOI: 10.1016/j.celrep.2020.108667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
After spinal cord injury (SCI), normally innocuous visceral or somatic stimuli can trigger uncontrolled reflex activation of sympathetic circuitry, causing pathological dysautonomia. We show that remarkable structural remodeling and plasticity occur within spinal autonomic circuitry, creating abnormal sympathetic reflexes that promote dysautonomia. However, when mice are treated early after SCI with human-equivalent doses of the US Food and Drug Administration (FDA)-approved drug gabapentin (GBP), it is possible to block multi-segmental excitatory synaptogenesis and abolish sprouting of autonomic neurons that innervate immune organs and sensory afferents that trigger pain and autonomic dysreflexia (AD). This “prophylactic GBP” regimen decreases the frequency and severity of AD and protects against SCI-induced immune suppression. These benefits persist even 1 month after stopping treatment. GBP could be repurposed to prevent dysautonomia in at-risk individuals with high-level SCI. Brennan et al. show that α2δ−1 calcium channel subunits drive remarkable structural reorganization of autonomic circuitry and autonomic dysfunction after spinal cord injury. Early (prophylactic) post-injury treatment with gabapentin, an FDA-approved drug, prevents α2δ−1-dependent structural changes and autonomic dysfunction. Prophylactic gabapentin could be repurposed clinically for at-risk individuals.
Collapse
Affiliation(s)
- Faith H Brennan
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin T Noble
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Wang
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Zhen Guan
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Hayes Davis
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Clay Harris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, and Duke Institute for Brain Sciences, Durham, NC 27710, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA 94142, USA; San Francisco Veterans Affairs Healthcare System (SFVAHCS), San Francisco, CA, USA
| | - Phillip G Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3 contributes to secondary damage after spinal cord injury. J Neuroinflammation 2020; 17:362. [PMID: 33246483 PMCID: PMC7694914 DOI: 10.1186/s12974-020-02037-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02037-3.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
42
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
43
|
Ulndreaj A, Tzekou A, Siddiqui AM, Fehlings MG. Effects of experimental cervical spinal cord injury on peripheral adaptive immunity. PLoS One 2020; 15:e0241285. [PMID: 33125407 PMCID: PMC7598511 DOI: 10.1371/journal.pone.0241285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Adaptive immunity is critical for controlling infections, which are a leading cause of morbidity and mortality in patients with spinal cord injury (SCI). In rats and mice, compromised peripheral adaptive immune responses, as shown by splenic atrophy and lowered frequencies of peripheral lymphocytes, were shown to result from high-level thoracic SCI. However, whether cervical SCI, which is the most common level of SCI in humans, impairs adaptive immunity remains largely unknown. In the present study, we induced cervical SCI in rats at the C7/T1 level by clip compression and looked at changes in peripheral adaptive immunity at 2-, 10- and 20-weeks post-injury. Specifically, we quantified changes in the frequencies of T- and B- lymphocytes in the blood and the mandibular and deep cervical lymph nodes, which drain the cervical spinal cord. We also assessed changes in serum IgG and IgM immunoglobulin levels, as well as spleen size. We found a significant decline in circulating T- and B- cell frequencies at 10 weeks post-SCI, which returned to normal at 20 weeks after injury. We found no effect of cervical SCI on T- and B- cell frequencies in the draining lymph nodes. Moreover, cervical SCI had no effect on net spleen size, although injured rats had a higher spleen/body weight ratio than sham controls at all time points of the study. Lastly, IgG and IgM immunoglobulin declined at 2 weeks, followed by a significant increase in IgM levels at 10 weeks of injury. These data indicate that cervical SCI causes a significant imbalance in circulating lymphocytes and immunoglobulin levels at 2 and 10 weeks. As we discuss in this article, these findings are largely in line with clinical observations, and we anticipate that this study will fuel more research on the effect of adaptive immunity on SCI recovery.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Apostolia Tzekou
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ahad M. Siddiqui
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Ontario, Canada
- University of Toronto Spine Program, University of Toronto, Ontario, Canada
| |
Collapse
|
44
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
45
|
Yu Z, Sun X, Xia R, Chen Q, Wu Q, Zheng W. Modulation of inflammatory factors predicts the outcome following spinal cord injury. J Orthop Surg Res 2020; 15:199. [PMID: 32487194 PMCID: PMC7268366 DOI: 10.1186/s13018-020-01727-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The correlation between inflammatory responses caused by spinal cord injury (SCI) and the prognosis of patients with SCI still remains controversial. METHODS In the present study, we preliminary investigated the serum levels of interleukin (IL)-4, IL-10, major histocompatibility complex (MHC)-I, and inducible nitric oxide synthase (iNOS) and compared the serum IL-4 and IL-10 expression in rats of high Basso-Beattie-Bresnahan (BBB) scores with these of low BBB scores. Besides, the infiltration of macrophage and the axonal regeneration of the injured spinal cord were observed from day 10 to day 30. RESULTS We found that higher serum levels of IL-4 and IL-10 can reflect the restorability degree of SCI and could be potential biomarkers for the prognosis of SCI. The infiltration of the M2 subtype of macrophage and the axons regrowth might contribute to a better prognosis. CONCLUSIONS The current study demonstrates that the serum levels of IL-4 and IL-10 are preliminarily adopted as serologic markers to forecast SCI, and high serum levels of IL-4 and IL-10 may indicate a better prognosis. Moreover, the way to promote macrophage polarization from M1 to M2 may contribute to better axonal regeneration.
Collapse
Affiliation(s)
- Zepeng Yu
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Qian Chen
- Department of Oncology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China
| | - Qin Wu
- Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, People's Republic of China.
| | - Weiwei Zheng
- Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China.
| |
Collapse
|
46
|
Antonios JP, Farah GJ, Cleary DR, Martin JR, Ciacci JD, Pham MH. Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury. Neurosurg Focus 2020; 46:E9. [PMID: 30835678 DOI: 10.3171/2018.12.focus18589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.
Collapse
Affiliation(s)
- Joseph P Antonios
- 1David Geffen School of Medicine, University of California, Los Angeles, Los Angeles; and
| | - Ghassan J Farah
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Daniel R Cleary
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joel R Martin
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joseph D Ciacci
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Martin H Pham
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| |
Collapse
|
47
|
Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: A Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. PLoS One 2020; 15:e0230798. [PMID: 32214370 PMCID: PMC7098614 DOI: 10.1371/journal.pone.0230798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small sample sizes combined with multiple correlated endpoints pose a major challenge in the statistical analysis of preclinical neurotrauma studies. The standard approach of applying univariate tests on individual response variables has the advantage of simplicity of interpretation, but it fails to account for the covariance/correlation in the data. In contrast, multivariate statistical techniques might more adequately capture the multi-dimensional pathophysiological pattern of neurotrauma and therefore provide increased sensitivity to detect treatment effects. RESULTS We systematically evaluated the performance of univariate ANOVA, Welch's ANOVA and linear mixed effects models versus the multivariate techniques, ANOVA on principal component scores and MANOVA tests by manipulating factors such as sample and effect size, normality and homogeneity of variance in computer simulations. Linear mixed effects models demonstrated the highest power when variance between groups was equal or variance ratio was 1:2. In contrast, Welch's ANOVA outperformed the remaining methods with extreme variance heterogeneity. However, power only reached acceptable levels of 80% in the case of large simulated effect sizes and at least 20 measurements per group or moderate effects with at least 40 replicates per group. In addition, we evaluated the capacity of the ordination techniques, principal component analysis (PCA), redundancy analysis (RDA), linear discriminant analysis (LDA), and partial least squares discriminant analysis (PLS-DA) to capture patterns of treatment effects without formal hypothesis testing. While LDA suffered from a high false positive rate due to multicollinearity, PCA, RDA, and PLS-DA were robust and PLS-DA outperformed PCA and RDA in capturing a true treatment effect pattern. CONCLUSIONS Multivariate tests do not provide an appreciable increase in power compared to univariate techniques to detect group differences in preclinical studies. However, PLS-DA seems to be a useful ordination technique to explore treatment effect patterns without formal hypothesis testing.
Collapse
|
48
|
Carpenter RS, Jiang RR, Brennan FH, Hall JCE, Gottipati MK, Niewiesk S, Popovich PG. Human immune cells infiltrate the spinal cord and impair recovery after spinal cord injury in humanized mice. Sci Rep 2019; 9:19105. [PMID: 31836828 PMCID: PMC6911055 DOI: 10.1038/s41598-019-55729-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Humanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3-4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Roselyn R Jiang
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Faith H Brennan
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jodie C E Hall
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Manoj K Gottipati
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, Ohio, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
49
|
Hahm SC, Song E, Jeon H, Yoon YW, Kim J. Transcutaneous Electrical Nerve Stimulation Reduces Knee Osteoarthritic Pain by Inhibiting Spinal Glial Cells in Rats. Phys Ther 2019; 99:1211-1223. [PMID: 31158282 DOI: 10.1093/ptj/pzz076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) is commonly used for pain control. However, the effects of TENS on osteoarthritis (OA) pain and potential underlying mechanisms remain unclear. OBJECTIVE The objective of this study was to investigate the effect of TENS on OA pain treatment and underlying mechanisms related to glial cell inhibition. DESIGN This was an experimental study. METHODS OA was induced by injection of monosodium iodoacetate into the synovial space of the right knee joint of rats. High-frequency (HF) TENS (100 Hz), low-frequency (LF) TENS (4 Hz), or sham TENS was applied to the ipsilateral knee joint for 20 minutes. Paw withdrawal threshold (PWT), weight bearing, and knee bend score (KBS) were measured. Immunohistochemistry for microglia and astrocytes was performed with L3 to L5 spinal segment samples. To investigate the effects of glial inhibition on OA pain, minocycline, l-α-aminoadipate, or artificial cerebrospinal fluid was injected intrathecally, and PWT and KBS were measured. RESULTS Compared with sham TENS, both HF TENS and LF TENS significantly increased PWT, decreased KBS, and inhibited activated microglia in the L3 to L5 segments but did not decrease the total number of microglia, except in the L4 segment (HF TENS). Astrocyte expression was significantly decreased in the L3 to L5 segments following LF TENS and in the L3 segment following HF TENS. Compared with artificial cerebrospinal fluid, both minocycline and l-α-aminoadipate increased PWT and decreased KBS. LIMITATIONS These results cannot be generalized to humans. CONCLUSIONS TENS alleviates OA pain in rats by inhibiting activated microglia and reducing astrocyte expression in the spinal cord. Although these results may not be generalizable to chronic pain in patients with OA, within the limitation of the experimental animal model used in the present study, they suggest a possible mechanism and preclinical evidence supporting further experimentation or clinical use of TENS in humans.
Collapse
Affiliation(s)
- Suk-Chan Hahm
- Graduate School of Integrative Medicine, CHA University, Seongnam, Republic of Korea
| | - Eseul Song
- Department of Rehabilitation Standard and Policy, National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Republic of Korea
| | - Hochung Jeon
- Department of Physical Therapy, College of Health Science, and Department of Public Health Sciences, Korea University, Seoul, Republic of Korea
| | - Young Wook Yoon
- Department of Physiology, College of Medicine, Korea University
| | - Junesun Kim
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea; and Department of Public Health Sciences, Korea University
| |
Collapse
|
50
|
Luo D, Ge W, Hu X, Li C, Lee CM, Zhou L, Wu Z, Yu J, Lin S, Yu J, Xu W, Chen L, Zhang C, Jiang K, Zhu X, Li H, Gao X, Geng Y, Jing B, Wang Z, Zheng C, Zhu R, Yan Q, Lin Q, Ye K, Sun YE, Cheng L. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury. Protein Cell 2019; 10:566-582. [PMID: 29956125 PMCID: PMC6626597 DOI: 10.1007/s13238-018-0559-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
Collapse
Affiliation(s)
- Dandan Luo
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weihong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiao Hu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chen Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chia-Ming Lee
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Liqiang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Sheng Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jing Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Xu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lei Chen
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chong Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kun Jiang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xingfei Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haotian Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xinpei Gao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanan Geng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bo Jing
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Changhong Zheng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Rongrong Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
| | - Qiao Yan
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Quan Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Center for neurodegeneration disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yi E Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Liming Cheng
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|