1
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
2
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
4
|
Interhemispheric Callosal Projections Sharpen Frequency Tuning and Enforce Response Fidelity in Primary Auditory Cortex. eNeuro 2020; 7:ENEURO.0256-20.2020. [PMID: 32769158 PMCID: PMC7438056 DOI: 10.1523/eneuro.0256-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
Sensory cortical areas receive glutamatergic callosal projections that link information processing between brain hemispheres. In primary auditory cortex (A1), ipsilateral principal cells from a particular tonotopic region project to neurons in matching frequency space of the contralateral cortex. However, the role of interhemispheric projections in shaping cortical responses to sound and frequency tuning in awake animals is unclear. Here, we use translaminar single-unit recordings and optogenetic approaches to probe how callosal inputs modulate spontaneous and tone-evoked activity in A1 of awake mice. Brief activation of callosal inputs drove either short-latency increases or decreases in firing of individual neurons. Across all cortical layers, the majority of responsive regular spiking (RS) cells received short-latency inhibition, whereas fast spiking (FS) cells were almost exclusively excited. Consistent with the callosal-evoked increases in FS cell activity in vivo, brain slice recordings confirmed that parvalbumin (PV)-expressing cells received stronger callosal input than pyramidal cells or other interneuron subtypes. Acute in vivo silencing of the contralateral cortex generally increased spontaneous firing across cortical layers and linearly transformed responses to pure tones via both divisive and additive operations. The net effect was a decrease in signal-to-noise ratio for evoked responses and a broadening of frequency tuning curves. Together, these results suggest that callosal input regulates both the salience and tuning sharpness of tone responses in A1 via PV cell-mediated feedforward inhibition.
Collapse
|
5
|
A Preliminary Investigation Report on Using Probabilistic Fiber Tractography to Track Human Auditory Pathways. World Neurosurg 2019; 130:e1-e8. [DOI: 10.1016/j.wneu.2019.03.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
|
6
|
Rock C, Zurita H, Lebby S, Wilson CJ, Apicella AJ. Cortical Circuits of Callosal GABAergic Neurons. Cereb Cortex 2019; 28:1154-1167. [PMID: 28174907 DOI: 10.1093/cercor/bhx025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit. Our investigation of this hypothesis takes advantage of viral tracing and optogenetics to determine the anatomical and electrophysiological properties of CC-Parv neurons of the mouse auditory, visual, and motor cortices. We found a direct inhibitory pathway made up of parvalbumin-expressing (Parv) neurons which connects corresponding cortical areas (CC-Parv neurons → contralateral cortex). Like other Parv cortical neurons, these neurons provide local inhibition onto nearby pyramidal neurons and receive thalamocortical input. These results demonstrate a previously unknown long-range inhibitory circuit arising from a genetically defined type of GABAergic neuron that is engaged in interhemispheric communication.
Collapse
Affiliation(s)
- Crystal Rock
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sharmon Lebby
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Charles J Wilson
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
7
|
Zurita H, Feyen PLC, Apicella AJ. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons. Front Cell Neurosci 2018; 12:53. [PMID: 29559891 PMCID: PMC5845545 DOI: 10.3389/fncel.2018.00053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K+ channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Paul L C Feyen
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Meng X, Winkowski DE, Kao JPY, Kanold PO. Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections. J Neurosci 2017; 37:10200-10214. [PMID: 28931571 PMCID: PMC5647773 DOI: 10.1523/jneurosci.1361-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
The cerebral cortex is subdivided into six layers based on morphological features. The supragranular layers 2/3 (L2/3) contain morphologically and genetically diverse populations of neurons, suggesting the existence of discrete classes of cells. In primates and carnivores L2/3 can be subdivided morphologically, but cytoarchitectonic divisions are less clear in rodents. Nevertheless, discrete classes of cells could exist based on their computational requirement, which might be linked to their associated functional microcircuits. Through in vitro slice recordings coupled with laser-scanning photostimulation we investigated whether L2/3 of male mouse auditory cortex contains discrete subpopulations of cells with specific functional microcircuits. We use hierarchical clustering on the laminar connection patterns to reveal the existence of multiple distinct classes of L2/3 neurons. The classes of L2/3 neurons are distinguished by the pattern of their laminar and columnar inputs from within A1 and their location within L2/3. Cells in superficial L2 show more extensive columnar integration than deeper L3 cells. Moreover, L3 cells receive more translaminar input from L4. In vivo imaging in awake mice revealed that L2 cells had higher bandwidth than L3 cells, consistent with the laminar differences in columnar integration. These results suggest that similar to higher mammals, rodent L2/3 is not a homogenous layer but contains several parallel microcircuits.SIGNIFICANCE STATEMENT Layer 2/3 of auditory cortex is functionally diverse. We investigated whether L2/3 cells form classes based on their functional connectivity. We used in vitro whole-cell patch-clamp recordings with laser-scanning photostimulation and performed unsupervised clustering on the resulting excitatory and inhibitory connection patterns. Cells within each class were located in different sublaminae. Superficial cells showed wider integration along the tonotopic axis and the amount of L4 input varied with sublaminar location. To identify whether sensory responses varied with sublaminar location, we performed in vivo Ca2+ imaging and found that L2 cells were less frequency-selective than L3 cells. Our results show that the diversity of receptive fields in L2/3 is likely due to diversity in the underlying functional circuits.
Collapse
Affiliation(s)
- Xiangying Meng
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| | - Daniel E Winkowski
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
9
|
Intracortical microstimulation differentially activates cortical layers based on stimulation depth. Brain Stimul 2017; 10:684-694. [DOI: 10.1016/j.brs.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
|
10
|
Butler BE, Chabot N, Lomber SG. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat. J Comp Neurol 2016; 524:2623-42. [PMID: 26850989 DOI: 10.1002/cne.23980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/11/2022]
Abstract
The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Blake E Butler
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada, N6A 5C2.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada, N6A 5C2.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Stephen G Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada, N6A 5C2.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Department of Psychology, University of Western Ontario, London, Ontario, Canada, N6A 5C2.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada, N6A 5B7.,National Centre for Audiology, University of Western Ontario, London, Ontario, Canada, N6G 1H1
| |
Collapse
|
11
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Carrasco A, Brown TA, Lomber SG. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns. PLoS One 2014; 9:e114550. [PMID: 25494365 PMCID: PMC4262427 DOI: 10.1371/journal.pone.0114550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns) that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus). Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones), complex (noise burst and frequency modulated sweeps), and ecologically relevant (con-specific vocalizations) acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency), irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity) and temporal (duration) acoustic variations.
Collapse
Affiliation(s)
- Andres Carrasco
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Trecia A. Brown
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Cha K, Zatorre RJ, Schönwiesner M. Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex. Cereb Cortex 2014; 26:211-24. [PMID: 25183885 DOI: 10.1093/cercor/bhu193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While functional connectivity in the human cortex has been increasingly studied, its relationship to cortical representation of sensory features has not been documented as much. We used functional magnetic resonance imaging to demonstrate that voxel-by-voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels in the human auditory cortex. Thus, FC was significantly higher for voxels with similar frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective FC, measured via the correlation of residual hemodynamic activity, was not explained by generic FC that is dependent on spatial distance over the cortex. This pattern remained even when FC was computed using residual activity taken from resting epochs. Further analysis showed that voxels in the core fields in the right hemisphere have a higher frequency selectivity in within-area FC than their counterpart in the left hemisphere, or than in the noncore-fields in the same hemisphere. Frequency-selective FC is consistent with previous findings of topographically organized FC in the human visual and motor cortices. The high degree of frequency selectivity in the right core area is in line with findings and theoretical proposals regarding the asymmetry of human auditory cortex for spectral processing.
Collapse
Affiliation(s)
- Kuwook Cha
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montréal Neurological Institute, McGill University, Montréal, QC, Canada H3A 2B4 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| | - Marc Schönwiesner
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada H2V 2S9 International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada H2V 4P3 Center for Research on Brain, Language and Music (CRBLM), Montréal, QC, Canada H3G 2A8
| |
Collapse
|
14
|
Hay YA, Andjelic S, Badr S, Lambolez B. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs. Brain Struct Funct 2014; 220:3497-512. [PMID: 25108310 DOI: 10.1007/s00429-014-0869-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal.
Collapse
Affiliation(s)
- Y Audrey Hay
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France.
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France.
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France.
| | - Sofija Andjelic
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Sammy Badr
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Bertrand Lambolez
- UM CR 18, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France.
- UMR 8246, Centre National de la Recherche Scientifique (CNRS), Paris, France.
- UMR-S 1130, Institut national de la Santé et de la Recherche Médicale (INSERM), Paris, France.
- UMR 8246, Neuroscience Paris Seine, Université Pierre et Marie Curie, 9 quai St Bernard case 16, 75005, Paris, France.
| |
Collapse
|
15
|
Carrasco A, Lomber SG. Influence of inter-field communication on neuronal response synchrony across auditory cortex. Hear Res 2013; 304:57-69. [DOI: 10.1016/j.heares.2013.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
16
|
Javad F, Warren JD, Micallef C, Thornton JS, Golay X, Yousry T, Mancini L. Auditory tracts identified with combined fMRI and diffusion tractography. Neuroimage 2013; 84:562-74. [PMID: 24051357 PMCID: PMC3898984 DOI: 10.1016/j.neuroimage.2013.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/16/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
The auditory tracts in the human brain connect the inferior colliculus (IC) and medial geniculate body (MGB) to various components of the auditory cortex (AC). While in non-human primates and in humans, the auditory system is differentiated in core, belt and parabelt areas, the correspondence between these areas and anatomical landmarks on the human superior temporal gyri is not straightforward, and at present not completely understood. However it is not controversial that there is a hierarchical organization of auditory stimuli processing in the auditory system. The aims of this study were to demonstrate that it is possible to non-invasively and robustly identify auditory projections between the auditory thalamus/brainstem and different functional levels of auditory analysis in the cortex of human subjects in vivo combining functional magnetic resonance imaging (fMRI) with diffusion MRI, and to investigate the possibility of differentiating between different components of the auditory pathways (e.g. projections to areas responsible for sound, pitch and melody processing). We hypothesized that the major limitation in the identification of the auditory pathways is the known problem of crossing fibres and addressed this issue acquiring DTI with b-values higher than commonly used and adopting a multi-fibre ball-and-stick analysis model combined with probabilistic tractography. Fourteen healthy subjects were studied. Auditory areas were localized functionally using an established hierarchical pitch processing fMRI paradigm. Together fMRI and diffusion MRI allowed the successful identification of tracts connecting IC with AC in 64 to 86% of hemispheres and left sound areas with homologous areas in the right hemisphere in 86% of hemispheres. The identified tracts corresponded closely with a three-dimensional stereotaxic atlas based on postmortem data. The findings have both neuroscientific and clinical implications for delineation of the human auditory system in vivo.
Collapse
Affiliation(s)
- Faiza Javad
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Carrasco A, Kok MA, Lomber SG. Effects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field. Cereb Cortex 2013; 25:84-96. [PMID: 23960202 DOI: 10.1093/cercor/bht205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections between auditory cortical fields. Consequently, the present investigation examines the impact of core auditory cortical field deactivation on response properties of contralateral anterior auditory field (AAF) neurons in the felis catus. Single-unit responses to simple and complex acoustic signals were measured across AAF before, during, and after individual and combined cooling deactivation of contralateral primary auditory cortex (A1) and AAF neurons. Data analyses revealed that on average: 1) interhemispheric projections from core auditory areas to contralateral AAF neurons are predominantly excitatory, 2) changes in response strength vary based on acoustic features, 3) A1 and AAF projections can modulate AAF activity differently, 4) decreases in response strength are not specific to particular cortical laminae, and 5) contralateral inputs modulate AAF neuronal response thresholds. Collectively, these observations demonstrate that A1 and AAF neurons predominantly modulate AAF response properties via excitatory projections.
Collapse
Affiliation(s)
- Andres Carrasco
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Melanie A Kok
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Stephen G Lomber
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| |
Collapse
|
18
|
Winer JA, Bui LA, Hong JH, Prieto JJ, Larue DT. GABAergic organization of the auditory cortex in the mustached bat (Pteronotus p. parnellii). Hear Res 2011; 274:105-20. [DOI: 10.1016/j.heares.2010.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
|
19
|
Oswald AMM, Reyes AD. Development of inhibitory timescales in auditory cortex. ACTA ACUST UNITED AC 2010; 21:1351-61. [PMID: 21068186 DOI: 10.1093/cercor/bhq214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The time course of inhibition plays an important role in cortical sensitivity, tuning, and temporal response properties. We investigated the development of L2/3 inhibitory circuitry between fast-spiking (FS) interneurons and pyramidal cells (PCs) in auditory thalamocortical slices from mice between postnatal day 10 (P10) and P29. We found that the maturation of the intrinsic and synaptic properties of both FS cells and their connected PCs influence the timescales of inhibition. FS cell firing rates increased with age owing to decreased membrane time constants, shorter afterhyperpolarizations, and narrower action potentials. Between FS-PC pairs, excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) changed with age. The latencies, rise, and peak times of the IPSPs, as well as the decay constants of both EPSPs and IPSPs decreased between P10 and P29. In addition, decreases in short-term depression at excitatory PC-FS synapses resulted in more sustained synaptic responses during repetitive stimulation. Finally, we show that during early development, the temporal properties that influence the recruitment of inhibition lag those of excitation. Taken together, our results suggest that the changes in the timescales of inhibitory recruitment coincide with the development of the tuning and temporal response properties of auditory cortical networks.
Collapse
|
20
|
Abstract
The mammalian neocortex mediates complex cognitive behaviors, such as sensory perception, decision making, and language. The evolutionary history of the cortex, and the cells and circuitry underlying similar capabilities in nonmammals, are poorly understood, however. Two distinct features of the mammalian neocortex are lamination and radially arrayed columns that form functional modules, characterized by defined neuronal types and unique intrinsic connections. The seeming inability to identify these characteristic features in nonmammalian forebrains with earlier methods has often led to the assumption of uniqueness of neocortical cells and circuits in mammals. Using contemporary methods, we demonstrate the existence of comparable columnar functional modules in laminated auditory telencephalon of an avian species (Gallus gallus). A highly sensitive tracer was placed into individual layers of the telencephalon within the cortical region that is similar to mammalian auditory cortex. Distribution of anterograde and retrograde transportable markers revealed extensive interconnections across layers and between neurons within narrow radial columns perpendicular to the laminae. This columnar organization was further confirmed by visualization of radially oriented axonal collaterals of individual intracellularly filled neurons. Common cell types in birds and mammals that provide the cellular substrate of columnar functional modules were identified. These findings indicate that laminar and columnar properties of the neocortex are not unique to mammals and may have evolved from cells and circuits found in more ancient vertebrates. Specific functional pathways in the brain can be analyzed in regard to their common phylogenetic origins, which introduces a previously underutilized level of analysis to components involved in higher cognitive functions.
Collapse
|
21
|
Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex. J Neurosci 2009; 29:10321-34. [PMID: 19692606 DOI: 10.1523/jneurosci.1703-09.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay between inhibition and excitation is at the core of cortical network activity. In many cortices, including auditory cortex (ACx), interactions between excitatory and inhibitory neurons generate synchronous network gamma oscillations (30-70 Hz). Here, we show that differences in the connection patterns and synaptic properties of excitatory-inhibitory microcircuits permit the spatial extent of network inputs to modulate the magnitude of gamma oscillations. Simultaneous multiple whole-cell recordings from connected fast-spiking interneurons and pyramidal cells in L2/3 of mouse ACx slices revealed that for intersomatic distances <50 microm, most inhibitory connections occurred in reciprocally connected (RC) pairs; at greater distances, inhibitory connections were equally likely in RC and nonreciprocally connected (nRC) pairs. Furthermore, the GABA(B)-mediated inhibition in RC pairs was weaker than in nRC pairs. Simulations with a network model that incorporated these features showed strong, gamma band oscillations only when the network inputs were confined to a small area. These findings suggest a novel mechanism by which oscillatory activity can be modulated by adjusting the spatial distribution of afferent input.
Collapse
|
22
|
Andjelic S, Gallopin T, Cauli B, Hill EL, Roux L, Badr S, Hu E, Tamás G, Lambolez B. Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. J Neurophysiol 2008; 101:641-54. [PMID: 19052106 DOI: 10.1152/jn.91094.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity.
Collapse
Affiliation(s)
- Sofija Andjelic
- NPA CNRS UMR 710, UPMC, 9 quai St Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The commissural projections between 13 areas of cat auditory cortex (AC) were studied using retrograde tracers. Areal and laminar origins were characterized as part of a larger study of thalamic input and cortical origins of projections to each area. Cholera toxin beta subunit (CTbeta) and cholera toxin beta subunit gold-conjugate (CTbetaG) were injected separately within an area or in different areas in an experiment. The areas were identified independently with SMI-32, which revealed differences in neurofilament immunoreactivity in layers III, V, and VI. Each area received convergent AC input from 3 to 6 (mean, 5) contralateral areas. Most of the projections (>75%) were homotopic and from topographically organized loci in the corresponding area. Heterotopic projections (>1 mm beyond the main homotopic projection) constituted approximately 25% of the input. Layers III and V contained >95% of the commissural neurons. Commissural projection neurons were clustered in all areas. Commissural divergence, assessed by double labeling, was less than 3% in each area. This sparse axonal branching is consistent with the essentially homotopic connectivity of the commissural system. The many heterotopic origins represent unexpected commissural influences converging on an area. Areas more dorsal on the cortical convexity have commissural projections originating in layers III and V; more ventral areas favor layer III at the expense of layer V, to its near-total exclusion in some instances. Some areas have almost entirely layer III origins (temporal cortex and area AII), whereas others have a predominantly layer V input (anterior auditory field) or dual contributions from layers III and V (the dorsal auditory zone). A topographic distribution of commissural cells of origin is consistent with the order observed in thalamocortical and corticocortical projections, and which characterizes all extrinsic projection systems (commissural, corticocortical, and thalamocortical) in all AC areas. Thus, laminar as well as areal differences in projection origin distinguish the auditory cortical commissural system.
Collapse
Affiliation(s)
- Charles C Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
24
|
Oswald AMM, Reyes AD. Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J Neurophysiol 2008; 99:2998-3008. [PMID: 18417631 DOI: 10.1152/jn.01160.2007] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the development of L2/3 pyramidal cell (PC) circuitry in juvenile mice from postnatal day 10 (P10) to P29. Using whole cell recordings in an in vitro thalamocortical slice preparation, we examined the connection architecture and intrinsic and synaptic properties of PCs. The excitatory connections between PCs were highly localized: the probability of connection between PCs declined with intersomatic distance from 0.18 to about 0.05 over 150 microm, but did not vary with age. However, the mean and variance of the intrinsic and synaptic properties of PCs changed dramatically between P10 and P29. The input resistance, membrane time constant, and resting membrane potential decreased, leading to reduced neural excitability in older animals. Likewise, there were age-dependent decreases in the amplitude and decay time of the excitatory postsynaptic potentials as well as short-term synaptic depression. Both the intrinsic and synaptic properties underwent a transitional period between P10 and P18 prior to reaching steady state at P19-P29. We show that these properties combine to produce age-related differential synaptic responses to low- and high-frequency synaptic input that may contribute to differences in auditory processing during development.
Collapse
Affiliation(s)
- Anne-Marie M Oswald
- Center for Neural Science, New York University, 4 Washington Place, Rm 809, New York, NY 10003, USA.
| | | |
Collapse
|
25
|
Atencio CA, Blake DT, Strata F, Cheung SW, Merzenich MM, Schreiner CE. Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey. J Neurophysiol 2007; 98:2182-95. [PMID: 17699695 DOI: 10.1152/jn.00394.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many communication sounds, such as New World monkey twitter calls, contain frequency-modulated (FM) sweeps. To determine how this prominent vocalization element is represented in the auditory cortex we examined neural responses to logarithmic FM sweep stimuli in the primary auditory cortex (AI) of two awake owl monkeys. Using an implanted array of microelectrodes we quantitatively characterized neuronal responses to FM sweeps and to random tone-pip stimuli. Tone-pip responses were used to construct spectrotemporal receptive fields (STRFs). Classification of FM sweep responses revealed few neurons with high direction and speed selectivity. Most neurons responded to sweeps in both directions and over a broad range of sweep speeds. Characteristic frequency estimates from FM responses were highly correlated with estimates from STRFs, although spectral receptive field bandwidth was consistently underestimated by FM stimuli. Predictions of FM direction selectivity and best speed from STRFs were significantly correlated with observed FM responses, although some systematic discrepancies existed. Last, the population distributions of FM responses in the awake owl monkey were similar to, although of longer temporal duration than, those in the anesthetized squirrel monkeys.
Collapse
Affiliation(s)
- Craig A Atencio
- Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143-0732, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
A synthesis of cat auditory cortex (AC) organization is presented in which the extrinsic and intrinsic connections interact to derive a unified profile of the auditory stream and use it to direct and modify cortical and subcortical information flow. Thus, the thalamocortical input provides essential sensory information about peripheral stimulus events, which AC redirects locally for feature extraction, and then conveys to parallel auditory, multisensory, premotor, limbic, and cognitive centers for further analysis. The corticofugal output influences areas as remote as the pons and the cochlear nucleus, structures whose effects upon AC are entirely indirect, and it has diverse roles in the transmission of information through the medial geniculate body and inferior colliculus. The distributed AC is thus construed as a functional network in which the auditory percept is assembled for subsequent redistribution in sensory, premotor, and cognitive streams contingent on the derived interpretation of the acoustic events. The confluence of auditory and multisensory streams likely precedes cognitive processing of sound. The distributed AC constitutes the largest and arguably the most complete representation of the auditory world. Many facets of this scheme may apply in rodent and primate AC as well. We propose that the distributed auditory cortex contributes to local processing regimes in regions as disparate as the frontal pole and the cochlear nucleus to construct the acoustic percept.
Collapse
Affiliation(s)
- Jeffery A Winer
- Division of Neurobiology, Department of Molecular and Cell Biology, Life Sciences Addition, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
27
|
Wunderlich JL, Cone-Wesson BK, Shepherd R. Maturation of the cortical auditory evoked potential in infants and young children. Hear Res 2006; 212:185-202. [PMID: 16459037 DOI: 10.1016/j.heares.2005.11.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/25/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to evaluate the maturation of the cortical auditory evoked potential (CAEP) in humans. The participants in this experiment were 10 newborns (<7 days), 19 toddlers (13-41 months), 20 children (4-6 years) and 9 adults (18-45 years). CAEPs were obtained in response to low (400 Hz) and high (3000 Hz) tones and to the word token /baed/, all presented at 60 dB HL, at a rate of 0.22 Hz. Latency and amplitude measures were made for CAEP components P1, N1, P2 and N2 as a function of participant age, stimulus type and electrode montage. CAEP component latencies were relatively stable from birth to 6 years, but adults demonstrated significantly shorter latencies compared to infants and children. Components P1 and N2 decreased in amplitude, while components N1 and P2 increased in amplitude from birth to adulthood. Words evoked significantly larger CAEPs in newborns compared to responses evoked by tones, but in other age groups the effects of stimulus type on component amplitudes and latencies were less consistent. There was evidence of immature tonotopic organisation of the generators of N1 when responses from infants and young children were compared to those of adults. The scalp distribution of components N1 and P2 was clearly different in newborns and toddlers compared to children and adults. In the younger groups, both N1 and P2 were uniformly distributed across the scalp but in children and adults these components showed more focal distributions, with evidence of response laterality increasing with maturity. The results of the present study describe, for the first time, CAEPs recorded from multiple scalp electrodes, for tones and speech stimuli, in infants and children from birth to 6 years of age. Frequency-related differences in component amplitude were apparent at all ages reflecting development of tonotopic organisation of the CAEP neural generators.
Collapse
Affiliation(s)
- Julia Louise Wunderlich
- Department of Otolaryngology, The University of Melbourne, 384-388 Albert Street, East Melbourne, 3002 Vic., Australia.
| | | | | |
Collapse
|
28
|
Godey B, Atencio CA, Bonham BH, Schreiner CE, Cheung SW. Functional Organization of Squirrel Monkey Primary Auditory Cortex: Responses to Frequency-Modulation Sweeps. J Neurophysiol 2005; 94:1299-311. [PMID: 16061492 DOI: 10.1152/jn.00950.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The squirrel monkey twitter call is an exemplar of a broad class of species-specific vocalizations that contain naturally voiced frequency-modulated (FM) sweeps. To investigate how this prominent communication call element is represented in primary auditory cortex (AI), neuronal receptive field properties to pure-tone and synthetic, logarithmically spaced FM-sweep stimuli in 3 barbiturate-anesthetized squirrel monkeys are studied. Responses to pure tones are assessed by using standard measures of frequency response areas, whereas responses to FM sweeps are classified according to direction selectivity, best speed, and speed tuning preferences. Most neuronal clusters respond to FM sweeps in both directions and over a range of FM speeds. Center frequencies calculated from the average of high and low trigger frequency edges of FM response profiles are highly correlated with pure-tone characteristic frequencies (CFs). However, bandwidth estimates are only weakly correlated with their pure-tone counterparts. CF and direction selectivity are negatively correlated. Best speed maps reveal idiosyncratically positioned spatial aggregation of similar values. In contrast, direction selectivity maps show unambiguous spatial organization. Neuronal clusters selective for upward-directed FM sweeps are located in ventral–caudal AI, where CFs range from 0.5 to 1 kHz. Combinations of pure-tone and FM response parameters form 2 significant factors to account for response variations. These results are interpreted in the context of earlier FM investigations and neuronal encoding of dynamic sounds.
Collapse
Affiliation(s)
- Benoit Godey
- Laboratoire IDM, UPRES-EA 3192, Université de Rennes 1, Rennes, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
Topographic maps are common constituents of the primary auditory, visual, and somatic sensory cortex. However, in most cortical areas, no such maps have yet been identified, posing a conceptual problem for theories of cortical function centered on topography. What principle guides the organization of these other areas? We investigated this issue in cat auditory cortex. The connectional topography of five tonotopic areas and eight non-tonotopic areas was assessed using retrograde tract tracing and quantified by three metrics: clustering, dispersion, and separation. Clustering measures the spatial density of labeled neurons, dispersion provides an index of their spread, and separation serves as a scaling metric. These parameters each show that all auditory cortical regions receive precise and equally topographic connections from thalamic, corticocortical, and commissural sources. This isotropic principle suggests a common substrate for coordinating communication across the cortex and may reflect common mechanisms related to the developmental patterning of connections. This unifying principle extends to auditory and prefrontal cortex, and perhaps to other neocortical areas.
Collapse
Affiliation(s)
- Charles C Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
30
|
Fabri M, Manzoni T. Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 2004; 123:557-66. [PMID: 14698762 DOI: 10.1016/j.neuroscience.2003.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of GABAergic callosally projecting neurons was analysed in the somatic sensory areas of cat and rat cerebral cortex by combining retrograde tracing of nerve cell bodies and glutamic acid decarboxylase (GAD) immunocytochemistry. A retrograde tracer (colloidal gold- labelled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase) was injected in the first or second somatic sensory area. Brain sections were processed for the simultaneous visualisation of the retrograde tracer and GAD immunoreactivity. In all animals, double-labelled neurons were found in the hemisphere contralateral to the injection site (double-labelled callosal neurons). Their proportion was similar in both species (0.8% of all retrogradely-labelled neurons in cat, 0.7% in rat). These results: 1) confirm the existence of a small proportion of GABAergic callosally projecting neurons in rat somatic sensory cortices; 2) indicate the presence of a small but significant proportion of GAD-positive callosally projecting neurons in cat somatic sensory cortices; and 3) show that the proportion of GAD-positive callosal neurons is similar in the two species.
Collapse
Affiliation(s)
- M Fabri
- Department of Neuroscience, Section of Human Physiology, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Torrette, Ancona, Italy.
| | | |
Collapse
|
31
|
Lessard N, Lepore F, Villemagne J, Lassonde M. Sound localization in callosal agenesis and early callosotomy subjects: brain reorganization and/or compensatory strategies. Brain 2002; 125:1039-53. [PMID: 11960894 DOI: 10.1093/brain/awf096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to evaluate the callosal involvement in sound localization, the present study examined the response accuracy of acallosal and early callosotomized subjects to monaural and binaural auditory targets presented in three-dimensional space. In these subjects, bilateral localization cues, such as interaural time and level differences, are integrated at the cortical and subcortical levels without the additional support of the callosal commissure. Because acallosal and early-callosotomized subjects have developed with this reduced source of binaural activation of cortical cells, they might have perfected their ability to use monaural sound localization cues. This hypothesis was tested by assessing localization performance under both binaural and monaural listening conditions. Five subjects with callosal agenesis, one callosotomized subject operated early in life and 19 control subjects were asked to localize broad-band noise bursts (BBNBs) of fixed intensity in the horizontal plane in an anechoic chamber. BBNBs were delivered through randomly selected loudspeakers. Two conditions were tested: (i) localization of a stationary sound source; and (ii) localization of a moving sound source. Listeners had to report the apparent stimulus location by pointing to its perceived position on a graduated perimeter. The results indicated that the acallosal subjects were less accurate than controls, but only in the binaural moving sound condition. More interestingly, in the monaural testing conditions, some of the acallosal subjects and the early-callosotomized subject performed significantly better than control subjects. This suggests that, because of the absence of the corpus callosum, these subjects compensate for their reduced access to cortically determined binaural cues by making more efficient use of monaural cues.
Collapse
|
32
|
Winer JA, Prieto JJ. Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 2001; 434:379-412. [PMID: 11343289 DOI: 10.1002/cne.1183] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cytoarchitectonic organization and the structure of layer V neuronal populations in cat primary auditory cortex (AI) were analyzed in Golgi, Nissl, immunocytochemical, and plastic-embedded preparations from mature specimens. The major cell types were characterized as a prelude to identifying their connections with the thalamus, midbrain, and cerebral cortex using axoplasmic transport methods. The goal was to describe the structure and connections of layer V neurons more fully. Layer V has three sublayers based on the types of neuron and their sublaminar projections. Four types of pyramidal and three kinds of nonpyramidal cells were present. Classic pyramidal cells had a long apical dendrite, robust basal arbors, and an axon with both local and corticofugal projections. Only the largest pyramidal cell apical dendrites reached the supragranular layers, and their somata were found mainly in layer Vb. Three types departed from the classic pattern; these were the star, fusiform, and inverted pyramidal neurons. Nonpyramidal cells ranged from large multipolar neurons with radiating dendrites, to Martinotti cells, with smooth dendrites and a primary trunk oriented toward the white matter. Many nonpyramidal cells were multipolar, of which three subtypes (large, medium, and small) were identified; bipolar and other types also were seen. Their axons formed local projections within layer V, often near pyramidal neurons. Several features distinguish layer V from other layers in AI. The largest pyramidal neurons were in layer V. Layer V neuronal diversity aligns it with layer VI (Prieto and Winer [1999] J. Comp. Neurol. 404:332--358), and it is consistent with the many connectional systems in layer V, each of which has specific sublaminar and neuronal origins. The infragranular layers are the source for several parallel descending systems. There were significant differences in somatic size among these projection neurons. This finding implies that diverse corticofugal roles in sensorimotor processing may require a correspondingly wide range of neuronal architecture.
Collapse
Affiliation(s)
- J A Winer
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
33
|
Abstract
Thalamocortical projections were studied in adult cats using biotinylated dextran amines, wheat germ agglutinin conjugated to horseradish peroxidase, and autoradiography with tritiated leucine and/or proline. The input from 7 architectonically defined nuclei to 14 auditory cortical fields was characterized qualitatively and quantitatively. The principal results were that 1) every thalamic nucleus projected to more than 1 field (range, 4-14 fields; mean, 7 fields); 2) only the projection from the ventral division to some primary fields (primary auditory cortex and posterior auditory cortex) had a periodic, clustered distribution, whereas the input from other divisions to nonprimary areas was continuous; 3) layers III-V received >85% of the total axonal profiles; 4) in most experiments, five or more layers were labeled; 5) the projections to nonprimary auditory areas had many laterally oriented axons; 6) the heaviest input to layer I in all experiments was usually in its upper half, suggesting a sublaminar arrangement; 7) the largest axonal trunks (up to 6 microm in diameter) arose from the medial division and ended in layer Ia, where they ran laterally for long distances; 8) there were three projection patterns: type 1 had its peak in layers III-IV with little input to layer I, and it arose from the ventral division and the dorsal superficial, dorsal, and suprageniculate nuclei of the dorsal division; type 2 had heavy labeling in layer I and less in layers III-IV, arising from the dorsal division nuclei primarily, especially the caudal dorsal and deep dorsal nuclei; and type 3 was a trimodal concentration in layers I, III-IV, and VI that originated chiefly in the medial division and had the lowest density of labeling; and 9) the quantitative profiles with the three methods were very similar. The results suggest that the subdivisions of the auditory thalamus have consistent patterns of laminar distribution to different cortical areas, that an average of five or more layers receive significant input in a specific area, that a given thalamic nucleus can influence areas as far as 20 mm apart, that the first information to arrive at the cortex may reach layer I by virtue of the giant axons, and that several laminar patterns of auditory thalamocortical projection exist. The view that the auditory thalamus (and perhaps other thalamic nuclei) serves mainly a relay function underestimates its many modes for influencing the cortex on a laminar basis.
Collapse
Affiliation(s)
- C L Huang
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
34
|
Richter K, Hess A, Scheich H. Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex. Brain Res 1999; 831:184-99. [PMID: 10411998 DOI: 10.1016/s0006-8993(99)01440-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cortical networks are under the tonic influence of inhibition which is mainly mediated by GABA. The state of inhibition of small neuronal populations in the auditory cortex (AC) field AI of gerbils was altered by local microinjection of GABA, of the GABA(A)-receptor agonist 4-piperidine-sulfonic acid (P4S) and the GABA(A)-receptor antagonists bicuculline methiodide (BMI) and SR-95531. In order to elucidate direct and transsynaptic effects of the alterations of inhibition produced by these substances we used the 2-fluoro-2-deoxy-D-[(14)C(U)] glucose (FDG) mapping method. The injection of GABA (10 mM) caused no significant changes in FDG labeling but P4S caused a marked decrease of local FDG uptake in a small region surrounding the injection site but in no other region. The injection of the GABA(A)-receptor antagonists caused massive increases of FDG uptake within the entire ipsilateral AC, whereas the contralateral AC was not significantly affected in spite of prominent callosal connections. However, disinhibited excitatory output from the ipsilateral AC is suggested by a strong increase in FDG labeling of the corticothalamic fiber tract and ipsilateral structures like medial geniculate nucleus, caudal striatum, and lateral amygdaloid nucleus and a structure at the caudoventral margin of the thalamic reticular nucleus, presumably the subgeniculate nucleus, a structure with hitherto unknown connections and function. No alteration of FDG uptake could be detected in the inferior colliculus, another main descending target structure of the AC. In summary, the effects resulting from microinjection of GABA(A)-receptor antagonists reflect a differential influence of the AC on its anatomically connected target regions. The findings demonstrate the potential of the method of focal application of neuroactive substances in combination with the FDG technique for mapping their transsynaptic influences which are hard to derive from anatomical tracing studies alone.
Collapse
Affiliation(s)
- K Richter
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, P.O. Box 1860, D-39008, Magdeburg, Germany
| | | | | |
Collapse
|
35
|
Abstract
The organization of layer VI in cat primary auditory cortex (AI) was studied in mature specimens. Golgi-impregnated neurons were classified on the basis of their dendritic and somatic form. Ipsilateral and contralateral projection neurons and the corticogeniculate cells of origin were labeled with retrograde tracers and their profiles were compared with the results from Golgi studies. Layer VI was divided into a superficial half (layer VIa) with many pyramidal neurons and a deeper part (layer VIb) that is dominated by horizontal cells. Nine types of neuron were identified; four classes had subvarieties. Classical pyramidal cells and star, fusiform, tangential, and inverted pyramidal cells occur. Nonpyramidal neurons were Martinotti, multipolar stellate, bipolar, and horizontal cells. This variety of neurons distinguished layer VI from other AI layers. Pyramidal neuron dendrites contributed to the vertical, modular organization in AI, although their apical processes did not project beyond layer IV. Their axons had vertical, intrinsic processes as well as corticofugal branches. Horizontal cell dendrites extended laterally up to 700 microm and could integrate thalamic input across wide expanses of the tonotopic domain. Connectional experiments confirmed the sublaminar arrangement seen in Nissl material. Commissural cells were concentrated in layer VIa, whereas corticocortical neurons were more numerous in layer VIb. Corticothalamic cells were distributed more equally. The cytological complexity and diverse connections of layer VI may relate to a possible role in cortical development. Layer VI contained most of the neuronal types found in other layers in AI, and these cells form many of the same intrinsic and corticofugal connections that neurons in other layers will assume in adulthood. Layer VI, thus, may play a fundamental ontogenetic role in the construction and early function of the cortex.
Collapse
Affiliation(s)
- J J Prieto
- Department of Histology, Institute of Neurosciences, University of Miguel Hernández, San Juan, Alicante, Spain.
| | | |
Collapse
|
36
|
Izumi M, Nakamura Y. The organization of the ipsilateral corticocortical projections of the middle sylvian gyrus (AII) in the cat cerebral cortex: an anterograde and retrograde tracing study. Brain Res Bull 1998; 47:141-9. [PMID: 9820731 DOI: 10.1016/s0361-9230(98)00043-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The primary auditory area and surrounding cortical areas including the secondary auditory area subserve auditory information processing. In this study, corticocortical ipsilateral connections of the secondary auditory area were investigated in the cat by injections of axonally transported tracers into this area. Retrogradely labeled cells and anterogradely labeled terminals were observed within the secondary auditory area itself, and the primary, posterior, and ventroposterior auditory areas, in the insular cortex and in the temporal auditory area. These labeled terminals appeared in patches or bands. In the ventroposterior auditory area, a transverse band of anterograde and retrograde labeling, which extended from the posterior ectosylvian sulcus to the surface of the posterior ectosylvian gyrus was observed. In addition, scattered labeling was detected in the posterior auditory area. Although different parts of the secondary auditory area were found to send axons to different zones within the temporal cortex, no precise topographical arrangement was detected. When two different tracers were injected into the secondary auditory area and the anterior auditory area, respectively, some terminal aggregates anterogradely labeled from these two areas converged within the posterior auditory area. The organization of these connections is discussed in relationship to the functional role of the auditory cortical areas.
Collapse
Affiliation(s)
- M Izumi
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
37
|
Abstract
Given the scarcity of data on the development of the cerebral cortex and its connections in man, four brains of human fetuses at 25, 26, 30, and 32 weeks postovulation were used to investigate the following: 1) the radial distribution of callosal neurons in the cingulate cortex at the immediate postmigratory period; 2) the existence of callosally projecting neurons in the cortical subplate; and 3) the dendritic morphology of developing callosal neurons. The carbocyanine dye (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) (DiI) was used as a fluorescent postmortem tracer for the identification and morphological description of callosal neurons, 4-6 months after the insertion of DiI crystals at the callosal midplane. Sixty-one completely labeled neurons were selected for microscopical analysis, drawn by use of a camera lucida and photographed. The main findings were the following: 1) the human cingulate cortex at 25-32 weeks postovulation contains callosally projecting neurons both in the cortical plate and in the subplate; 2) callosal cells in the plate are mostly spiny pyramids with somata distributed uniformly throughout the depth of the plate, irrespective of rostrocaudal position. They have well-differentiated basal dendrites and apical dendrites that consistently ramify within layer 1; 3) subplate callosal cells are smooth neurons of diverse dendritic morphology, distributed widely throughout the subplate depth. They were classified into four cell types according to the dendritic morphology: radially oriented, horizontally oriented, multipolars, and inverted pyramids. These findings extend to the human brain some of the evidence obtained in animals concerning the development of the cerebral cortex, especially those that are relevant to the formation of a transitory circuitry in the subplate.
Collapse
Affiliation(s)
- L C deAzevedo
- Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
38
|
Abstract
In the mature cerebral cortex the interhemispheric connections across the corpus callosum appear to be essentially completely excitatory on the basis of both immunocytochemical and electrophysiological studies. During late embryonic development, however, immunocytochemical staining reveals numerous GABA-positive fibres in the callosum, which later largely disappear. The origin of these fibres and whether they represent functional GABAergic neurons has not been established. In the present study we used a combination of retrograde labelling in vivo with electrophysiology and immunocytochemistry in cell culture to show that transiently at birth in rat pups a substantial number of transcallosal cortical cells are functional GABAergic neurons. Possible roles and fates for these neurons are discussed.
Collapse
Affiliation(s)
- F Kimura
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Kitzes LM, Hollrigel GS. Response properties of units in the posterior auditory field deprived of input from the ipsilateral primary auditory cortex. Hear Res 1996; 100:120-30. [PMID: 8922986 DOI: 10.1016/0378-5955(96)00103-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The influence of the ipsilateral primary auditory field (AI) on the response properties of neurons in the posterior auditory field (Field P) was examined in three cats anesthetized with sodium pentobarbital. Rate/level functions were obtained, by extracellular recording, from single units in Field P before (n = 38) and after (n = 50) subpial aspiration of AI. The ablations were primarily confined to the medial ectosylvian gyrus, although in one case extended into the high-frequency portion of the anterior auditory field. Comparisons between the behavior of units isolated before and after AI ablation failed to demonstrate any changes in the response properties of neurons in Field P attributable to the ablation. Nonmonotonic response profiles, first spike latency, variability in latency, threshold and maximal discharge rates of the units to acoustic stimuli were not significantly altered by the AI ablation. These results indicate that the basic response properties of neurons in Field P do not depend on input from the ipsilateral AI. This suggests that these properties are most likely determined by thalamic input or by circuitry within Field P.
Collapse
Affiliation(s)
- L M Kitzes
- Department of Anatomy and Neurobiology, University of California at Irvine 92717-1275, USA.
| | | |
Collapse
|
40
|
Gonchar YA, Johnson PB, Weinberg RJ. GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I. Brain Res 1995; 697:27-34. [PMID: 8593589 DOI: 10.1016/0006-8993(95)00746-d] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The callosal projection is traditionally believed to be exclusively excitatory in function. A new method combining lectin-conjugated colloidal gold for retrograde tracing with immunofluorescence for GABA was used to investigate this question. The large majority of neurons retrogradely labeled after injections of tracer into contralateral S-I were GABA-negative cells in layers II-VI. However, GABA-positive neurons projecting to contralateral S-I were also seen. The majority of double-labeled cells were only weakly labeled with tracer; they were located both in superficial and deep cortical layers and represented at least 1% of all retrogradely labeled neurons. Neurons double-labeled for both tracer and GABA in upper layers were found mainly within the central patch of callosally projecting neurons, whereas those in deep layers were scattered throughout contralateral cortex.
Collapse
Affiliation(s)
- Y A Gonchar
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
41
|
Conti F, Manzoni T. The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res 1994; 64:37-53. [PMID: 7840891 DOI: 10.1016/0166-4328(94)90117-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F Conti
- Istituto di Fisiologia Umana, Università di Ancona, Italy
| | | |
Collapse
|
42
|
Matsunami K, Kawashima T, Ueki S, Fujita M, Konishi T. Topography of commissural fibers in the corpus callosum of the cat: a study using WGA-HRP method. Neurosci Res 1994; 20:137-48. [PMID: 7528903 DOI: 10.1016/0168-0102(94)90031-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The topography of the commissural fibers in the corpus callosum (CC) of the cat was systematically investigated using the WGA-HRP method. WGA-HRP was injected into various parts of the cerebral cortex and locations of WGA-HRP-stained commissural fibers in the CC were examined. Commissural fibers were arranged in a topological fashion in the CC. Cortical areas rostral to the cruciate sulcus (CrS), corresponding to motor or premotor cortices, projected fibers into the genu of the CC, while fibers from the cortex caudal to the CrS passed through the CC slightly caudal to the genu. When WGA-HRP was injected into the lateral gyrus (LG), it was observed that fibers from the anterior LG passed through the anterior one-third of the CC, whereas those from the posterior LG passed through or near the splenium, and fibers from the middle LG passed between those from the anterior and posterior LG. Similarly, the suprasylvian gyrus (SSG) projected commissural fibers in the CC in a rostrocaudal topological manner. Fibers from the anterior SSG passed through the anterior one-third of the CC, and those from the middle SSG through the middle one-third of the CC and upper part of the splenium. Injection into the most posterior part of the middle SSG revealed fibers passing through the caudal end of the splenium. Callosal fibers from the anterior SSG were focused on in this study, because this area (area 2v) is considered one of the vestibular projection cortices and is an area of special interest to the authors. Callosal fibers from the anterior SSG were observed to pass through the anterior one-third of the body of the CC. When WGA-HRP was injected into auditory areas, fibers from the anterior and middle ectosylvian gyri (ESG) were observed to pass through the posterior one-third of the body of the CC or through the splenium, while fibers from the posterior ESG passed through the splenium. WGA-HRP was also injected into the cingulate gyrus (CiG). Fibers from the anterior CiG (area 24) passed through the anterior portion of the CC while those from the posterior CiG (area 23) passed through the posterior portion of the CC.
Collapse
Affiliation(s)
- K Matsunami
- Department of Neurophysiology, Gifu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
43
|
Lent R, Schmidt SL. The ontogenesis of the forebrain commissures and the determination of brain asymmetries. Prog Neurobiol 1993; 40:249-76. [PMID: 8430213 DOI: 10.1016/0301-0082(93)90024-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.
Collapse
Affiliation(s)
- R Lent
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
44
|
Hofstetter KM, Ehret G. The auditory cortex of the mouse: connections of the ultrasonic field. J Comp Neurol 1992; 323:370-86. [PMID: 1460109 DOI: 10.1002/cne.903230306] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cortical and subcortical connections of the ultrasonic field (UF) of the auditory cortex of the house mouse (Mus musculus) were studied by using retrograde and anterograde transport of horseradish peroxidase (HRP). Small amounts of HRP were locally injected into the electrophysiologically defined UF. Superficial (layer I-IV) and deep (layer IV-VI) injections were prepared. Superficial injections led to labelling of both cells (retrograde) and terminals (anterograde) in areas of the ipsilateral primary and secondary auditory cortex and in its dorsoposterior field, in an ipsilateral dorsal association area (patches of label), probably in ipsilateral secondary somatosensory cortex, in the contralateral homotopic UF, and in the ipsilateral medial geniculate body (MGBv, MGBd, and MGBm) and caudal posterior nucleus complex. Deep injections showed the same connectivities as superficial ones and, in addition, terminals in the very caudal caudatoputamen, in the nucleus limitans and the nucleus reticularis of the thalamus, in the rostral pole, the dorsomedial, and lateral nucleus of the inferior colliculus, in the stratum griseum intermediale of the superior colliculus, and in a pontine nucleus ventromedial of the lateral lemniscus. All these projections occurred only ipsilaterally. The majority of connections, except those with the nucleus limitans, superior colliculus and pontine nucleus, suggest that UF is part of the primary anditory cortex (AI) and/or of the anterior anditory field (AAF) of the auditory cortex. Since UF has no regular tonotopy, this has important implications for the functional role that AI/AAF can have in communication-sound analysis.
Collapse
Affiliation(s)
- K M Hofstetter
- Abteilung Vergleichende Neurobiologie, Universität Ulm, Federal Republic of Germany
| | | |
Collapse
|
45
|
Conti F, De Biasi S, Fabri M, Abdullah L, Manzoni T, Petrusz P. Substance P-containing pyramidal neurons in the cat somatic sensory cortex. J Comp Neurol 1992; 322:136-48. [PMID: 1385486 DOI: 10.1002/cne.903220111] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Light and electron microscopic immunocytochemical methods were used to verify the possibility that neocortical pyramidal neurons in the first somatic sensory cortex of cats contain substance P. At the light microscopic level, substance P-positive neurons accounted for about 3% of all cortical neurons, and the vast majority were nonpyramidal cells. However, 10% of substance P-positive neurons had a large conical cell body, a prominent apical dendrite directed toward the pia, and basal dendrites, thus suggesting they are pyramidal neurons. These neurons were in layers III and V. At the electron microscopic level, the majority of immunoreactive axon terminals formed symmetric synapses, but some substance P-positive axon terminals made asymmetric synapses. Labelled dendritic spines were also present. Combined retrograde transport-immunocytochemical experiments were also carried out to study whether substance P-positive neurons are projection neurons. Colloidal gold-labelled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase was injected either in the first somatic sensory cortex or in the dorsal column nuclei. In the somatic sensory cortex contralateral to the injection sites, a few substance P-positive neurons in layers III and V also contained black granules, indicative of retrograde transport. This indicates that some substance P-positive neurons project to cortical and subcortical targets. We have therefore identified a subpopulation of substance P-positive neurons that have most of the features of pyramidal neurons, are the probable source of immunoreactive axon terminals forming asymmetric synapses on dendritic spines, and project to the contralateral somatic sensory cortex and dorsal column nuclei. These characteristics fulfill the criteria required for classifying a cortical neuron as pyramidal.
Collapse
Affiliation(s)
- F Conti
- Institute of Human Physiology, University of Ancona, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Gonchar YA, Maiskii VA. Ultrastructural characteristics of callosal neurons in deep layers of cat primary auditory cortex (AI). NEUROPHYSIOLOGY+ 1992. [DOI: 10.1007/bf01052444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex. THE MAMMALIAN AUDITORY PATHWAY: NEUROANATOMY 1992. [DOI: 10.1007/978-1-4612-4416-5_6] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Hutson KA, Glendenning KK, Masterton RB. Acoustic chiasm. IV: Eight midbrain decussations of the auditory system in the cat. J Comp Neurol 1991; 312:105-31. [PMID: 1720792 DOI: 10.1002/cne.903120109] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conventional retrograde and orthograde axonal transport tract-tracing techniques were used in cats to explore the auditory decussations and commissures in the upper pons and midbrain. In all, 8 decussations differing either in origin or in contralateral termination were found. Three of the 8 decussations (from the dorsal nucleus of the lateral lemniscus to the contralateral dorsal nucleus of the lateral lemniscus, from the dorsal nucleus of the lateral lemniscus to the contralateral inferior colliculus, from the sagulum to the contralateral sagulum) reach their targets via the commissure of Probst. The remaining 5 decussations (from the inferior colliculus to the contralateral inferior colliculus or medial geniculate, from the intermediate nucleus of the lateral lemniscus to the contralateral medial geniculate, from the sagulum to the contralateral inferior colliculus or medial geniculate) reach their targets via the commissure of the inferior colliculus. The results also suggest that the commissure of Probst is not a general avenue for decussating auditory fibers of the lateral lemniscus but is instead a specific avenue only for fibers from the dorsal nucleus of the lateral lemniscus and sagulum. The results also show that, in the cat at least, the dorsal nucleus of the lateral lemniscus does not project beyond the inferior colliculus to either the superior colliculus or medial geniculate--the cells previously reported as doing so are probably those of the immediate neighbors of the dorsal nucleus, the intermediate nucleus of the lateral lemniscus and sagulum.
Collapse
Affiliation(s)
- K A Hutson
- Department of Psychology, Florida State University, Tallahassee 32306
| | | | | |
Collapse
|
49
|
Ultrastructural characteristics of layer III pyramidal neurons in the cat primary auditory cortex (Al). NEUROPHYSIOLOGY+ 1991. [DOI: 10.1007/bf01052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Peters A, Payne BR, Josephson K. Transcallosal non-pyramidal cell projections from visual cortex in the cat. J Comp Neurol 1990; 302:124-42. [PMID: 2086610 DOI: 10.1002/cne.903020110] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-pyramidal cells with transcallosal projections were identified in the area 17/18 border region of the cat by retrograde transport of horseradish peroxidase injected into border region of the opposite hemisphere. From several hundred neurons filled with a Golgi-like diaminobenzidine (DAB) reaction product, seven cells were identified by their radially oriented smooth dendrites as possible non-pyramidal cells. Following thin-sectioning and examination with the electron microscope, four of the neurons proved to be layer IV spiny stellate cells with incompletely filled dendritic spines, and two proved to be layer III pyramidal cells with an incompletely labelled apical dendrite and dendritic spines. The remaining neuron was a non-pyramidal cell whose essentially smooth dendrites were covered with synapses, and whose cell body formed both symmetric and asymmetric synapses with presynaptic terminals. To better assess how many non-pyramidal cells might be labelled, thin sections of the area 17/18 border were surveyed using material processed with tetramethylbenzidine (TMB), and another five labelled non-pyramidal cells with transcallosal projections were identified by the needle-like crystals of TMB reaction product they contained. During the study it became evident that both the DAB and TMB reaction products in the lightly labelled neurons tended to be associated with granules that are 0.5 microns or larger in diameter and that had the characteristics of lysosomes. These granules are also visible in the light microscope as dark puncta. The numbers of puncta in profiles of pyramidal and of non-pyramidal cells in layers II/III and IVa of the area 17/18 border region and in the control acallosal region of area 17 were counted and compared. These comparisons revealed that labelled transcallosally projecting non-pyramidal cells may constitute 10-32% of the non-pyramidal cell population at the area 17/18 border region. Similar values were also obtained for pyramidal cells in this region. Consequently, it is concluded that significant numbers of non-pyramidal cells have axons that project through the corpus callosum to the contralateral hemisphere.
Collapse
Affiliation(s)
- A Peters
- Department of Anatomy, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|