1
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
3
|
Thorne BN, Ellenbroek BA, Day DJ. The serotonin reuptake transporter modulates mitochondrial copy number and mitochondrial respiratory complex gene expression in the frontal cortex and cerebellum in a sexually dimorphic manner. J Neurosci Res 2022; 100:869-879. [PMID: 35043462 DOI: 10.1002/jnr.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric and neurodevelopmental disorders such as major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex conditions attributed to both genetic and environmental factors. There is a growing body of evidence showing that serotonergic signaling and mitochondrial dysfunction contribute to the pathophysiology of these disorders and are linked as signaling through specific serotonin (5-HT) receptors drives mitochondrial biogenesis. The serotonin transporter (SERT) is important in these disorders as it regulates synaptic serotonin and therapeutically is the target of selective serotonin reuptake inhibitors which are a major class of anti-depressant drug. Human allelic variants of the serotonin transporter-linked polymorphic region (5-HTTLPR) such as the S/S variant, are associated with reduced SERT expression and increased susceptibility for developing neuropsychiatric disorders. Using a rat model that is haploinsufficient for SERT and displays reduced SERT expression similar to the human S/S variant, we demonstrate that reduced SERT expression modulates mitochondrial copy number and expression of respiratory chain electron transfer components in the brain. In the frontal cortex, genotype-related trends were opposing for males and females, such that reduced SERT expression led to increased expression of the Complex I subunit mt-Nd1 in males but reduced expression in females. Our findings suggest that SERT expression and serotonergic signaling have a role in regulating mitochondrial biogenesis and adenosine triphosphate (ATP) production in the brain. We speculate that the sexual dimorphism in mitochondrial abundance and gene expression contributes to the sex bias found in the incidence of neuropsychiatric disorders such as MDD and ASD.
Collapse
Affiliation(s)
- Bryony N Thorne
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington Faculty of Science, Wellington, New Zealand
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Abstract
Visual processing is dynamically controlled by multiple neuromodulatory molecules that modify the responsiveness of neurons and the strength of the connections between them. In particular, modulatory control of processing in the lateral geniculate nucleus of the thalamus, V1, and V2 will alter the outcome of all subsequent processing of visual information, including the extent to and manner in which individual inputs contribute to perception and decision making and are stored in memory. This review addresses five small-molecule neuromodulators-acetylcholine, dopamine, serotonin, noradrenaline, and histamine-considering the structural basis for their action, and the effects of their release, in the early visual pathway of the macaque monkey. Traditionally, neuromodulators are studied in isolation and in discrete circuits; this review makes a case for considering the joint action of modulatory molecules and differences in modulatory effects across brain areas as a better means of understanding the diverse roles that these molecules serve.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
5
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
6
|
Schuman B, Dellal S, Prönneke A, Machold R, Rudy B. Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. Annu Rev Neurosci 2021; 44:221-252. [PMID: 33730511 DOI: 10.1146/annurev-neuro-100520-012117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.
Collapse
Affiliation(s)
- Benjamin Schuman
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Shlomo Dellal
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Alvar Prönneke
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Robert Machold
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Bernardo Rudy
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; .,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Uchikawa H, Fujii K, Shiohama T, Nakazato M, Shimizu E, Miyashita T, Shimojo N. Specific temperament in patients with nevoid basal cell carcinoma syndrome. Pediatr Int 2021; 63:177-182. [PMID: 32745364 DOI: 10.1111/ped.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nevoid basal cell carcinoma syndrome (NBCCS) is a neurocutaneous disease, characterized by tumorigenesis and developmental anomalies due to aberrant sonic hedgehog (Shh) signaling. Patients with NBCCS typically appear calm and carefree, suggesting that a specific personality in these patients may be associated with an enhanced hedgehog pathway. Our study aimed to determine the personality type in these patients. METHODS We enrolled 14 mentally normal patients with genetically confirmed NBCCS (seven males and seven females; mean age = 25.2 years) and 20 controls (10 males and 10 females; mean age = 27.9 years). The patients were assessed with the Japanese version of the Temperament and Character Inventory, based on the seven-dimensional model of temperament and character, and their clinical symptoms were evaluated. The amygdala volumes of six patients with NBCCS were measured using magnetic resonance imaging with image-processing software. RESULTS Patients with NBCCS scored significantly lower on harm avoidance (0.89) than controls (1.00; P = 0.0084). Moreover, patients with NBCCS and developmental malformations such as rib anomalies, who may have experienced Shh signaling enhancement from the prenatal period, scored significantly lower on harm avoidance (0.80 [P = 0.0031]). The left amygdala volume was also significantly reduced in patients with NBCCS (P = 0.0426). CONCLUSIONS Patients with NBCCS who experienced increased Shh signaling from the prenatal period showed significantly lower harm avoidance related to serotonin. The left amygdala volume was significantly reduced in these patients. Our results indicate that Shh signaling may influence the human personality.
Collapse
Affiliation(s)
- Hideki Uchikawa
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Pediatrics, Eastern Chiba Medical Center, Togane, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Michiko Nakazato
- Department of Psychiatry, International University of Health and Welfare, Narita, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Genetics, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
8
|
Wannemueller A, Forkmann T, Glaesmer H, Juckel G, Paashaus L, Rath D, Schönfelder A, Moser D, Kumsta R, Teismann T. The role of the 5-HTTLPR polymorphism in acquired capability for suicide. Suicide Life Threat Behav 2020; 50:1121-1126. [PMID: 32706152 DOI: 10.1111/sltb.12660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE According to the Interpersonal Psychological Theory of Suicide, capability for suicide comprises two dimensions: fearlessness about death and elevated pain tolerance. The short (S) allelic variant of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) has repeatedly been associated with more violent and lethal suicide methods and lethality of suicide attempts. The current study aimed to investigate whether 5-HTTLPR allelic variants are associated with fearlessness about death and pain tolerance/persistence and whether it moderates the relationship between childhood maltreatment and acquired capability for suicide. METHOD A cohort of 208 inpatients hospitalized due to a recent suicide attempt or severe suicidal ideation was genotyped for the 5-HTTLPR and assessed for childhood maltreatment. Subjective pain tolerance and fearlessness about death as well as objective pain persistence was assessed using a pressure algometer. RESULTS Fearlessness about death, pain tolerance, and pain persistence did not differ between 5-HTTLPR genotypes. However, there was a significant correlation between self-reported childhood maltreatment and fearlessness about death that emerged exclusively in homozygous S-allele carriers. CONCLUSION Results suggest that there are no "high-risk"-alleles that generally increase capability for suicide. However, in terms of future suicide-related behaviors exposure to childhood maltreatment events could exert a particularly negative influence on homozygous S-allele carriers by increasing their fearlessness about death.
Collapse
Affiliation(s)
- Andre Wannemueller
- Department of Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Forkmann
- Department of Clinical Psychology, University of Duisburg-Essen, Duisburg, Germany
| | - Heide Glaesmer
- Department of Medical Psychology and Medical Sociology, University of Leipzig, Leipzig, Germany
| | - Georg Juckel
- Department of Psychiatry, LWL-University Hospital, Ruhr-Universität Bochum, Bochum, Germany
| | - Laura Paashaus
- Department of Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Dajana Rath
- Institute of Medical Psychology and Medical Sociology, University Hospital of RWTH Aachen University, Aachen, Germany
| | - Antje Schönfelder
- Department of Medical Psychology and Medical Sociology, University of Leipzig, Leipzig, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Tobias Teismann
- Department of Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
9
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Licht CL, Mortensen EL, Hjordt LV, Stenbaek DS, Arentzen TE, Nørremølle A, Knudsen GM. Serotonin transporter gene (SLC6A4) variation and sensory processing sensitivity-Comparison with other anxiety-related temperamental dimensions. Mol Genet Genomic Med 2020; 8:e1352. [PMID: 32543106 PMCID: PMC7434600 DOI: 10.1002/mgg3.1352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background The short (s) allele of the 5‐HTTLPR polymorphism in the promoter region of the human serotonin transporter (5‐HTT) gene SLC6A4 has previously been associated with anxiety‐related personality dimensions. However, this relationship has not been confirmed in all studies and may be modified by environmental circumstances and/or psychiatric illness. This study examined whether the temperamental trait sensory processing sensitivity (SPS), characterized by increased responsivity to environmental stimuli, is related to 5‐HTTLPR/rs25531 genotype. Methods 5‐HTTLPR and rs25531 genotypes, level of SPS, self‐reported Revised NEO Personality Inventory (NEO‐PI‐R) and Temperament and Character Inventory (TCI) personality profiles, and symptoms of psychological distress (SCL‐90R Global Severity Index) were determined for 405 healthy volunteers. Results Sensory processing sensitivity was highly correlated with the anxiety‐related dimensions of the NEO‐PI‐R and the TCI models of personality, Neuroticism, and Harm Avoidance, respectively. However, the level of SPS was not associated with the combined 5‐HTTLPR and rs25531 s′/s′ genotype. Neuroticism and Harm Avoidance were also not associated with 5‐HTTLPR/rs25531 s′/s′ genotype. Correcting for symptoms of psychological distress had no effect on the relationships between personality and genotype. Conclusion The level of SPS was not associated with serotonin transporter gene variation. Further, combined 5‐HTTLPR and rs25531 genotype was not associated with other anxiety‐related dimensions.
Collapse
Affiliation(s)
- Cecilie L Licht
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark.,Unit of Medical Psychology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Erik L Mortensen
- Unit of Medical Psychology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Liv V Hjordt
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Dea S Stenbaek
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Tine E Arentzen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen O, Denmark
| |
Collapse
|
11
|
Mueller JC, Carrete M, Boerno S, Kuhl H, Tella JL, Kempenaers B. Genes acting in synapses and neuron projections are early targets of selection during urban colonization. Mol Ecol 2020; 29:3403-3412. [DOI: 10.1111/mec.15451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jakob C. Mueller
- Department of Behavioural Ecology & Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Martina Carrete
- Department of Conservation Biology Estación Biológica de Doñana – CSIC Sevilla Spain
- Department of Physical, Chemical and Natural Systems University Pablo de Olavide Sevilla Spain
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Berlin Germany
| | - Heiner Kuhl
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Berlin Germany
- Department of Ecophysiology and Aquaculture Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - José L. Tella
- Department of Conservation Biology Estación Biológica de Doñana – CSIC Sevilla Spain
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| |
Collapse
|
12
|
Geerts H, Spiros A. Learning from amyloid trials in Alzheimer's disease. A virtual patient analysis using a quantitative systems pharmacology approach. Alzheimers Dement 2020; 16:862-872. [PMID: 32255562 PMCID: PMC7983876 DOI: 10.1002/alz.12082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Many trials of amyloid-modulating agents fail to improve cognitive outcome in Alzheimer's disease despite substantial reduction of amyloid β levels. METHODS We applied a mechanism-based Quantitative Systems Pharmacology model exploring the pharmacodynamic interactions of apolipoprotein E (APOE), Catechol -O -methyl Transferase (COMTVal158Met), and 5-HT transporter (5-HTTLPR) rs25531 genotypes and aducanumab. RESULTS The model predicts large clinical variability. Anticipated placebo differences on Alzheimer's Disease Assessment Scale (ADAS)-COG in the aducanumab ENGAGE and EMERGE ranged from 0.77 worsening to 1.56 points improvement, depending on the genotype-comedication combination. 5-HTTLPR L/L subjects are found to be the most resilient. Virtual patient simulations suggest improvements over placebo between 4% and 20% at the 10 mg/kg dose, depending on the imbalance of the 5-HTTLPR genotype and exposure. In the Phase II PRIME trial, maximal anticipated placebo difference at 10 mg/kg ranges from 0.3 worsening to 5.3 points improvement. DISCUSSION These virtual patient simulations, once validated against clinical data, could lead to better informed future clinical trial designs.
Collapse
Affiliation(s)
- Hugo Geerts
- In-Silico Biosciences, Certara-QSP, Berwyn, Pennsylvania, USA
| | - Athan Spiros
- In-Silico Biosciences, Certara-QSP, Berwyn, Pennsylvania, USA
| |
Collapse
|
13
|
Luengo JM, Olivera ER. Catabolism of biogenic amines in Pseudomonas species. Environ Microbiol 2020; 22:1174-1192. [PMID: 31912965 DOI: 10.1111/1462-2920.14912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023]
Abstract
Biogenic amines (BAs; 2-phenylethylamine, tyramine, dopamine, epinephrine, norepinephrine, octopamine, histamine, tryptamine, serotonin, agmatine, cadaverine, putrescine, spermidine, spermine and certain aliphatic amines) are widely distributed organic molecules that play basic physiological functions in animals, plants and microorganisms. Pseudomonas species can grow in media containing different BAs as carbon and energy sources, a reason why these bacteria are excellent models for studying such catabolic pathways. In this review, we analyse most of the routes used by different species of Pseudomonas (P. putida, P. aeruginosa, P. entomophila and P. fluorescens) to degrade BAs. Analysis of these pathways has led to the identification of a huge number of genes, catabolic enzymes, transport systems and regulators, as well as to understanding of their hierarchy and functional evolution. Knowledge of these pathways has allowed the design and collection of genetically manipulated microbes useful for eliminating BAs from different sources, highlighting the biotechnological applications of these studies.
Collapse
Affiliation(s)
- José M Luengo
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, 24007, León, Spain
| | - Elías R Olivera
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, 24007, León, Spain
| |
Collapse
|
14
|
Caffino L, Verheij MM, Que L, Guo C, Homberg JR, Fumagalli F. Increased cocaine self-administration in rats lacking the serotonin transporter: a role for glutamatergic signaling in the habenula. Addict Biol 2019; 24:1167-1178. [PMID: 30144237 DOI: 10.1111/adb.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) and the habenula (Hb) contribute to motivational and emotional states such as depression and drug abuse. The dorsal raphe nucleus, where 5-HT neurons originate, and the Hb are anatomically and reciprocally interconnected. Evidence exists that 5-HT influences Hb glutamatergic transmission. Using serotonin transporter knockout (SERT-/- ) rats, which show depression-like behavior and increased cocaine intake, we investigated the effect of SERT reduction on expression of genes involved in glutamate neurotransmission under both baseline conditions as well as after short-access or long-access cocaine (ShA and LgA, respectively) intake. In cocaine-naïve animals, SERT removal led to reduced baseline Hb mRNA levels of critical determinants of glutamate transmission, such as SLC1A2, the main glutamate transporter and N-methyl-D-aspartate (Grin1, Grin2A and Grin2B) as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (Gria1 and Gria2) receptor subunits, with no changes in the scaffolding protein Dlg4. In response to ShA and LgA cocaine intake, SLC1A2 and Grin1 mRNA levels decreased in SERT+/+ rats to levels equal of those of SERT-/- rats. Our data reveal that increased extracellular levels of 5-HT modulate glutamate neurotransmission in the Hb, serving as critical neurobiological substrate for vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di Milano Italy
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
- Department of Molecular Animal Physiology, Nijmegen Center for Molecular Life SciencesRadboud University Nijmegen The Netherlands
| | - Lin Que
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Chao Guo
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di Milano Italy
| |
Collapse
|
15
|
Bryant RA. Post-traumatic stress disorder: a state-of-the-art review of evidence and challenges. World Psychiatry 2019; 18:259-269. [PMID: 31496089 PMCID: PMC6732680 DOI: 10.1002/wps.20656] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is arguably the most common psychiatric disorder to arise after exposure to a traumatic event. Since its formal introduction in the DSM-III in 1980, knowledge has grown significantly regarding its causes, maintaining mechanisms and treatments. Despite this increased understanding, however, the actual definition of the disorder remains controversial. The DSM-5 and ICD-11 define the disorder differently, reflecting disagreements in the field about whether the construct of PTSD should encompass a broad array of psychological manifestations that arise after trauma or should be focused more specifically on trauma memory phenomena. This controversy over clarifying the phenotype of PTSD has limited the capacity to identify biomarkers and specific mechanisms of traumatic stress. This review provides an up-to-date outline of the current definitions of PTSD, its known prevalence and risk factors, the main models to explain the disorder, and evidence-supported treatments. A major conclusion is that, although trauma-focused cognitive behavior therapy is the best-validated treatment for PTSD, it has stagnated over recent decades, and only two-thirds of PTSD patients respond adequately to this intervention. Moreover, most people with PTSD do not access evidence-based treatment, and this situation is much worse in low- and middle-income countries. Identifying processes that can overcome these major barriers to better management of people with PTSD remains an outstanding challenge.
Collapse
|
16
|
Rogers J, Chen F, Stanic D, Farzana F, Li S, Zeleznikow-Johnston AM, Nithianantharajah J, Churilov L, Adlard PA, Lanfumey L, Hannan AJ, Renoir T. Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene. Br J Pharmacol 2019; 176:3279-3296. [PMID: 31167040 DOI: 10.1111/bph.14760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Exercise is known to improve cognitive function, but the exact synaptic and cellular mechanisms remain unclear. We investigated the potential role of the serotonin (5-HT) transporter (SERT) in mediating these effects. EXPERIMENTAL APPROACH Hippocampal long-term potentiation (LTP) and neurogenesis were measured in standard-housed and exercising (wheel running) wild-type (WT) and SERT heterozygous (HET) mice. We also assessed hippocampal-dependent cognition using the Morris water maze (MWM) and a spatial pattern separation touchscreen task. KEY RESULTS SERT HET mice had impaired hippocampal LTP regardless of the housing conditions. Exercise increased hippocampal neurogenesis in WT mice. However, this was not observed in SERT HET animals, even though both genotypes used the running wheels to a similar extent. We also found that standard-housed SERT HET mice displayed altered cognitive flexibility than WT littermate controls in the MWM reversal learning task. However, SERT HET mice no longer exhibited this phenotype after exercise. Cognitive changes, specific to SERT HET mice in the exercise condition, were also revealed on the touchscreen spatial pattern separation task, especially when the cognitive pattern separation load was at its highest. CONCLUSIONS AND IMPLICATIONS Our study is the first evidence of reduced hippocampal LTP in SERT HET mice. We also show that functional SERT is required for exercise-induced increase in adult neurogenesis. Paradoxically, exercise had a negative impact on hippocampal-dependent cognitive tasks, especially in SERT HET mice. Taken together, our results suggest unique complex interactions between exercise and altered 5-HT homeostasis.
Collapse
Affiliation(s)
- Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Davor Stanic
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Farheen Farzana
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Lanfumey
- UMR S894, Université Paris Descartes, Paris, France.,Centre de Psychiatrie et Neurosciences, Inserm UMR 894, Paris, France
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Phi Van VD, Krause ET, Phi-Van L. Modulation of Fear and Arousal Behavior by Serotonin Transporter (5-HTT) Genotypes in Newly Hatched Chickens. Front Behav Neurosci 2018; 12:284. [PMID: 30524254 PMCID: PMC6256247 DOI: 10.3389/fnbeh.2018.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The serotonin transporter (5-HTT) plays a key role in regulating serotonergic transmission via removal of serotonin (5-hydroxytryptamine, 5-HT) from synaptic clefts. Alterations in 5-HTT expression and 5-HT transmission have been shown to cause changes to adult behavior including fear. The objective of the present study was to investigate the 5-HTT role in fear in birds at the very early stages of post-hatching life. Using an avoidance test with an elevated balance beam, which was based on depth perception and the respective fear of heights, we assessed fear-related avoidance behaviors of newly hatched chicks of the three functional 5-HTT genotypes W/W, W/D and D/D. Newly hatched chicks of the genotype D/D, which was linked to high 5-HTT expression, showed less intensive avoidance responses as measured by decreased latency to jump than W/W and W/D chicks. Further, significantly fewer D/D hens than W/W hens showed fear-like behavior that resembled a freezing response. Furthermore, in an arousal test the arousal reaction of the chicks in response to an acute short-term visual social deprivation in the home compartment was assessed 5 weeks after hatching, which also revealed that D/D chicks exhibited decreased arousal reaction, compared to W/W chicks. Thus, the results indicate that fear responses differ in D/D chicks in the early post-hatching periods, possibly due to the different expression of 5-HTT respectively 5-HT levels in this strain.
Collapse
Affiliation(s)
- Valerie D Phi Van
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Zürich, Switzerland
| | - E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut (FLI), Celle, Germany
| | - Loc Phi-Van
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut (FLI), Celle, Germany
| |
Collapse
|
18
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Ruthirakuhan M, Lanctôt KL, Di Scipio M, Ahmed M, Herrmann N. Biomarkers of agitation and aggression in Alzheimer's disease: A systematic review. Alzheimers Dement 2018; 14:1344-1376. [DOI: 10.1016/j.jalz.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Myuri Ruthirakuhan
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoONCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoONCanada
| | - Krista L. Lanctôt
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoONCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoONCanada
- Geriatric PsychiatrySunnybrook Health Sciences CentreTorontoONCanada
- Department of PsychiatryUniversity of TorontoTorontoONCanada
| | - Matteo Di Scipio
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoONCanada
| | - Mehnaz Ahmed
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoONCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoONCanada
| | - Nathan Herrmann
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoONCanada
- Geriatric PsychiatrySunnybrook Health Sciences CentreTorontoONCanada
- Department of PsychiatryUniversity of TorontoTorontoONCanada
| |
Collapse
|
20
|
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. J Neurosci 2017; 37:11390-11405. [PMID: 29042433 PMCID: PMC5700422 DOI: 10.1523/jneurosci.1339-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms.SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state.
Collapse
|
21
|
Oikonomidis L, Santangelo AM, Shiba Y, Clarke FH, Robbins TW, Roberts AC. A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey. Dev Neurobiol 2017; 77:328-353. [PMID: 27589556 PMCID: PMC5412688 DOI: 10.1002/dneu.22446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom-based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual- (trait anxiety and genetic variation in serotonin transporter) and circuit-based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 328-353, 2017.
Collapse
Affiliation(s)
- Lydia Oikonomidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - F Hannah Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| |
Collapse
|
22
|
Shimegi S, Kimura A, Sato A, Aoyama C, Mizuyama R, Tsunoda K, Ueda F, Araki S, Goya R, Sato H. Cholinergic and serotonergic modulation of visual information processing in monkey V1. ACTA ACUST UNITED AC 2016; 110:44-51. [PMID: 27619519 DOI: 10.1016/j.jphysparis.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Akihiro Kimura
- Department of Healthcare, Osaka Health Science University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Sato
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chisa Aoyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Mizuyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keisuke Tsunoda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuyuki Ueda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sera Araki
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoma Goya
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
23
|
McHugh SB, Barkus C, Lima J, Glover LR, Sharp T, Bannerman DM. SERT and uncertainty: serotonin transporter expression influences information processing biases for ambiguous aversive cues in mice. GENES BRAIN AND BEHAVIOR 2015; 14:330-6. [PMID: 25824641 PMCID: PMC4440341 DOI: 10.1111/gbb.12215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
The long allele variant of the serotonin transporter (SERT, 5-HTT) gene-linked polymorphic region (5-HTTLPR) is associated with higher levels of 5-HTT expression and reduced risk of developing affective disorders. However, little is known about the mechanisms underlying this protective effect. One hypothesis is that 5-HTT expression influences aversive information processing, with reduced negative cognitive bias present in those with higher 5-HTT expression. Here we investigated this hypothesis using genetically-modified mice and a novel aversive learning paradigm. Mice with high levels of 5-HTT expression (5-HTT over-expressing, 5-HTTOE mice) and wild-type mice were trained to discriminate between three distinct auditory cues: one cue predicted footshock on all trials (CS+); a second cue predicted the absence of footshock (CS−); and a third cue predicted footshock on 20% of trials (CS20%), and was therefore ambiguous. Wild-type mice exhibited equivalently high levels of fear to the CS+ and CS20% and minimal fear to the CS−. In contrast, 5-HTTOE mice exhibited high levels of fear to the CS+ but minimal fear to the CS− and the CS20%. This selective reduction in fear to ambiguous aversive cues suggests that increased 5-HTT expression reduces negative cognitive bias for stimuli with uncertain outcomes.
Collapse
Affiliation(s)
- S B McHugh
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Liu L, Li X, Song Y, Liu J. Serotonin transporter gene polymorphism (5-HTTLPR) influences trait anxiety by modulating the functional connectivity between the amygdala and insula in Han Chinese males. Hum Brain Mapp 2015; 36:2732-42. [PMID: 25833281 DOI: 10.1002/hbm.22803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/18/2014] [Accepted: 03/19/2015] [Indexed: 01/30/2023] Open
Abstract
A functional polymorphism (5-hydroxytryptamine transporter linked polymorphic region [5-HTTLPR]) in the promoter region of human serotonin transporter gene has been found to be associated with several dimensions of neuroticism and psychopathology, especially anxiety. However, the neural basis underlying the association between 5-HTTLPR and anxiety is less clear. Here, we explored how 5-HTTLPR influenced anxiety by modulating the spontaneous brain activities in Han Chinese. First, we found an association between 5-HTTLPR and anxiety only in the male and not in the female population, where male S/S homozygotes had a significantly higher level of anxiety than male L allele carriers. Then, we examined how 5-HTTLPR influenced anxiety at both regional and network levels in the brain at rest. At the regional level, we found a significantly higher fractional amplitude of low-frequency fluctuations in the amygdala in male S/S homozygotes relative to male L allele carriers. At the network level, male S/S homozygotes showed a weaker resting-state functional connectivity (RSFC) between the amygdala and various regions, including the insula, Heschl's gyrus, lateral occipital cortex, superior temporal gyrus, and hippocampus, and a stronger RSFC between the amygdala and various regions, including the supramariginal gyrus and middle frontal gyrus. However, at both levels, only was the amygdala-insula RSFC correlated with anxiety. Mediation analyses further revealed that the amygdala-insula RSFC mediated the association between 5-HTTLPR and anxiety. In short, our study provided the first empirical evidence that the amygdala-insula RSFC served as the neural basis underlying the association between 5-HTTLPR and anxiety, suggesting a potential neurogenetic susceptibility mechanism for anxiety.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ling Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueting Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jia Liu
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China.,School of psychology, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
25
|
Abstract
Neuroscientists are now discovering how hormones and brain chemicals shape social behavior, opening potential avenues for pharmacological manipulation of ethical values. Here, we review recent studies showing how altering brain chemistry can alter moral judgment and behavior, focusing in particular on the neuromodulator serotonin and its role in shaping values related to harm and fairness. We synthesize previous findings and consider the potential mechanisms through which serotonin could increase the aversion to harming others. We present a process model whereby serotonin influences social behavior by shifting social preferences in the positive direction, enhancing the value people place on others’ outcomes. This model may explain previous findings relating serotonin function to prosocial behavior, and makes new predictions regarding how serotonin may influence the neural computation of value in social contexts.
Collapse
Affiliation(s)
- Jenifer Z Siegel
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
26
|
Line SJ, Barkus C, Rawlings N, Jennings K, McHugh S, Sharp T, Bannerman DM. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur J Neurosci 2014; 40:3735-45. [PMID: 25283165 PMCID: PMC4737229 DOI: 10.1111/ejn.12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The 5‐hydroxytryptamine (5‐HT) transporter (5‐HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5‐HTT gene promoter is associated with reduced 5‐HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5‐HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5‐HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over‐express the 5‐HTT (5‐HTTOE mice). Compared with wild‐type mice, 5‐HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision‐making T‐maze task, 5‐HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild‐type mice. However, further inspection of the data revealed that 5‐HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5‐HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5‐HTT over‐expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5‐HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, The University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Altered visual perception in long-term ecstasy (MDMA) users. Psychopharmacology (Berl) 2013; 229:155-65. [PMID: 23609769 DOI: 10.1007/s00213-013-3094-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE The present study investigated the long-term consequences of ecstasy use on visual processes thought to reflect serotonergic functions in the occipital lobe. Evidence indicates that the main psychoactive ingredient in ecstasy (methylendioxymethamphetamine) causes long-term changes to the serotonin system in human users. Previous research has found that amphetamine-abstinent ecstasy users have disrupted visual processing in the occipital lobe which relies on serotonin, with researchers concluding that ecstasy broadens orientation tuning bandwidths. However, other processes may have accounted for these results. OBJECTIVES The aim of the present research was to determine if amphetamine-abstinent ecstasy users have changes in occipital lobe functioning, as revealed by two studies: a masking study that directly measured the width of orientation tuning bandwidths and a contour integration task that measured the strength of long-range connections in the visual cortex of drug users compared to controls. METHOD Participants were compared on the width of orientation tuning bandwidths (26 controls, 12 ecstasy users, 10 ecstasy + amphetamine users) and the strength of long-range connections (38 controls, 15 ecstasy user, 12 ecstasy + amphetamine users) in the occipital lobe. RESULTS Amphetamine-abstinent ecstasy users had significantly broader orientation tuning bandwidths than controls and significantly lower contour detection thresholds (CDTs), indicating worse performance on the task, than both controls and ecstasy + amphetamine users. CONCLUSION These results extend on previous research, which is consistent with the proposal that ecstasy may damage the serotonin system, resulting in behavioral changes on tests of visual perception processes which are thought to reflect serotonergic functions in the occipital lobe.
Collapse
|
28
|
Outhred T, Das P, Dobson-Stone C, Griffiths K, Felmingham KL, Bryant RA, Malhi G, Kemp AH. The functional epistasis of 5-HTTLPR and BDNF Val66Met on emotion processing: a preliminary study. Brain Behav 2012; 2:778-88. [PMID: 23170240 PMCID: PMC3500464 DOI: 10.1002/brb3.99] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/12/2012] [Indexed: 12/11/2022] Open
Abstract
An epistatic interaction of 5-HTTLPR and BDNF Val66Met polymorphisms has been implicated in the structure of rostral anterior cingulate cortex (rACC) and amygdala (AMY): key regions associated with emotion processing. However, a functional epistasis of 5-HTTLPR and BDNF Val66Met on overt emotion processing has yet to be determined. Twenty-eight healthy, Caucasian female participants provided saliva samples for genotyping and underwent functional magnetic resonance imaging (fMRI) during which an emotion processing protocol were presented. Confirming the validity of this protocol, we observed blood oxygen level-dependent (BOLD) activity consistent with fMRI meta-analyses on emotion processing. Region-of-interest analysis of the rACC and AMY revealed main effects of 5-HTTLPR and BDNF Val66Met, and an interaction of 5-HTTLPR and BDNF Val66Met. The effect of the BDNF Met66 allele was dependent on 5-HTTLPR alleles, such that participants with S and Met alleles had the greatest rACC and AMY activation during the presentation of emotional images relative to other genetic groupings. Increased activity in these regions was interpreted as increased reactivity to emotional stimuli, suggesting that those with S and Met alleles are more reactive to emotional stimuli relative to other groups. Although limited by a small sample, this study contributes novel and preliminary findings relating to a functional epistasis of the 5-HTTLPR and BDNF Val66Met genes in emotion processing and provides guidance on appropriate methods to determine genetic epistasis in fMRI.
Collapse
Affiliation(s)
- Tim Outhred
- School of Psychology, University of Sydney New South Wales, 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Murray E, Bruno R, Brown J. Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes. Hum Psychopharmacol 2012; 27:226-34. [PMID: 22389087 DOI: 10.1002/hup.2218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function.
Collapse
|
30
|
Barnett JH, Xu K, Heron J, Goldman D, Jones PB. Cognitive effects of genetic variation in monoamine neurotransmitter systems: a population-based study of COMT, MAOA, and 5HTTLPR. Am J Med Genet B Neuropsychiatr Genet 2011; 156:158-67. [PMID: 21302344 PMCID: PMC3494973 DOI: 10.1002/ajmg.b.31150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/28/2010] [Indexed: 02/04/2023]
Abstract
Individual differences in cognitive function are highly heritable and most likely driven by multiple genes of small effect. Well-characterized common functional polymorphisms in the genes MAOA, COMT, and 5HTTLPR each have predictable effects on the availability of the monoamine neurotransmitters dopamine, noradrenaline, and serotonin. We hypothesized that 5HTTLPR genotype would show little association with prefrontal cognitive performance, but that COMT and MAOA would have interacting effects on cognition through their shared influence on prefrontal catecholamine availability. We assessed the individual and epistatic effects of functional polymorphisms in COMT, MAOA, and 5HTTLPR on children's prefrontal cognitive function in nearly 6,000 children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC). Neither MAOA nor 5HTTLPR polymorphisms showed significant effects on cognitive function. In boys but not girls, there was a modest but statistically significant interaction between MAOA and COMT genotypes such that increased prefrontal catecholamine availability was associated with better working memory. These results suggest that assessment of multiple genes within functionally related systems may improve our understanding of the genetic basis of cognition.
Collapse
|
31
|
Descarries L, Riad M, Parent M. Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Watakabe A, Komatsu Y, Sadakane O, Shimegi S, Takahata T, Higo N, Tochitani S, Hashikawa T, Naito T, Osaki H, Sakamoto H, Okamoto M, Ishikawa A, Hara SI, Akasaki T, Sato H, Yamamori T. Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb Cortex 2009; 19:1915-28. [PMID: 19056862 PMCID: PMC2705701 DOI: 10.1093/cercor/bhn219] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Osamu Sadakane
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Satoshi Shimegi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Noriyuki Higo
- System Neuroscience Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Shiro Tochitani
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture, Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hironobu Osaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroshi Sakamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Masahiro Okamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Ayako Ishikawa
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Shin-ichiro Hara
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Takafumi Akasaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
33
|
Surguladze SA, Elkin A, Ecker C, Kalidindi S, Corsico A, Giampietro V, Lawrence N, Deeley Q, Murphy DGM, Kucharska-Pietura K, Russell TA, McGuffin P, Murray R, Phillips ML. Genetic variation in the serotonin transporter modulates neural system-wide response to fearful faces. GENES BRAIN AND BEHAVIOR 2008; 7:543-51. [PMID: 18266983 DOI: 10.1111/j.1601-183x.2008.00390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A distributed, serotonergically innervated neural system comprising extrastriate cortex, amygdala and ventral prefrontal cortex is critical for identification of socially relevant emotive stimuli. The extent to which a genetic variation of serotonin transporter gene 5-HTTLPR impacts functional connectivity between the amygdala and the other components of this neural system remains little examined. In our study, neural activity was measured using event-related functional magnetic resonance imaging in 29 right-handed, white Caucasian healthy subjects as they viewed mild or prototypical fearful and neutral facial expressions. 5-HTTLPR genotype was classified as homozygous for the short allele (S/S), homozygous for the long allele (L/L) or heterozygous (S/L). S/S showed greater activity than L/L within right fusiform gyrus (FG) to prototypically fearful faces. To these fearful faces, S/S more than other genotype subgroups showed significantly greater positive functional connectivity between right amygdala and FG and between right FG and right ventrolateral prefrontal cortex (VLPFC). There was a positive association between measure of psychoticism and degree of functional connectivity between right FG and right VLPFC in response to prototypically fearful faces. Our data are the first to show that genotypic variation in 5-HTTLPR modulates both the amplitude within and the functional connectivity between different components of the visual object-processing neural system to emotionally salient stimuli. These effects may underlie the vulnerability to mood and anxiety disorders potentially triggered by socially salient, emotional cues in individuals with the S allele of 5-HTTLPR.
Collapse
Affiliation(s)
- S A Surguladze
- Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rocco A, Afra J, Toscano M, Sirimarco G, Di Clemente L, Altieri M, Lenzi GL, Di Piero V. Acute subcortical stroke and early serotonergic modification: a IDAP study. Eur J Neurol 2007; 14:1378-82. [DOI: 10.1111/j.1468-1331.2007.01985.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Lesch KP. Linking emotion to the social brain. The role of the serotonin transporter in human social behaviour. EMBO Rep 2007; 8 Spec No:S24-9. [PMID: 17726438 PMCID: PMC3327526 DOI: 10.1038/sj.embor.7401008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Klaus-Peter Lesch
- Department of Psychiatry and Psychotherapy, Molecular and Clinical Psychobiology, University of Würzburg, Germany.
| |
Collapse
|
36
|
Canli T. The emergence of genomic psychology. Insights from genomic analyses might allow psychologists to understand, predict and modify human behaviour. EMBO Rep 2007; 8 Spec No:S30-4. [PMID: 17726440 PMCID: PMC3327528 DOI: 10.1038/sj.embor.7400938] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Turhan Canli
- Psychology Department, Stony Brook University, New York, NY, USA.
| |
Collapse
|
37
|
Rahman FE, Baizer JS. Neurochemically defined cell types in the claustrum of the cat. Brain Res 2007; 1159:94-111. [PMID: 17582386 DOI: 10.1016/j.brainres.2007.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022]
Abstract
The claustrum is a subcortical structure reciprocally and topographically connected with all sensory and motor domains of the cerebral cortex. Previous anatomical and electrophysiological data suggested that most cells in the claustrum are large neurons that both receive cortical input and project back to cortex, forming excitatory connections with their cortical targets. These data have been interpreted to imply a relay function for the claustrum, with information from different functional cortical domains remaining segregated. The possibility that the claustrum might mediate a more "global" function has been recently been developed by Crick and Koch [Crick, F. C., Koch, C., 2005. What is the function of the claustrum? Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1271-1279]. We have reexamined the anatomical substrate for information processing in the claustrum of the cat by analyzing the patterns of immunoreactivity to calcium-binding proteins, GAD, serotonin, nNOS and the glutamate transporter EAAC1. We found multiple neurochemically defined cell types, suggesting multiple classes of projection neurons and interneurons. Each class was found throughout the entire claustrum, in all functionally defined subdivisions. Many neurons in the claustrum were surrounded by parvalbumin, calretinin, GAD or nNOS immunoreactive terminals, suggesting that many neurons of the claustrum make extensive intraclaustral connections. The entire claustrum also receives a serotonergic input. The identification of multiple neurochemical cell classes, their distribution and the extent of their dendritic arborizations relative to functional compartments suggest a substrate for information processing in the claustrum that may allow integration of information across functional subdivisions.
Collapse
Affiliation(s)
- Fahad E Rahman
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
38
|
Unal R, Ahmed BA, Jeffus BC, Harney JT, Lyle CS, Wu YK, Chambers TC, Reece EA, Kilic F. At diabetes-like concentration, glucose down-regulates the placental serotonin transport system in a cell-cycle-dependent manner. J Neurochem 2007; 101:937-48. [PMID: 17355243 PMCID: PMC3042026 DOI: 10.1111/j.1471-4159.2007.04469.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serotonin [5-hydroxytryptamine (5HT)] is a vasoconstrictor that also acts as a developmental signal early in embryogenesis. The 5HT transporter (SERT) on the membranes of the placental trophoblast cells controls 5HT levels in the maternal bloodstream to maintain stable transplacental blood flow and simultaneously provide 5HT to the embryo. The 5HT uptake rate of placental SERT is important for both the mother and the developing embryo. The impact of glucose on the placental SERT system during diabetic pregnancy is not known. The present in vitro study investigated this important issue in human placental choriocarcinoma (JAR) cells that were cultured for 24-96 h in a medium containing either 5.5 (physiologic concentration) or 25 mmol/L D-glucose (diabetic-like concentration). The 5HT uptake rates of the cultured cells were not altered at exogenous D-glucose concentrations in the range of 5.5-15 mmol/L, but were decreased significantly at a diabetic-like concentration (>or=25 mmol/L). To understand better the role of glucose on the placental 5HT system, we first characterized SERT in JAR cells at different cell-cycle phases and then determined the expression levels of SERT on the plasma membrane and in the intracellular pools of JAR cells at the late-S and G2 phases, where the uptake rates were decreased 73% under diabetic-like glucose concentrations. Finally, the importance of self-association of SERT molecules was examined. In JAR cells co-expressing Flag- and myc-tagged SERT, myc-antibody precipitated 70% of Flag-SERT, indicating that a large percentage of SERT proteins exist as oligomers in situ. Under diabetic conditions, myc-antibody no longer precipitated Flag-SERT, suggesting a disruption in the aggregation of SERT molecules. Therefore, we propose that under uncontrolled diabetic conditions, glucose down-regulates 5HT uptake rates of placental SERT by interfering with its functional expression in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- R Unal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Muller JF, Mascagni F, McDonald AJ. Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J Comp Neurol 2007; 505:314-35. [PMID: 17879281 DOI: 10.1002/cne.21486] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basolateral nuclear complex of the amygdala (BLC) receives a dense serotonergic innervation that appears to play a critical role in the regulation of mood and anxiety. However, little is known about how serotonergic inputs interface with different neuronal subpopulations in this region. To address this question, dual-labeling immunohistochemical techniques were used at the light and electron microscopic levels to examine inputs from serotonin-immunoreactive (5-HT+) terminals to different neuronal subpopulations in the rat BLC. Pyramidal cells were labeled by using antibodies to calcium/calmodulin-dependent protein kinase II, whereas different interneuronal subpopulations were labeled by using antibodies to a variety of interneuronal markers including parvalbumin (PV), vasoactive intestinal peptide (VIP), calretinin, calbindin, cholecystokinin, and somatostatin. The BLC exhibited a dense innervation by thin 5-HT+ axons. Electron microscopic examination of the anterior basolateral nucleus (BLa) revealed that 5-HT+ axon terminals contained clusters of small synaptic vesicles and a smaller number of larger dense-core vesicles. Serial section reconstruction of 5-HT+ terminals demonstrated that 76% of these terminals formed synaptic junctions. The great majority of these synapses were symmetrical. The main targets of 5-HT+ terminals were spines and distal dendrites of pyramidal cells. However, in light microscopic preparations it was common to observe apparent contacts between 5-HT+ terminals and all subpopulations of BLC interneurons. Electron microscopic analysis of the BLa in sections dual-labeled for 5-HT/PV and 5-HT/VIP revealed that many of these contacts were synapses. These findings suggest that serotonergic axon terminals differentially innervate several neuronal subpopulations in the BLC.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
40
|
Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O. Serotonin transport and serotonin transporter‐mediated antidepressant recognition are controlled by 5‐HT2Breceptor signaling in serotonergic neuronal cells. FASEB J 2006; 20:1843-54. [PMID: 16940156 DOI: 10.1096/fj.06-5724com] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plasma membrane 5-HT transporter (SERT) is the major protagonist in regulating extracellular 5-HT concentration and constitutes the target of drugs used to treat a host of metabolic and psychiatric disorders. The exact mechanisms sustaining SERT function still remain elusive. The present work exploits the properties of the 1C11 neuroectodermal progenitor, which acquires, upon 4 days of differentiation, a functional SERT within an integrated serotonergic phenotype to investigate regulatory mechanisms involved in SERT onset and functions. We show that poly(A) addition precedes SERT mRNA translation on day 2 of the serotonergic program. The newly translated transporter molecules immediately bind cocaine. Day 4 must be awaited to monitor antidepressant recognition and 5-HT uptake. Because external 5-HT reduces both 5-HT transport and SERT antidepressant binding, we identify 5-HT(2B) receptors as key players in controlling the overall 5-HT transport system. In the absence of external 5-HT, 5-HT(2B) receptor coupling to NO production ensures SERT phosphorylation to basal level and maximal 5-HT uptake. In the presence of 5-HT, the 5-HT(2B) receptor-PKC coupling promotes additional phosphorylations of both SERT and Na(+),K(+)-ATPase alpha-subunit, impairing the electrochemical gradient necessary to 5-HT uptake. SERT hyperphosphorylation also affects antidepressant recognition. Finally, such 5-HT(2B) receptor-mediated control of SERT activity operates in primary neurons from raphe nuclei. Altogether, our data shed new light on the 5-HT-driven post-translational modifications involved in the control of SERT activity.
Collapse
MESH Headings
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Biological Transport
- Cell Differentiation
- Cell Membrane/drug effects
- Cell Membrane/physiology
- Cells, Cultured
- Frontal Lobe/physiology
- Male
- Mice
- Mice, Inbred BALB C
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Phosphorylation
- RNA, Messenger/genetics
- Raphe Nuclei/physiology
- Receptor, Serotonin, 5-HT2B/drug effects
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/physiology
- Serotonin/metabolism
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Jean-Marie Launay
- Service de Biochimie, Hôpital Lariboisière, Laboratoire de Biologie Cellulaire, Faculté de Pharmacie, Université Paris V, Paris, France.
| | | | | | | | | |
Collapse
|
41
|
Rizzo M, Lamers CTJ, Sauer CG, Ramaekers JG, Bechara A, Andersen GJ. Impaired perception of self-motion (heading) in abstinent ecstasy and marijuana users. Psychopharmacology (Berl) 2005; 179:559-66. [PMID: 15723231 DOI: 10.1007/s00213-004-2100-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE Illicit drug use can increase driver crash risk due to loss of control over vehicle trajectory. This study asks, does recreational use of +/-3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) and tetrahydrocannabinol (THC; marijuana) impair cognitive processes that help direct our safe movement through the world? OBJECTIVE This study assesses the residual effects of combined MDMA/THC use, and of THC use alone, upon perceived trajectory of travel. METHODS Perception of self-motion, or heading, from optical flow patterns was assessed using stimuli comprising random dot ground planes presented at three different densities and eight heading angles (1, 2, 4 and 8 degrees to the left or right). On each trial, subjects reported if direction of travel was to the left or the right. RESULTS Results showed impairments in both drug groups, with the MDMA/THC group performing the worst. CONCLUSIONS The finding that these psychoactive agents adversely affect heading perception, even in recently abstinent users, raises potential concerns about MDMA use and driving ability.
Collapse
Affiliation(s)
- M Rizzo
- Division of Neuroergonomics and Division of Behavioral Neurology and Cognitive Neuroscience, Department of Neurology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Chen HJ, Tian H, Edenberg HJ. Natural haplotypes in the regulatory sequences affect human alcohol dehydrogenase 1C (
ADH1C
) gene expression. Hum Mutat 2005; 25:150-5. [PMID: 15643610 DOI: 10.1002/humu.20127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human alcohol dehydrogenases (ADHs) play important roles in metabolizing alcohol, and several lines of evidence suggest that variations in ADH genes affect the risk for alcoholism. Differences in regulatory sequences could affect the expression of ADH genes and thereby modify the risk for alcoholism. To explore this idea, we sequenced regulatory regions upstream of ADH1C and identified 13 polymorphisms, including one 66-base pair (bp) insertion/deletion (in/del), one 5-bp variation, and 11 single nucleotide polymorphisms (SNPs), eight of which were newly identified. We examined the effects of naturally occurring haplotypes on gene expression. The 66-bp in/del alone did not change promoter activity, but when it was combined with three other SNP alleles, a twofold difference in transcription activity was observed in transient transfection assays in H4IIE-C3 cells. These data imply that there are interactions among polymorphisms in the cis-acting elements, and highlight the importance of studying regulatory polymorphisms within the context of their naturally occurring haplotypes. We also demonstrated tissue specificity in cis-acting elements by comparing gene expression in H4IIE-C3 and HeLa cells.
Collapse
Affiliation(s)
- Hui-Ju Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
43
|
Janusonis S, Gluncic V, Rakic P. Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J Neurosci 2004; 24:1652-9. [PMID: 14973240 PMCID: PMC6730467 DOI: 10.1523/jneurosci.4651-03.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the serotonergic system plays an important role in various neurological disorders, the role of early serotonergic projections to the developing cerebral cortex is not well understood. Because serotonergic fibers enter the marginal zone (MZ) before birth, it has been suggested that they may influence cortical development through synaptic contacts with Cajal-Retzius (CR) cells. We used immunohistochemistry combined with confocal and electron microscopy to show that the earliest serotonergic projections to the MZ form synaptic contacts with the somata and proximal dendrites of CR cells as early as embryonic day 17. To elucidate the functional significance of these early serotonergic contacts with CR cells, we perturbed their normal development by injecting pregnant mice with 5-methoxytryptamine. Lower reelin levels were detected in the brains of newborn pups from the exposed animals. Because reelin plays an important role in the cortical laminar and columnar organization during development, we killed some pups from the same litters on postnatal day 7 and analyzed their presubicular cortex. We found that the supragranular layers of the presubicular cortex (which normally display a visible columnar deployment of neurons) were altered in the treated animals. Our results suggest a mechanism of how serotonergic abnormalities during cortical development may disturb the normal cortical organization; and, therefore, may be relevant for understanding neurological disorders in which abnormalities of the serotonergic system are accompanied by cortical pathology (such as autism).
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Yale University School of Medicine, Department of Neurobiology, New Haven, Connecticut 06520-8001, USA
| | | | | |
Collapse
|
44
|
Verney C. Phenotypic expression of monoamines and GABA in the early development of human telencephalon, transient or not transient. J Chem Neuroanat 2004; 26:283-92. [PMID: 14729130 DOI: 10.1016/j.jchemneu.2003.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We review the phenotypic expression of molecules involved in monoamine and GABA neurotransmission in the developing human brain. Recent experimental reports have analyzed neurotransmitter signaling before the onset of synaptogenesis, which could act to influence early developmental events such as proliferation, migration, and differentiation of animal brain development. Such signaling may also occur in human development. The expression of molecules involved in neurotransmission in precocious human brain may reflect either the differentiation of a permanent neurotransmitter system of the adult brain or transient expression to serve specific developmental functions different from those in the adult brain. We review the changes observed in the expression of various catecholamine markers such as tyrosine-hydroxylase (TH) immunoreactivity in various neuronal populations of the developing human telencephalon. The specific transporter for serotonin, serotonin transporter (SERT) has been detected in fibers of the internal capsule (IC) during the restricted time period of 12-14 gestational weeks in humans. These serotonin-containing fibers do not correspond to serotoninergic ascending axons from the raphe nuclei. They may be the human counterpart of the thalamo-cortical axons that have been shown to uptake serotonin during the critical period of development of the sensory systems in rodents. GABA phenotypes are expressed in numerous cells of the human ganglionic eminence (GE) and cerebral wall at the end of the embryonic period proper. These results are similar to that described at comparable developmental stages in the mouse and support the hypothesis of an early migration from ganglionic progenitors in humans. But one cannot exclude a transient expression of GABA within the post-mitotic neurons, which could influence early developmental events. In conclusion, data showing the phenotypic expression of molecules in discrete areas of the brain at various points in the protracted human development require careful interpretation.
Collapse
Affiliation(s)
- Catherine Verney
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
45
|
Abstract
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity. Thus, the mesencephalon and rostral pons, neurons within the rostral raphe complex (caudal linear, dorsal raphe, and median raphe nuclei) project primarily to the forebrain. By contrast, in the caudal pons and medulla oblongata, neurons within the caudal raphe complex (raphe magnus, raphe obscurus, raphe pallidus nuclei and parts of the adjacent lateral reticular formation) project to the brainstem nuclei and to the spinal cord. The median raphe and dorsal raphe nuclei provide parallel and overlapping projections to many forebrain structures with axon fibers exhibiting distinct structural and functional characteristics. The caudal group of the serotonergic system projects to the brainstem, and, by three parallel projections, to the dorsal, intermediate and ventral columns in the spinal cord. The serotonergic axons arborize over large areas comprising functionally diverse targets. Some projections form classical chemical synapses while many do not, thus contributing to the so-called paracrine or volume transmission. The serotonergic projections participate in the regulation of different functional (motor, somatosensory, limbic) systems; and have been associated with a wide range of neuropsychiatric and neurological disorders. Finally, recent experimental data support the role of serotonin in modulating brain development, such that a dysfunction in serotonergic transmission during early life could lead to long lasting structural and functional alterations.
Collapse
Affiliation(s)
- Jean-Pierre Hornung
- Institut de biologie cellulaire et de morphologie, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
46
|
Abstract
Cortical neuromodulatory transmitter systems refer to those classical neurotransmitters such as acetylcholine and monoamines, which share a number of common features. For instance, their centers are located in subcortical regions and send long projection axons to innervate the cortex. The same transmitter can either excite or inhibit cortical neurons depending on the composition of postsynaptic transmitter receptor subtypes. The overall functions of these transmitters are believed to serve as chemical bases of arousal, attention and motivation. The anatomy and physiology of neuromodulatory transmitter systems and their innervations in the cerebral cortex have been well characterized. In addition, ample evidence is available indicating that neuromodulatory transmitters also play roles in development and plasticity of the cortex. In this article, the anatomical organization and physiological function of each of the following neuromodulatory transmitters, acetylcholine, noradrenaline, serotonin, dopamine, and histamine, in the cortex will be described. The involvement of these transmitters in cortical plasticity will then be discussed. Available data suggest that neuromodulatory transmitters can modulate the excitability of cortical neurons, enhance the signal-to-noise ratio of cortical responses, and modify the threshold for activity-dependent synaptic modifications. Synaptic transmissions of these neuromodulatory transmitters are mediated via numerous subtype receptors, which are linked to multiple signal transduction mechanisms. Among the neuromodulatory transmitter receptor subtypes, cholinergic M(1), noradrenergic beta(1) and serotonergic 5-HT(2C) receptors appear to be more important than other receptor subtypes for cortical plasticity. In general, the contribution of neuromodulatory transmitter systems to cortical plasticity may be made through a facilitation of NMDA receptor-gated processes.
Collapse
Affiliation(s)
- Q Gu
- Brain Research Center, and Department of Ophthalmology, University of British Columbia, and Vancouver Hospital and Health Sciences Center, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9.
| |
Collapse
|
47
|
Rio JP, Repérant J, Miceli D, Medina M, Kenigfest-Rio N. Serotonergic innervation of the isthmo-optic nucleus of the pigeon centrifugal visual system. An immunocytochemical electron microscopic study. Brain Res 2002; 924:127-31. [PMID: 11744006 DOI: 10.1016/s0006-8993(01)03262-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultrastructural features of serotonergic fibers, terminals and synaptic contacts were studied with the pre-embedding immunocytochemical method in the isthmo-optic nucleus of the pigeon centrifugal visual system. The 5-HT immunoreactive (-ir) profiles were diffusely distributed and their density was low. The labeled axons were thin and unmyelinated (mean diameter=0.21+/-0.03 microm) though a few larger myelinated axons were observed (mean diameter=0.51+/-0.07 microm). The 5-HT-ir terminals or varicosities were small (diameter=0.71+/-0.54 microm) and contained small agranular synaptic vesicles (diameter=28.5+/-6.9 nm) and large granular vesicles (diameter=102.2+/-19.5 nm). The latter only constituted approximately 1% of the total profiles containing synaptic vesicles in the isthmo-optic nucleus. In single thin sections, only 5% of the 5-HT-ir varicosities exhibited an active asymmetrical zone synapsing upon dendritic profiles of centrifugal visual neurons. Calculations indicated that 17% of these 5-HT-ir varicosities were actually engaged in junctional synaptic relationships, whereas the remaining (83%) were nonjunctional. The data suggest that, within the isthmo-optic nucleus, 5-HT acts both at synaptic junctions (wiring transmission) and at a distance via the extracellular space (volume transmission). These 5-HT afferents could thus modulate the activity of the retinopetal neurons and visual information processing.
Collapse
Affiliation(s)
- J P Rio
- INSERM U 106, Neuromorphologie: Développement, Evolution, Hôpital de la Salpêtrière, 47, Bd. de l'Hôpital, 75651 Paris Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
The claustrum is reciprocally and topographically connected with all functional areas of the cerebral cortex. Different cortical areas differ in the source, density, and laminar distribution of serotonergic innervation, with visual cortex receiving an especially rich serotonergic innervation. We asked if there were likewise differences in serotonergic innervation in different regions of the claustrum. We analyzed 50-microm coronal sections through the claustrum of the macaque monkey processed using standard immunohistochemical techniques and an antibody to serotonin. We found labeled fibers throughout the dorsal-ventral and anterior-posterior extent of the claustrum. A few fibers were relatively straight and lacked varicosities. Most fibers had varicosities; the size, shape, and spacing of varicosities varied among fibers and even along a single fiber. Some stained fibers partially encircled cells, and varicosities were seen in close apposition to the cell bodies. There was a major difference between dorsal and ventral claustrum in the pattern of stained fibers. In the ventral, visual, claustrum, stained segments of axons were short and randomly arranged relative to each other, and there were many stained puncta. In the more dorsal, nonvisual claustrum, many fibers ran in a dorsal-ventral direction, along the long axis of the claustrum, and could be followed for long distances.
Collapse
Affiliation(s)
- J S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
49
|
Bloom FE. Integration of wiring transmission and volume transmission. PROGRESS IN BRAIN RESEARCH 2001; 125:21-6. [PMID: 11098651 DOI: 10.1016/s0079-6123(00)25004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- F E Bloom
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 125:27-47. [PMID: 11098652 DOI: 10.1016/s0079-6123(00)25005-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- L Descarries
- Département de pathologie, Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Canada.
| | | |
Collapse
|