1
|
Ramos EN, Jiron GM, Danoff JS, Anderson Z, Carter CS, Perkeybile AM, Connelly JJ, Erisir A. The central oxytocinergic system of the prairie vole. Brain Struct Funct 2024; 229:1737-1756. [PMID: 39042140 PMCID: PMC11374920 DOI: 10.1007/s00429-024-02832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Oxytocin (OXT) is a peptide hormone and a neuropeptide that regulates various peripheral physiological processes and modulates behavioral responses in the central nervous system. While the humoral release occurs from the axons arriving at the median eminence, the neuropeptide is also released from oxytocinergic cell axons in various brain structures that contain its receptor, and from their dendrites in hypothalamic nuclei and potentially into the cerebrospinal fluid (CSF). Understanding oxytocin's complex functions requires the knowledge on patterns of oxytocinergic projections in relationship to its receptor (OXTR). This study provides the first comprehensive examination of the oxytocinergic system in the prairie vole (Microtus ochrogaster), an animal exhibiting social behaviors that mirror human social behaviors linked to oxytocinergic functioning. Using light and electron microscopy, we characterized the neuroanatomy of the oxytocinergic system in this species. OXT+ cell bodies were found primarily in the hypothalamus, and axons were densest in subcortical regions. Examination of the OXT+ fibers and their relationship to oxytocin receptor transcripts (Oxtr) revealed that except for some subcortical structures, the presence of axons was not correlated with the amount of Oxtr across the brain. Of particular interest, the cerebral cortex that had high expression of Oxtr transcripts contained little to no fibers. Electron microscopy is used to quantify dense cored vesicles (DCV) in OXT+ axons and to identify potential axonal release sites. The ependymal cells that line the ventricles were frequently permissive of DCV-containing OXT+ dendrites reaching the third ventricle. Our results highlight a mechanism in which oxytocin is released directly into the ventricles and circulates throughout the ventricular system, may serve as the primary source for oxytocin that binds to OXTR in the cerebral cortex.
Collapse
Affiliation(s)
- E N Ramos
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - G M Jiron
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - J S Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Z Anderson
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - C S Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - A M Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - J J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - A Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Gao C, Krashes MJ. Neuroscience of eating: Pace and portion control. Curr Biol 2024; 34:R155-R157. [PMID: 38412828 DOI: 10.1016/j.cub.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Satiety-promoting neurons of the hindbrain have long been known for their role in meal termination. An innovative new study now reveals how different hindbrain cell types mediate appetite on distinct timescales.
Collapse
Affiliation(s)
- Claire Gao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Danoff JS, Ramos EN, Hinton TD, Perkeybile AM, Graves AJ, Quinn GC, Lightbody-Cimer AR, Gordevičius J, Milčiūtė M, Brooke RT, Carter CS, Bales KL, Erisir A, Connelly JJ. Father's care uniquely influences male neurodevelopment. Proc Natl Acad Sci U S A 2023; 120:e2308798120. [PMID: 37487074 PMCID: PMC10400995 DOI: 10.1073/pnas.2308798120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian infants depend on parental care for survival, with numerous consequences for their behavioral development. We investigated the epigenetic and neurodevelopmental mechanisms mediating the impact of early biparental care on development of alloparenting behavior, or caring for offspring that are not one's own. We find that receiving high parental care early in life leads to slower epigenetic aging of both sexes and widespread male-specific differential expression of genes related to synaptic transmission and autism in the nucleus accumbens. Examination of parental care composition indicates that high-care fathers promote a male-specific increase in excitatory synapses and increases in pup retrieval behavior as juveniles. Interestingly, females raised by high-care fathers have the opposite behavioral response and display fewer pup retrievals. These results support the concept that neurodevelopmental trajectories are programmed by different features of early-life parental care and reveal that male neurodevelopmental processes are uniquely sensitive to care by fathers.
Collapse
Affiliation(s)
- Joshua S. Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Erin N. Ramos
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Taylor D. Hinton
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Allison M. Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Andrew J. Graves
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Graham C. Quinn
- Department of Psychology, University of Virginia, Charlottesville, VA22904
| | | | | | - Milda Milčiūtė
- Epigenetic Clock Development Foundation, Torrance, CA90502
| | | | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA22904
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, CA95616
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Jessica J. Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
4
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
5
|
Wiaderkiewicz J, Reilly S. Expression of c-Fos following voluntary ingestion of a novel or familiar taste in rats. Brain Res 2023; 1799:148177. [PMID: 36503889 PMCID: PMC9795852 DOI: 10.1016/j.brainres.2022.148177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
Taste neophobia, the rejection of novel tastes or foods, involves an interplay of various brain regions encompassing areas within the central gustatory system, as well as nuclei serving other functions. Previous findings, utilising c-Fos imaging, identified several brain regions which displayed higher activity after ingestion of a novel taste as compared to a familiar taste. The present study extends this analysis to include additional regions suspected of contributing to the neurocircuitry involved in evoking taste neophobia. Our data show increased c-Fos expression in the basolateral amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, gustatory portion of the insular cortex and the medial and lateral regions of the parabrachial nucleus. These results confirm the contribution of areas previously identified as active during ingestion of novel tastes and expose additional areas that express elevated levels of c-Fos under these conditions, thus adding to the neural network involved in the detection and initial processing of taste novelty.
Collapse
Affiliation(s)
- Jan Wiaderkiewicz
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| | - Steve Reilly
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| |
Collapse
|
6
|
Yasuoka A, Nagai T, Lee S, Miyaguchi H, Saito Y, Abe K, Asakura T. Mastication stimuli enhance the learning ability of weaning-stage rats, altering the hippocampal neuron transcriptome and micromorphology. Front Behav Neurosci 2022; 16:1006359. [PMID: 36263297 PMCID: PMC9574334 DOI: 10.3389/fnbeh.2022.1006359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mastication stimuli are known to relieve senile dementia in human and animal studies. However, few studies have focused on its effect on weaning-stage animals and the underlying molecular processes. In this study, 3-week-old male rats were raised on a powdered (P-group) or chow (C-group) diet for 8 days, and their behavior was examined using the Y-maze and novel object recognition tests. In the Y-maze test, the C-group rats showed a larger alternation ratio than the P-group rats. In the novel object recognition test, the C-group rats exhibited a significantly larger discrimination index for novel objects than for familiar objects, but the P-group rats did not. We then compared the hippocampal neuron morphology and transcriptome between the groups. C-group rats exhibited larger dendrite branch numbers in the apical dendrites of pyramidal cells in the cornu ammonis 1 (CA1) region and a larger spine density in the basal dendrites of CA1 neurons than the P-group rats. Using DNA microarray analysis, we identified 621 (P < C) and 96 (P > C) genes that were differentially expressed between the groups. These genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the C-group. These results suggest that the mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth.
Collapse
Affiliation(s)
- Akihito Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Human Nutrition, Seitoku University, Chiba, Japan
| | - Toshitada Nagai
- Department of Applied Biological Science, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Seonmi Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hitonari Miyaguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Tomiko Asakura,
| |
Collapse
|
7
|
Tsujimura T, Nakajima Y, Chotirungsan T, Kawada S, Tsutsui Y, Yoshihara M, Suzuki T, Nagoya K, Magara J, Inoue M. Inhibition of Water-Evoked Swallowing During Noxious Mechanical Stimulation of Tongue in Anesthetized Rats. Dysphagia 2022; 38:965-972. [PMID: 36127446 DOI: 10.1007/s00455-022-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Dysphagia is sometimes accompanied by pain. Because orofacial structures subserve mastication and swallowing, orofacial pain might impair both functions. Tongue biting can occur not only accidentally while eating but also in some pathological conditions. However, it remains unclear whether noxious mechanical stimulation of the tongue affects swallowing. To explore this question, we evaluated the effects of lingual pinch stimulation on the initiation of swallowing evoked by distilled water (DW) infusion with a flow rate of 5.0 µL/s for 20 s into the pharyngolaryngeal region in anesthetized rats. The swallowing reflex was identified by electromyographic (EMG) bursts in the suprahyoid muscles which include the anterior belly of the digastric muscle, mylohyoid and geniohyoid muscles, and laryngeal elevation by visual inspection. The number of DW-evoked swallows during pinch stimulation was significantly smaller than that in a control condition or during pressure stimulation. The onset latency of the first swallow during pinch stimulation was significantly longer than that in the control condition. DW-evoked swallowing was almost abolished following bilateral transection of the superior laryngeal nerve (SLN) compared with the control condition, suggesting that the SLN plays a crucial role in the initiation of DW-evoked swallowing. Finally, electrophysiological data indicated that some SLN-responsive neurons in the nucleus tractus solitarii (nTS) exhibited delayed latency from a single SLN stimulation during lingual pinch stimulation. These results suggest that noxious mechanical stimulation of the tongue inhibits the initiation of swallowing and modulates neuronal activity in the nTS.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan.
| | - Yuta Nakajima
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Titi Chotirungsan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Satomi Kawada
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuhei Tsutsui
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
8
|
Bartonjo JJ, Lundy RF. Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem. Chem Senses 2022; 47:6581704. [PMID: 35522083 PMCID: PMC9074687 DOI: 10.1093/chemse/bjac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatostatin neurons in the central nucleus of the amygdala (CeA/Sst) can be parsed into subpopulations that project either to the nucleus of the solitary tract (NST) or parabrachial nucleus (PBN). We have shown recently that inhibition of CeA/Sst-to-NST neurons increased the ingestion of a normally aversive taste stimulus, quinine HCl (QHCl). Because the CeA innervates other forebrain areas such as the lateral hypothalamus (LH) that also sends axonal projections to the NST, the effects on QHCl intake could be, in part, the result of CeA modulation of LH-to-NST neurons. To address these issues, the present study investigated whether CeA/Sst-to-NST neurons are distinct from CeA/Sst-to-LH neurons. For comparison purposes, additional experiments assessed divergent innervation of the LH by CeA/Sst-to-PBN neurons. In Sst-cre mice, two different retrograde transported flox viruses were injected into the NST and the ipsilateral LH or PBN and ipsilateral LH. The results showed that 90% or more of retrograde-labeled CeA/Sst neurons project either to the LH, NST, or PBN. Separate populations of CeA/Sst neurons projecting to these different regions suggest a highly heterogeneous population in terms of synaptic target and likely function.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Bartonjo JJ, Lundy RF. Distinct Populations of Amygdala Somatostatin-Expressing Neurons Project to the Nucleus of the Solitary Tract and Parabrachial Nucleus. Chem Senses 2021; 45:687-698. [PMID: 32940663 DOI: 10.1093/chemse/bjaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rostral forebrain structures, such as the central nucleus of the amygdala (CeA), send projections to the nucleus of the solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence might originate from a shared or distinct population of neurons marked by expression of somatostatin (Sst). In Sst-reporter mice, the retrograde tracers' cholera toxin subunit B AlexaFluor-488 and -647 conjugates were injected into the taste-responsive regions of the NST and the ipsilateral PBN. In Sst-cre mice, the cre-dependent retrograde tracers' enhanced yellow fluorescent protein Herpes Simplex Virus (HSV) and mCherry fluorescent protein HSV were injected into the NST and the ipsilateral PBN. The results showed that ~40% of CeA-to-PBN neurons expressed Sst compared with ~ 23% of CeA-to-NST neurons. For both the CeA Sst-positive and -negative populations, the vast majority projected to the NST or PBN but not both nuclei. Thus, a subset of CeA-to-NST and CeA-to-PBN neurons are marked by Sst expression and are largely distinct from one another. Separate populations of CeA/Sst neurons projecting to the NST and PBN suggest that differential modulation of taste processing might, in part, rely on differences in local brainstem/forebrain synaptic connections.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
10
|
Constructing the rodent stereotaxic brain atlas: a survey. SCIENCE CHINA-LIFE SCIENCES 2021; 65:93-106. [PMID: 33860452 DOI: 10.1007/s11427-020-1911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
The stereotaxic brain atlas is a fundamental reference tool commonly used in the field of neuroscience. Here we provide a brief history of brain atlas development and clarify three key conceptual elements of stereotaxic brain atlasing: brain image, atlas, and stereotaxis. We also refine four technical indices for evaluating the construction of atlases: the quality of staining and labeling, the granularity of delineation, spatial resolution, and the precision of spatial location and orientation. Additionally, we discuss state-of-the-art technologies and their trends in the fields of image acquisition, stereotaxic coordinate construction, image processing, anatomical structure recognition, and publishing: the procedures of brain atlas illustration. We believe that the use of single-cell resolution and micron-level location precision will become a future trend in the study of the stereotaxic brain atlas, which will greatly benefit the development of neuroscience.
Collapse
|
11
|
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). J Comp Neurol 2021; 529:2558-2575. [PMID: 33458823 DOI: 10.1002/cne.25109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - McKenzie E Prillaman
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Elif N Keskinoz
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Yu T, Wilson CE, Stratford JM, Finger TE. Genetic Deletion of TrpV1 and TrpA1 Does Not Alter Avoidance of or Patterns of Brainstem Activation to Citric Acid in Mice. Chem Senses 2020; 45:573-579. [PMID: 32572463 DOI: 10.1093/chemse/bjaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure of the oral cavity to acidic solutions evokes not only a sensation of sour, but also of sharp or tangy. Acidic substances potentially stimulate both taste buds and acid-sensitive mucosal free nerve endings. Mice lacking taste function (P2X2/P2X3 double-KO mice) refuse acidic solutions similar to wildtype (WT) mice and intraoral infusion of acidic solutions in these KO animals evokes substantial c-Fos activity within orosensory trigeminal nuclei as well as of the nucleus of the solitary tract (nTS) (Stratford, Thompson, et al. 2017). This residual acid-evoked, non-taste activity includes areas that receive inputs from trigeminal and glossopharyngeal peptidergic (CGRP-containing) nerve fibers that express TrpA1 and TrpV1 both of which are activated by low pH. We compared avoidance responses in WT and TrpA1/V1 double-KO (TRPA1/V1Dbl-/-) mice in brief-access behavioral assay (lickometer) to 1, 3, 10, and 30 mM citric acid, along with 100 µM SC45647 and H2O. Both WT and TRPA1/V1Dbl-/- show similar avoidance, including to higher concentrations of citric acid (10 and 30 mM; pH 2.62 and pH 2.36, respectively), indicating that neither TrpA1 nor TrpV1 is necessary for the acid-avoidance behavior in animals with an intact taste system. Similarly, induction of c-Fos in the nTS and dorsomedial spinal trigeminal nucleus was similar in the WT and TRPA1/V1Dbl-/- animals. Taken together these results suggest non-TrpV1 and non-TrpA1 receptors underlie the residual responses to acids in mice lacking taste function.
Collapse
Affiliation(s)
- Tian Yu
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Courtney E Wilson
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M Stratford
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
Martin LJ, Lane AH, Samson KK, Sollars SI. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract. Neuroscience 2019; 402:66-77. [PMID: 30684590 DOI: 10.1016/j.neuroscience.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Neural insult during development results in recovery outcomes that vary dependent upon the system under investigation. Nerve regeneration does not occur if the rat gustatory chorda tympani nerve is sectioned (CTX) during neonatal (≤P10) development. It is unclear how chorda tympani soma and terminal fields are affected after neonatal CTX. The current study determined the impact of neonatal CTX on chorda tympani neurons and brainstem gustatory terminal fields. To assess terminal field volume in the nucleus of the solitary tract (NTS), rats received CTX at P5 or P10 followed by chorda tympani label, or glossopharyngeal (GL) and greater superficial petrosal (GSP) label as adults. In another group of animals, terminal field volumes and numbers of chorda tympani neurons in the geniculate ganglion (GG) were determined by labeling the chorda tympani with DiI at the time of CTX in neonatal (P5) and adult (P50) rats. There was a greater loss of chorda tympani neurons following P5 CTX compared to adult denervation. Chorda tympani terminal field volume was dramatically reduced 50 days after P5 or P10 CTX. Lack of nerve regeneration after neonatal CTX is not caused by ganglion cell death alone, as approximately 30% of chorda tympani neurons survived into adulthood. Although the total field volume of intact gustatory nerves was not altered, the GSP volume and GSP-GL overlap increased in the dorsal NTS after CTX at P5, but not P10, demonstrating age-dependent plasticity. Our findings indicate that the developing gustatory system is highly plastic and simultaneously vulnerable to injury.
Collapse
Affiliation(s)
- Louis J Martin
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Amy H Lane
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Kaeli K Samson
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
14
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
15
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Töle J, Stolzenburg A, Tyree SM, Stähler F, Meyerhof W. Tastant-Evoked Arc Expression in the Nucleus of the Solitary Tract and Nodose/Petrosal Ganglion of the Mouse Is Specific for Bitter Compounds. Chem Senses 2018. [PMID: 29514200 DOI: 10.1093/chemse/bjy017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite long and intense research, some fundamental questions regarding representation of taste information in the brain still remain unanswered. This might in part be due to shortcomings of the established methods that limit the researcher either to thorough characterization of few elements or to analyze the response of the entirety of neurons to only one stimulus. To overcome these restrictions, we evaluate the use of the immediate early gene Arc as a neuronal activity marker in the early neural structures of the taste pathway, the nodose/petrosal ganglion (NPG) and the nucleus of the solitary tract (NTS). Responses of NPG and NTS neurons were limited to substances that taste bitter to humans and are avoided by mice. Arc-expressing cells were concentrated in the rostromedial part of the dorsal NTS suggesting a role in gustatory processing. The use of Arc as a neuronal activity marker has several advantages, primarily the possibility to analyze the response of large numbers of neurons while using more than one stimulus makes Arc an interesting new tool for research in the early stages of taste processing.
Collapse
Affiliation(s)
- Jonas Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | | | | | | | | |
Collapse
|
17
|
Gaillard D, Bowles SG, Salcedo E, Xu M, Millar SE, Barlow LA. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genet 2017; 13:e1006990. [PMID: 28846687 PMCID: PMC5591015 DOI: 10.1371/journal.pgen.1006990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/08/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. By remaining relatively constant throughout adult life, the sense of taste helps keep the body healthy. However, taste perception can be disrupted by various environmental factors, including cancer therapies. Here, we show that Wnt/β-catenin signaling, a pathway known to control normal tissue maintenance and associated with the development of cancers, is required for taste cell renewal and behavioral taste sensitivity in mice. Our findings are significant as they suggest that chemotherapies targeting the Wnt pathway in cancerous tissues may cause taste dysfunction and further diminish the quality of life of patients.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Spencer G. Bowles
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ernesto Salcedo
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mingang Xu
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Linda A. Barlow
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood. J Neurosci 2017; 37:7619-7630. [PMID: 28676575 DOI: 10.1523/jneurosci.3838-16.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 01/08/2023] Open
Abstract
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience.SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits.
Collapse
|
19
|
Lemon CH. Modulation of taste processing by temperature. Am J Physiol Regul Integr Comp Physiol 2017; 313:R305-R321. [PMID: 28794101 DOI: 10.1152/ajpregu.00089.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/02/2023]
Abstract
Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation," can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared with concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermogustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation.
Collapse
|
20
|
Castillo-Azofeifa D, Losacco JT, Salcedo E, Golden EJ, Finger TE, Barlow LA. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development 2017; 144:3054-3065. [PMID: 28743797 DOI: 10.1242/dev.150342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/13/2017] [Indexed: 01/10/2023]
Abstract
The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin T Losacco
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erin J Golden
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas E Finger
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA .,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Stratford JM, Larson ED, Yang R, Salcedo E, Finger TE. 5-HT 3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste? J Comp Neurol 2017; 525:2358-2375. [PMID: 28316078 DOI: 10.1002/cne.24209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022]
Abstract
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.
Collapse
Affiliation(s)
- J M Stratford
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E D Larson
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - R Yang
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - T E Finger
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
22
|
Stratford JM, Thompson JA, Finger TE. Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice. J Comp Neurol 2016; 525:271-290. [PMID: 27292295 DOI: 10.1002/cne.24059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
Sensory inputs from the oropharynx terminate in both the trigeminal brainstem complex and the rostral part of the nucleus of the solitary tract (nTS). Taste information is conveyed via the facial and glossopharyngeal nerves, while general mucosal innervation is carried by the trigeminal and glossopharyngeal nerves. In contrast, the caudal nTS receives general visceral information largely from the vagus nerve. Although the caudal nTS shows clear morphological and molecularly delimited subdivisions, the rostral part does not. Thus, linking taste-induced patterns of activity to morphological subdivisions in the nTS is challenging. To test whether molecularly defined features of the rostral nTS correlate with patterns of taste-induced activity, we combined immunohistochemistry for markers of various visceral afferent and efferent systems with c-Fos-based activity maps generated by stimulation with a sour tastant, 30 mM citric acid. We further dissociated taste-related activity from activity arising from acid-sensitive general mucosal innervation by comparing acid-evoked c-Fos in wild-type and "taste blind" P2X2 /P2X3 double knockout (P2X-dbl KO) mice. In wild-type mice, citric acid stimulation evoked significant c-Fos activation in the central part of the rostral nTS-activity that was largely absent in the P2X-dbl KO mice. P2X-dbl KO mice, like wild-type mice, did exhibit acid-induced c-Fos activity in the dorsomedial trigeminal brainstem nucleus situated laterally adjacent to the rostral nTS. This dorsomedial nucleus also showed substantial innervation by trigeminal nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP), a marker for polymodal nociceptors, suggesting that trigeminal general mucosal innervation carries information about acids in the oral cavity. J. Comp. Neurol. 525:271-290, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Stratford
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, 80045.,Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| |
Collapse
|
23
|
Breza JM, Travers SP. P2X2 Receptor Terminal Field Demarcates a "Transition Zone" for Gustatory and Mechanosensory Processing in the Mouse Nucleus Tractus Solitarius. Chem Senses 2016; 41:515-24. [PMID: 27131102 PMCID: PMC6276932 DOI: 10.1093/chemse/bjw055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Peripheral gustatory neurons express P2X2 purinergic receptors and terminate in the rostral portion of the nucleus tractus solitarius (rNTS), but a relationship between the P2X2 terminal field and taste evoked activity has not been established. Additionally, a portion of somatosensory neurons from the trigeminal nerve, which are devoid of P2X2 expression, also terminate in the lateral rNTS. We hypothesized that P2X2 receptor expression on afferent nerve endings could be used as an anatomical tool for segregating gustatory from mechanosensory responsive regions in the mouse rNTS. C57BL/6 mice were used to record extracellular activity from neurons within the rNTS and the laterally adjacent reticular formation and trigeminal nucleus. Histological reconstruction of electrolytic lesions indicated that gustatory activity coincided with electrode tracks that traversed through P2X2 terminal fields. Gustatory recordings made more rostral in the rNTS had receptive fields located in the anterior oral cavity (AO), whereas gustatory recordings made more caudal in the rNTS had receptive fields located in the posterior oral cavity (PO). Mechanosensory neurons with AO receptive fields were recorded near the lateral border of the P2X2 terminal field and became numerous on electrode tracks made lateral to the P2X2 terminal field. In contrast, mechanosensory responses with PO receptive fields were recorded within the P2X2 terminal field along with gustatory activity and transitioned to mechanosensory only outside the P2X2 terminal field. Collectively, our results indicate that the lateral border of the P2X2 terminal field, demarcates a faithful "transition zone," where AO responses transition from gustatory to mechanosensory.
Collapse
Affiliation(s)
- Joseph M Breza
- Department of Psychology, Eastern Michigan University, 341J Mark Jefferson Science Complex, Ypsilanti, MI 48197, USA and
| | - Susan P Travers
- Department of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Lemon CH, Kang Y, Li J. Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons. Chem Senses 2016; 41:457-71. [PMID: 26976122 PMCID: PMC4910675 DOI: 10.1093/chemse/bjw022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oral temperature is a component and modifier of taste perception. Both trigeminal (V) and taste-sensitive cells, including those in the nucleus of the solitary tract (NTS), can respond to oral temperature. However, functional associations in thermal sensitivity between V and gustatory neurons are poorly understood. To study this we recorded electrophysiological responses to oral stimulation with cool (9, 15, 25, 32, and 34 °C) and warm (40 and 45 °C) temperatures from medullary V (n = 45) and taste-sensitive NTS (n = 27) neurons in anesthetized mice. Results showed temperatures below 34 °C activated the majority of V neurons but only a minority of NTS units. V neurons displayed larger responses to cooling and responded to temperatures that poorly stimulated NTS cells. Multivariate analyses revealed different temperatures induced larger differences in responses across V compared with NTS neurons, indicating V pathways possess greater capacity to signal temperature. Conversely, responses to temperature in NTS units associated with gustatory tuning. Further analyses identified two types of cooling-sensitive V neurons oriented toward innocuous or noxious cooling. Multivariate analyses indicated the combined response of these cells afforded distinction among a broad range of cool temperatures, suggesting multiple types of V neurons work together to represent oral cooling.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Yi Kang
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Jinrong Li
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
25
|
Gonella S, Dimonte V. Potential effects of pleasant and cold stimuli on nausea and vomiting induced by disgusting tastes. J Neurosci Res 2016; 94:366-77. [PMID: 26896189 DOI: 10.1002/jnr.23724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
Several pharmacological agents have disgusting tastes that are perceived strongly in the back of the mouth and may trigger nausea and vomiting (NV), resulting in poor adherence to medication schedules and negative impacts on clinical outcomes. Pleasant stimuli and cold temperature lessen the disgusting stimuli, lowering NV through different mechanisms. A pleasant stimulus can mask an unpleasant one, presumably through lateral inhibitory connections in the local neuronal circuit. Similarly, temperature deeply influences taste perception because the response to bitter as well as to salty and sour has been found to assume a reversed U-shaped form, being reduced by cooling to 18°C and enhanced by warming to 30-37°C. This Review describes the mechanisms by which pleasant and cold stimuli may mask emetogenic disgusting stimuli and identifies the potential clinical applications of cooling for inhibiting objectionable drug-related gustatory reactions. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Gonella
- Department of Internal Medicine, AOU Città della Salute e della Scienza Turin, Turin, Italy
| | - Valerio Dimonte
- Department of Internal Medicine, AOU Città della Salute e della Scienza Turin, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Li J, Lemon CH. Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons. J Neurophysiol 2015; 113:2700-12. [PMID: 25673737 DOI: 10.1152/jn.00736.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/05/2015] [Indexed: 01/19/2023] Open
Abstract
The temperature of taste stimuli can modulate gustatory processing. Perceptual data indicate that the adapted temperature of oral epithelia also influences gustation, although little is known about the neural basis of this effect. Here, we electrophysiologically recorded orosensory responses (spikes) to 25°C (cool) and 35°C (warm) solutions of sucrose (0.1 and 0.3 M), NaCl (0.004, 0.1, and 0.3 M), and water from taste-sensitive neurons in the nucleus of the solitary tract in mice under varied thermal adaptation of oral epithelia. Conditions included presentation of taste stimuli isothermal to adaptation temperatures of 25°C (constant cooling) and 35°C (constant warming), delivery of 25°C stimuli following 35°C adaptation (relative cooling), and presentation of 35°C stimuli following 25°C adaptation (relative warming). Responses to sucrose in sucrose-oriented cells (n = 15) were enhanced under the constant and relative warming conditions compared with constant cooling, where contiguous cooling across adaptation and stimulus periods induced the lowest and longest latency responses to sucrose. Yet compared with constant warming, cooling sucrose following warm adaptation (relative cooling) only marginally reduced activity to 0.1 M sucrose and did not alter responses to 0.3 M sucrose. Thus, warmth adaptation counteracted the attenuation in sucrose activity associated with stimulus cooling. Analysis of sodium-oriented (n = 25) neurons revealed adaptation to cool water, and cooling taste solutions enhanced unit firing to 0.004 M (perithreshold) NaCl, whereas warmth adaptation and stimulus warming could facilitate activity to 0.3 M NaCl. The concentration dependence of this thermal effect may reflect a dual effect of temperature on the sodium reception mechanism that drives sodium-oriented cells.
Collapse
Affiliation(s)
- Jinrong Li
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
27
|
Holtz SL, Fu A, Loflin W, Corson JA, Erisir A. Morphology and connectivity of parabrachial and cortical inputs to gustatory thalamus in rats. J Comp Neurol 2015; 523:139-61. [PMID: 25186035 PMCID: PMC4232453 DOI: 10.1002/cne.23673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 11/07/2022]
Abstract
The ventroposterior medialis parvocellularis (VPMpc) nucleus of the thalamus, the thalamic relay nucleus for gustatory sensation, receives primary input from the parabrachial nucleus, and projects to the insular cortex. To reveal the unique properties of the gustatory thalamus in comparison with archetypical sensory relay nuclei, this study examines the morphology of synaptic circuitry in the VPMpc, focusing on parabrachiothalamic driver input and corticothalamic feedback. Anterogradely visualized parabrachiothalamic fibers in the VPMpc bear large swellings. At electron microscope resolution, parabrachiothalamic axons are myelinated and make large boutons, forming multiple asymmetric, adherent, and perforated synapses onto large-caliber dendrites and dendrite initial segments. Labeled boutons contain dense-core vesicles, and they resemble a population of terminals within the VPMpc containing calcitonin gene-related peptide. As is typical of primary inputs to other thalamic nuclei, parabrachiothalamic terminals are over five times larger than other inputs, while constituting only 2% of all synapses. Glomeruli and triadic arrangements, characteristic features of other sensory thalamic nuclei, are not encountered. As revealed by anterograde tracer injections into the insular cortex, corticothalamic projections in the VPMpc form a dense network of fine fibers bearing small boutons. Corticothalamic terminals within the VPMpc were also observed to synapse on cells that were retrogradely filled from the same injections. The results constitute an initial survey describing unique anatomical properties of the rodent gustatory thalamus.
Collapse
Affiliation(s)
- Stephen L. Holtz
- Department of Psychology, University of Virginia, Charlottesville VA 22904-4400, USA
| | - Anqi Fu
- Department of Psychology, University of Virginia, Charlottesville VA 22904-4400, USA
| | - Wyatt Loflin
- Department of Psychology, University of Virginia, Charlottesville VA 22904-4400, USA
| | - James A. Corson
- Department of Psychology, University of Virginia, Charlottesville VA 22904-4400, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville VA 22904-4400, USA
| |
Collapse
|
28
|
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 2014; 221:1125-37. [PMID: 25503820 DOI: 10.1007/s00429-014-0959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
29
|
Ganchrow D, Ganchrow JR, Cicchini V, Bartel DL, Kaufman D, Girard D, Whitehead MC. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol 2014; 522:1565-96. [PMID: 24151133 PMCID: PMC4090073 DOI: 10.1002/cne.23484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2-IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
King CT, Garcea M, Spector AC. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats. J Comp Neurol 2014; 522:2498-517. [PMID: 24477770 PMCID: PMC4157664 DOI: 10.1002/cne.23546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/12/2022]
Abstract
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation.
Collapse
Affiliation(s)
| | - Mircea Garcea
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee FL 32306
| |
Collapse
|
31
|
Corson JA, Erisir A. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach. J Comp Neurol 2014; 521:2907-26. [PMID: 23640852 DOI: 10.1002/cne.23357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Abstract
Physiological studies suggest convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), but anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is revisualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label, suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning.
Collapse
Affiliation(s)
- James A Corson
- Department of Psychology, University of Virginia, Charlottesville, Virginia, 22904, USA
| | | |
Collapse
|
32
|
Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion. J Neurosci 2014; 33:18368-80. [PMID: 24259562 DOI: 10.1523/jneurosci.1064-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.
Collapse
|
33
|
Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A. Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 2013; 1540:48-63. [DOI: 10.1016/j.brainres.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023]
|
34
|
Yokota T, Eguchi K, Hiraba K. Topographical representations of taste response characteristics in the rostral nucleus of the solitary tract in the rat. J Neurophysiol 2013; 111:182-96. [PMID: 24133228 DOI: 10.1152/jn.01031.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rostral nucleus of the solitary tract (rNST) is the first-order taste relay in rats. This study constructed topographical distributions of taste response characteristics (best-stimulus, response magnitude, and taste-tuning) from spike discharges of single neurons in the rNST. The rNST is divided into four subregions along the rostrocaudal (RC) axis, which include r1-r4. We explored single-neuron activity in r1-r3, using multibarreled glass microelectrodes. NaCl (N)-best neurons were localized to the rostral half of r1-r3, while HCl (H)-best and sucrose (S)-best neurons showed a tendency toward more caudal locations. NaCl and HCl (NH)-best neurons were distributed across r2-r3. The mean RC values and Mahalanobis distance indicated a significant difference between the distributions of N-best and NH-best neurons in which N-best neurons were located more rostrally. The region of large responses to NaCl (net response >5 spikes/s) overlapped with the distribution of N-best neurons. The region of large responses to HCl extended widely over r1-r3. The region of large responses to sucrose was in the medial part of r2. The excitatory region (>1 spike/s) for quinine overlapped with that for HCl. Neurons with sharp to moderate tuning were located primarily in r1-r2, while those with broad tuning were located in r2-r3. The robust responses to NaCl in r1-r2 primarily contributed to sharp to moderate taste-tuning. Neurons in r3 tended to have broad tuning, apparently due to small responses to both NaCl and HCl. Therefore, the rNST is spatially organized by neurons with distinct taste response characteristics, suggesting that these neurons serve different functional roles.
Collapse
Affiliation(s)
- T Yokota
- Department of Physiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | |
Collapse
|
35
|
Corson SL, Kim M, Mistretta CM, Bradley RM. Gustatory solitary tract development: a role for neuropilins. Neuroscience 2013; 252:35-44. [PMID: 23933306 DOI: 10.1016/j.neuroscience.2013.07.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 01/13/2023]
Abstract
The rostral nucleus of the solitary tract (rNST) receives orosensory information from taste bud cells in the tongue and palate via cranial nerves VII and IX. These nerves enter the brainstem, form the solitary tract (ST) and synapse with neurons in the rNST, which then relay incoming sensory information to other brain areas to process external gustatory stimuli. Factors that direct or regulate the trajectory of the developing ST are largely unknown. We used 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) to identify ST projections originating from cells in the geniculate ganglia of embryonic rats from embryonic day 14 through 18 (E14-E18). After identifying the ST fibers, immunolabeling for and protein expression analysis of the axon guidance molecules neuropilin-1 (Npn-1) and neuropilin-2 (Npn-2) and their binding partners, semaphorin-3A (Sema-3A) and semaphorin-3F (Sema-3F) were performed. The results detail the formation of ST projections into the gustatory brainstem and their relationship to developing rNST neurons. DiI-labeled ST fibers were present in the brainstem as early as E14. Npn-1 was expressed in the ST and in the trigeminal tract at E14, but levels of the protein declined through E18. The expression levels of the binding partner of Npn-1, Sema-3A, increased from E14 to E18. Npn-2 was expressed in the ST and, additionally, in radially oriented, tuft-like structures within the brainstem at E14. Expression levels of Npn-2 also declined through E18, in contrast to the expression levels of its binding partner, Sema-3F, which increased during this time period. For the first time, the time course and particular molecular components involved in development of the ST have been identified. These results indicate that the neuropilin and semaphorin families of axon guidance molecules are potential molecular participants in ST formation.
Collapse
Affiliation(s)
- Sara L Corson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
36
|
Kobayashi M, Cui Y, Sako T, Sasabe T, Mizoguchi N, Yamamoto K, Wada Y, Kataoka Y, Koshikawa N. Functional neuroimaging of aversive taste-related areas in the alert rat revealed by positron emission tomography. J Neurosci Res 2013; 91:1363-70. [DOI: 10.1002/jnr.23252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yilong Cui
- RIKEN Center for Molecular Imaging Science; Kobe; Japan
| | - Takeo Sako
- RIKEN Center for Molecular Imaging Science; Kobe; Japan
| | | | | | - Kiyofumi Yamamoto
- Department of Pharmacology; Nihon University School of Dentistry; Tokyo; Japan
| | - Yasuhiro Wada
- RIKEN Center for Molecular Imaging Science; Kobe; Japan
| | - Yosky Kataoka
- RIKEN Center for Molecular Imaging Science; Kobe; Japan
| | | |
Collapse
|
37
|
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 2013; 35:1225-46. [PMID: 23886820 DOI: 10.1016/j.clinthera.2013.06.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many active pharmaceutical ingredients taste bitter and thus are aversive to children as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dose forms. OBJECTIVE This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors as well as the cascade of events that leads to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. RESULTS Medicine often tastes bitter, and because children are more bitter-sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands-in animal models through human psychophysics or with "electronic tongues"-have limitations. CONCLUSIONS Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations.
Collapse
Affiliation(s)
- Julie A Mennella
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA.
| | | | | | | |
Collapse
|
38
|
Bron R, Yin L, Russo D, Furness JB. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol 2013; 521:2680-702. [DOI: 10.1002/cne.23309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/12/2012] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Romke Bron
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Lei Yin
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Domenico Russo
- Department of Veterinary Morphophysiology and Animal Production; University of Bologna; 40064 Ozzano Emilia; Bologna; Italy
| | - John B. Furness
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| |
Collapse
|
39
|
Abstract
Changes in oral temperature can influence taste perception, indicating overlap among mechanisms for taste and oral somesthesis. Medullary gustatory neurons can show cosensitivity to temperature, albeit how these cells process combined taste and thermal input is poorly understood. Here, we electrophysiologically recorded orosensory responses (spikes) from 39 taste-sensitive neurons in the nucleus tractus solitarii of anesthetized mice during oral delivery of tastants adjusted to innocuous cool (16 and 18°C), room (22°C, baseline), and warm (30 and 37°C) oral temperatures. Stimuli included (in mM) 100 sucrose, 30 NaCl, 3 HCl, 3 quinine, an umami mixture, and water. Although cooled water excited few cells, water warmed to 30 and 37°C significantly excited 33% and 64% of neurons, respectively. Warmth induced responses of comparable magnitude to room temperature tastants. Furthermore, warming taste solutions influenced the distribution of gustatory responses among neurons and increased (P < 0.05) neuronal breadth of tuning across taste qualities. The influence of warmth on response magnitude was stimulus specific. Across neurons, warming facilitated responses to sucrose and umami in a superadditive manner, as these responses exceeded (P < 0.05) the arithmetic sum of activity to warming alone and the taste stimulus tested at room temperature. Superadditive increases (P < 0.05) in responding were also noted in some cells for warmed HCl. Yet warming induced only simple additive or subtractive effects on responses to quinine and NaCl. Data show temperature is a parameter of gustatory processing, like taste quality and concentration, in medullary circuits for taste.
Collapse
Affiliation(s)
- David M Wilson
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
40
|
Corson JA, Bradley RM. Physiological and anatomical properties of intramedullary projection neurons in rat rostral nucleus of the solitary tract. J Neurophysiol 2013; 110:1130-43. [PMID: 23741045 DOI: 10.1152/jn.00167.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The rostral nucleus of the solitary tract (rNTS), the first-order relay of gustatory information, not only transmits sensory information to more rostral brain areas but also connects to various brain stem sites responsible for orofacial reflex activities. While much is known regarding ascending projections to the parabrachial nucleus, intramedullary projections to the reticular formation (which regulate oromotor reflexive behaviors) remain relatively unstudied. The present study examined the intrinsic firing properties of these neurons as well as their morphological properties and synaptic connectivity with primary sensory afferents. Using in vitro whole cell patch-clamp recording, we found that intramedullary projection neurons respond to depolarizing current injection with either tonic or bursting action potential trains and subsets of these groups of neurons express A-type potassium, H-like, and postinhibitory rebound currents. Approximately half of the intramedullary projection neurons tested received monosynaptic innervation from primary afferents, while the rest received polysynaptic innervation, indicating that at least a subpopulation of these neurons can be directly activated by incoming sensory information. Neuron morphological reconstructions revealed that many of these neurons possessed numerous dendritic spines and that neurons receiving monosynaptic primary afferent input have a greater spine density than those receiving polysynaptic primary afferent input. These results reveal that intramedullary projection neurons represent a heterogeneous class of rNTS neurons and, through both intrinsic voltage-gated ion channels and local circuit interactions, transform incoming gustatory information into signals governing oromotor reflexive behaviors.
Collapse
Affiliation(s)
- James A Corson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
41
|
Ieki T, Okada S, Aihara Y, Ohmoto M, Abe K, Yasuoka A, Misaka T. Transgenic labeling of higher order neuronal circuits linked to phospholipase C-β2-expressing taste bud cells in medaka fish. J Comp Neurol 2013; 521:1781-802. [DOI: 10.1002/cne.23256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/22/2012] [Accepted: 10/25/2012] [Indexed: 11/12/2022]
|
42
|
Wang S, Corson J, Hill D, Erisir A. Postnatal development of chorda tympani axons in the rat nucleus of the solitary tract. J Comp Neurol 2013; 520:3217-35. [PMID: 22430892 DOI: 10.1002/cne.23093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The chorda tympani nerve (CT), one of three nerves that convey gustatory information to the nucleus of the solitary tract (NTS), displays terminal field reorganization after postnatal day 15 in the rat. Aiming to gain insight into mechanisms of this phenomenon, CT axon projection field and terminal morphology in NTS subdivisions were examined using tract tracing, light microscopy, and immunoelectron microscopy at four postnatal ages: P15, P25, P35, and adult. The CT axons that innervated NTS rostrolateral subdivision both in the adult and in P15 rats were morphologically distinct from those that innervated the rostrocentral, gustatory subdivision. In both subdivisions, CT terminals reached morphological maturity before P15. Rostrolateral, but not rostrocentral axons, went through substantial axonal branch elimination after P15. Rostrocentral CT synapses, however, redistribute onto postsynaptic targets in the following weeks. CT terminal preference for GABAergic postsynaptic targets was drastically reduced after P15. Furthermore, CT synapses became a smaller component of the total synaptic input to the rostrocentral NTS after P35. The results underlined that CT axons in rostrocentral and rostrolateral subdivisions represent two distinct populations of CT input, displaying different morphological properties and structural reorganization mechanisms during postnatal development.
Collapse
Affiliation(s)
- Siting Wang
- University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
43
|
Orbicularis oculi muscle activation during swallowing in humans. Exp Brain Res 2012; 224:79-91. [DOI: 10.1007/s00221-012-3290-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/25/2012] [Indexed: 12/14/2022]
|
44
|
Reddaway RB, Davidow AW, Deal SL, Hill DL. Impact of chorda tympani nerve injury on cell survival, axon maintenance, and morphology of the chorda tympani nerve terminal field in the nucleus of the solitary tract. J Comp Neurol 2012; 520:2395-413. [PMID: 22237830 DOI: 10.1002/cne.23044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chorda tympani nerve transection (CTX) has been useful to study the relationship between nerve and taste buds in fungiform papillae. This work demonstrated that the morphological integrity of taste buds depends on their innervation. Considerable research focused on the effects of CTX on peripheral gustatory structures, but much less research has focused on the central effects. Here, we explored how CTX affects ganglion cell survival, maintenance of injured peripheral axons, and the chorda tympani nerve terminal field organization in the nucleus of the solitary tract (NTS). After CTX in adult rats, the chorda tympani nerve was labeled with biotinylated dextran amine at 3, 7, 14, 30, and 60 days post-CTX to allow visualization of the terminal field associated with peripheral processes. There was a significant and persistent reduction of the labeled chorda tympani nerve terminal field volume and density in the NTS following CTX. Compared with controls, the volume of the labeled terminal field was not altered at 3 or 7 days post-CTX; however, it was significantly reduced by 44% and by 63% at 30 and 60 days post-CTX, respectively. Changes in the density of labeled terminal field in the NTS paralleled the terminal field volume results. The dramatic decrease in labeled terminal field size post-CTX cannot be explained by a loss of geniculate ganglion neurons or degeneration of central axons. Instead, the function and/or maintenance of the peripheral axonal process appear to be affected. These new results have implications for long-term functional and behavioral alterations.
Collapse
Affiliation(s)
- Rebecca B Reddaway
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
45
|
LaVinka PC, Park TJ. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat. PLoS One 2012; 7:e45060. [PMID: 23028761 PMCID: PMC3444467 DOI: 10.1371/journal.pone.0045060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
Abstract
Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%), and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%), naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO2.
Collapse
Affiliation(s)
- Pamela Colleen LaVinka
- Department of Biological Sciences and the Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Thomas J. Park
- Department of Biological Sciences and the Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|