1
|
Borroto-Escuela DO, Gonzalez-Cristo E, Ochoa-Torres V, Serra-Rojas EM, Ambrogini P, Arroyo-García LE, Fuxe K. Understanding electrical and chemical transmission in the brain. Front Cell Neurosci 2024; 18:1398862. [PMID: 38988663 PMCID: PMC11233782 DOI: 10.3389/fncel.2024.1398862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The histochemical Falck-Hillarp method for the localization of dopamine (DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of rodents was introduced in the 1960s. It supported the existence of chemical neurotransmission in the CNS. The monoamine neurons in the lower brain stem formed monosynaptic ascending systems to the telencephalon and diencephalon and monoamine descending systems to the entire spinal cord. The monoamines were early on suggested to operate via synaptic chemical transmission in the CNS. This chemical transmission reduced the impact of electrical transmission. In 1969 and the 1970s indications were obtained that important modes of chemical monoamine communication in the CNS also took place through the extra-synaptic fluid, the extracellular fluid, and long-distance communication in the cerebrospinal fluid involving diffusion and flow of transmitters like DA, NA and serotonin. In 1986, this type of transmission was named volume transmission (VT) by Agnati and Fuxe and their colleagues, also characterized by transmitter varicosity and receptor mismatches. The short and long-distance VT pathways were characterized by volume fraction, tortuosity and clearance. Electrical transmission also exists in the mammalian CNS, but chemical transmission is in dominance. One electrical mode is represented by electrical synapses formed by gap junctions which represent low resistant passages between nerve cells. It allows for a more rapid passage of action potentials between nerve cells compared to chemical transmission. The second mode is based on the ability of synaptic currents to generate electrical fields to modulate chemical transmission. One aim is to understand how chemical transmission can be integrated with electrical transmission and how putative (aquaporin water channel, dopamine D2R and adenosine A2AR) complexes in astrocytes can significancy participate in the clearance of waste products from the glymphatic system. VT may also help accomplish the operation of the acupuncture meridians essential for Chinese medicine in view of the indicated existence of extracellular VT pathways.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Emmanuell Gonzalez-Cristo
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Verty Ochoa-Torres
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Faculty of Engineering and Biotechnology, University OTR and the Regional Cooperative for Comprehensive Medical Assistance (CRAMI), Montevideo, Uruguay
| | - Emilio M. Serra-Rojas
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Cardiology Service, Lozano Blesa University Clinical Hospital, Zaragoza, Spain
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, Urbino, Italy
| | - Luis E. Arroyo-García
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
3
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Huygens synchronization of medial septal pacemaker neurons generates hippocampal theta oscillation. Cell Rep 2022; 40:111149. [PMID: 35926456 DOI: 10.1016/j.celrep.2022.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.
Collapse
|
5
|
Ducrot C, Bourque MJ, Delmas CVL, Racine AS, Guadarrama Bello D, Delignat-Lavaud B, Domenic Lycas M, Fallon A, Michaud-Tardif C, Burke Nanni S, Herborg F, Gether U, Nanci A, Takahashi H, Parent M, Trudeau LE. Dopaminergic neurons establish a distinctive axonal arbor with a majority of non-synaptic terminals. FASEB J 2021; 35:e21791. [PMID: 34320240 DOI: 10.1096/fj.202100201rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Chemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined. We find that dopaminergic neurons in vitro establish a distinctive axonal arbor compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. While most dopaminergic varicosities are active and contain exocytosis proteins like synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in dopaminergic terminals that are in proximity to a target cell. Finally, we found that the proteins neurexin-1αSS4- and neuroligin-1A+B play a critical role in the formation of synapses by dopamine (DA) neurons. Our findings suggest that DA neurons are endowed with a distinctive developmental connectivity program.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Constantin V L Delmas
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Anne-Sophie Racine
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Dainelys Guadarrama Bello
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Matthew Domenic Lycas
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Aurélie Fallon
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Charlotte Michaud-Tardif
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Samuel Burke Nanni
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Freja Herborg
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ulrik Gether
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antonio Nanci
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| |
Collapse
|
6
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Cover KK, Mathur BN. Axo-axonic synapses: Diversity in neural circuit function. J Comp Neurol 2021; 529:2391-2401. [PMID: 33314077 PMCID: PMC8053672 DOI: 10.1002/cne.25087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
The chemical synapse is the principal form of contact between neurons of the central nervous system. These synapses are typically configured as presynaptic axon terminations onto postsynaptic dendrites or somata, giving rise to axo-dendritic and axo-somatic synapses, respectively. Beyond these common synapse configurations are less-studied, non-canonical synapse types that are prevalent throughout the brain and significantly contribute to neural circuit function. Among these are the axo-axonic synapses, which consist of an axon terminating on another axon or axon terminal. Here, we review evidence for axo-axonic synapse contributions to neural signaling in the mammalian nervous system and survey functional neural circuit motifs enabled by these synapses. We also detail how recent advances in microscopy, transgenics, and biological sensors may be used to identify and functionally assay axo-axonic synapses.
Collapse
Affiliation(s)
- Kara K. Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| |
Collapse
|
8
|
Bilash OM, Actor-Engel HS, Sherpa AD, Chen YW, Aoki C. Suppression of food restriction-evoked hyperactivity in activity-based anorexia animal model through glutamate transporters GLT-1 at excitatory synapses in the hippocampus. Synapse 2021; 75:e22197. [PMID: 33619810 DOI: 10.1002/syn.22197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Severe voluntary food restriction is the defining symptom of anorexia nervosa (AN), but anxiety and excessive exercise are maladaptive symptoms that contribute significantly to the severity of AN and which individuals with AN have difficulty suppressing. We hypothesized that the excitability of hippocampal pyramidal neurons, known to contribute to anxiety, leads to the maladaptive behavior of excessive exercise. Conversely, since glutamate transporter GLT-1 dampens the excitability of hippocampal pyramidal neurons through the uptake of ambient glutamate and suppression of the GluN2B-subunit containing NMDA receptors (GluN2B-NMDARs), GLT-1 may contribute toward dampening excessive exercise. This hypothesis was tested using the mouse model of AN, called activity-based anorexia (ABA), whereby food restriction evokes the maladaptive behavior of excessive wheel running (food restriction-evoked running, FRER). We tested whether individual differences in ABA vulnerability of mice, quantified based on FRER, correlated with individual differences in the levels of GLT-1 at excitatory synapses of the hippocampus. Electron microscopic immunocytochemistry (EM-ICC) was used to quantify GLT-1 levels at the excitatory synapses of the hippocampus. The FRER seen in individual mice varied more than 10-fold, and Pearson correlation analyses revealed a strong negative correlation (p = .02) between FRER and GLT-1 levels at the axon terminals of excitatory synapses and at the surrounding astrocytic plasma membranes. Moreover, synaptic levels of GluN2B-NMDARs correlated strongly with GLT-1 levels at perisynaptic astrocytic plasma membranes. There is at present no accepted pharmacotherapy for AN, and little is known about the etiology of this deadly illness. Current findings suggest that drugs increasing GLT-1 expression may reduce AN severity through the reduction of GluN2B-NMDAR activity.
Collapse
Affiliation(s)
- Olesia M Bilash
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| | | | - Ang D Sherpa
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
9
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
10
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
11
|
Disney AA, Higley MJ. Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex. J Neurosci 2020; 40:720-725. [PMID: 31969490 PMCID: PMC6975298 DOI: 10.1523/jneurosci.1306-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
ACh is a signaling molecule in the mammalian CNS, with well-documented influence over cognition and behavior. However, the nature of cholinergic signaling in the brain remains controversial, with ongoing debates focused on the spatial and temporal resolution of ACh activity. Generally, opposing views have embraced a dichotomy between transmission as slow and volume-mediated versus fast and synaptic. Here, we provide the perspective that ACh, like most other neurotransmitters, exhibits both fast and slow modes that are strongly determined by the anatomy of cholinergic fibers, the distribution and the signaling mechanisms of receptor subtypes, and the dynamics of ACh hydrolysis. Current methodological approaches remain limited in their ability to provide detailed analyses of these underlying factors. However, we believe that the continued development of novel technologies in combination with a more nuanced view of cholinergic activity will open critical new avenues to a better understanding of ACh in the brain.Dual Perspectives Companion Paper: Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior, by Martin Sarter and Cindy Lustig.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, and
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
12
|
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM. C. elegans neurons have functional dendritic spines. eLife 2019; 8:e47918. [PMID: 31584430 PMCID: PMC6802951 DOI: 10.7554/elife.47918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
Collapse
Affiliation(s)
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - Siwei He
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Sierra Palumbos
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - David M Miller
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUnited States
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
13
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
14
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
15
|
Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proc Natl Acad Sci U S A 2018; 115:E12073-E12082. [PMID: 30510000 PMCID: PMC6304994 DOI: 10.1073/pnas.1808507115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
fMRI changes are typically assumed to be due to changes in neural activity, although whether this remains valid under the influence of neuromodulators is relatively unknown. Here, we found evidence that intracortical acetylcholine elicits distinct profiles of fMRI and electrophysiological activity in visual cortex. Two patterns of cholinergic activity were observed, depending on the distance to the injection site, although neurovascular coupling was preserved. Our results illustrate the effects of neuromodulators on fMRI and electrophysiological responses and show that these depend on neuromodulator concentration and kinetics. Cholinergic neuromodulation is involved in all aspects of sensory processing and is crucial for processes such as attention, learning and memory, etc. However, despite the known roles of acetylcholine (ACh), we still do not how to disentangle ACh contributions from sensory or task-evoked changes in functional magnetic resonance imaging (fMRI). Here, we investigated the effects of local injection of ACh on fMRI and neural signals in the primary visual cortex (V1) of anesthetized macaques by combining pharmaco-based MRI (phMRI) with electrophysiological recordings, using single electrodes and electrode arrays. We found that local injection of ACh elicited two distinct profiles of fMRI and neurophysiological activity, depending on the distance from the injector. Near the injection site, we observed an increase in the baseline blood oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) responses, while their visual modulation decreased. In contrast, further from the injection site, we observed an increase in the visually induced BOLD and CBF modulation without changes in baseline. Neurophysiological recordings suggest that the spatial correspondence between fMRI responses and neural activity does not change in the gamma, high-gamma, and multiunit activity (MUA) bands. The results near the injection site suggest increased inhibitory drive and decreased metabolism, contrasting to the far region. These changes are thought to reflect the kinetics of ACh and its metabolism to choline.
Collapse
|
16
|
A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018; 21:1551-1562. [PMID: 30349105 PMCID: PMC6441588 DOI: 10.1038/s41593-018-0251-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/19/2018] [Indexed: 11/09/2022]
Abstract
Sleep cycles consist of rapid alterations between arousal states
including transient perturbation of sleep rhythms, microarousals and full-blown
awake states. Here we demonstrate that the calretinin containing (CR+) neurons
in the dorsal medial thalamus (DMT) constitute a key diencephalic node that
mediates distinct levels of forebrain arousal. Cell-type-specific activation of
DMT/CR+ cells could elicit active locomotion lasting for minutes, stereotyped
microarousals or transient disruption of sleep rhythms depending on the
parameters of the stimulation. State transitions could be induced in both
slow-wave and REM sleep. The DMT/CR+ cells displayed elevated activity prior to
arousal, received selective subcortical inputs and innervated several forebrain
sites via highly branched axons. Together, these features enable DMT/CR+ cells
to summate subcortical arousal information and effectively transfer it as a
rapid, synchronous signal to several forebrain regions to modulate the level of
arousal.
Collapse
|
17
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
18
|
Coppola JJ, Disney AA. Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 2018; 8:e01071. [PMID: 30094962 PMCID: PMC6160643 DOI: 10.1002/brb3.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Release of the neuromodulator acetylcholine into cortical circuits supports cognition, although its precise role and mechanisms of action are not well understood. Little is known about functional differences in cholinergic modulatory effects across cortical model systems, but anatomical evidence suggests that such differences likely exist because, for example, the expression of cholinergic receptors differs profoundly both within and between species. METHODS In the primary visual cortex (V1) of macaque monkeys, cholinergic receptors are strongly expressed by inhibitory interneurons. Using dual-immunofluorescence confocal microscopy, we examine m1 muscarinic acetylcholine receptor expression by two subclasses of inhibitory interneurons-identified by their expression of the calcium-binding proteins calbindin and calretinin-in the middle temporal extrastriate area (MT) of the macaque. RESULTS AND CONCLUSIONS We find that the majority of calbindin-immunoreactive neurons (55%) and only few calretinin-immunoreactive neurons (10%) express the m1 acetylcholine receptor. These results differ from the pattern observed in V1 of the same species, lending further support to the notion that cholinergic modulation in the cortex is tuned such that different cortical compartments will respond to acetylcholine release in different ways.
Collapse
Affiliation(s)
| | - Anita A. Disney
- Department of PsychologyVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
19
|
Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain Struct Funct 2018; 223:3959-3973. [PMID: 30109491 DOI: 10.1007/s00429-018-1726-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Individual axons that form the hyperdirect pathway in Macaca fascicularis were visualized following microiontophoretic injections of biotinylated dextran amine in layer V of the primary motor cortex (M1). Twenty-eight singly labeled axons were reconstructed in 3D from serial sections. The M1 innervation of the subthalamic nucleus (STN) arises essentially from collaterals of long-ranged corticofugal axons en route to lower brainstem regions. Typically, after leaving M1, these large caliber axons (2-3 µm) enter the internal capsule and travel between caudate nucleus and putamen without providing any collateral to the striatum. More ventrally, they emit a thin collateral (0.5-1.5 µm) that runs lateromedially within the dorsal region of the STN, providing boutons en passant in the sensorimotor territory of the nucleus. In some cases, the medial tip of the collateral enters the lenticular fasciculus dorsally and yields a few beaded axonal branches in the zona incerta. In other cases, the collateral runs caudally and innervates the ventrolateral region of the red nucleus where large axon varicosities (up to 1.7 µm in diameter) are observed, many displaying perisomatic arrangements. Our ultrastructural analysis reveals a high synaptic incidence (141%) of cortical VGluT1-immunoreactive axon varicosities on distal dendrites of STN neurons, and on various afferent axons. Our single-axon reconstructions demonstrate that the so-called hyperdirect pathway derives essentially from collaterals of long-ranged corticofugal axons that are rarely exclusively devoted to the STN, as they also innervate the red nucleus and/or the zona incerta.
Collapse
|
20
|
Gagnon D, Eid L, Coudé D, Whissel C, Di Paolo T, Parent A, Parent M. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Front Neuroanat 2018; 12:38. [PMID: 29867377 PMCID: PMC5963193 DOI: 10.3389/fnana.2018.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Dave Gagnon
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Lara Eid
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Dymka Coudé
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Carl Whissel
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Thérèse Di Paolo
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - André Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4. J Neurosci 2018; 38:5338-5350. [PMID: 29739869 DOI: 10.1523/jneurosci.0566-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Cholinergic afferents from the basal forebrain (BF) can influence cortical activity on rapid time scales, enabling sensory information processing and exploratory behavior. However, our understanding of how synaptically released acetylcholine (ACh) influences cellular targets in distinct cortical layers remains incomplete. Previous studies have shown that rapid changes in cortical dynamics induced by phasic BF activity can be mediated by the activation of nicotinic ACh receptors (nAChRs) expressed in distinct types of GABAergic interneurons. In contrast, muscarinic ACh receptors (mAChRs) are assumed to be involved in slower and more diffuse ACh signaling following sustained increases in afferent activity. Here, we examined the mechanisms underlying fast cholinergic control of cortical circuit dynamics by pairing optical stimulation of cholinergic afferents with evoked activity in somatosensory cortical slices of mice of either sex. ACh release evoked by single stimuli led to a rapid and persistent suppression of cortical activity, mediated by mAChRs expressed in layer 4 and to a lesser extent, by nAChRs in layers 1-3. In agreement, we found that cholinergic inputs to layer 4 evoked short-latency and long-lasting mAChR-dependent inhibition of the large majority of excitatory neurons, whereas inputs to layers 1-3 primarily evoked nAChR-dependent excitation of different classes of interneurons. Our results indicate that the rapid cholinergic control of cortical network dynamics is mediated by both nAChRs and mAChRs-dependent mechanisms, which are expressed in distinct cortical layers and cell types.SIGNIFICANCE STATEMENT Acetylcholine (ACh) release from basal forebrain (BF) afferents to cortex influences a variety of cognitive functions including attention, sensory processing, and learning. Cholinergic control occurs on the time scale of seconds and is mediated by BF neurons that generate action potentials at low rates, indicating that ACh acts as a point-to-point neurotransmitter. Our findings highlight that even brief activation of cholinergic afferents can recruit both nicotinic and muscarinic ACh receptors expressed in several cell types, leading to modulation of cortical activity on distinct time scales. Furthermore, they indicate that the initial stages of cortical sensory processing are under direct cholinergic control.
Collapse
|
22
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
23
|
Radnikow G, Feldmeyer D. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 2018; 12:1. [PMID: 29440997 PMCID: PMC5797542 DOI: 10.3389/fnana.2018.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.
Collapse
Affiliation(s)
- Gabriele Radnikow
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany
| | - Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany
| |
Collapse
|
24
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
25
|
Obermayer J, Verhoog MB, Luchicchi A, Mansvelder HD. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain. Front Neural Circuits 2017; 11:100. [PMID: 29276477 PMCID: PMC5727016 DOI: 10.3389/fncir.2017.00100] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine (ACh) signaling shapes neuronal circuit development and underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. During behavior, activation of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) by ACh alters the activation state of neurons, and neuronal circuits most likely process information differently with elevated levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects on and rearrange connectivity between neurons that outlasts its presence. From recent discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the basal forebrain (BF) cholinergic system targets the neocortex with much more spatial and temporal detail than previously considered. Fast cholinergic synapses acting on a millisecond time scale are abundant in the mammalian cerebral cortex, and provide BF cholinergic neurons with the possibility to rapidly alter information flow in cortical microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic projections from the BF affect synaptic strength in several brain areas of the rodent brain, with behavioral consequences. This review highlights these exciting developments and discusses how these findings translate to human brain circuitries.
Collapse
Affiliation(s)
- Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
27
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
28
|
Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2016; 525:574-591. [PMID: 27491021 DOI: 10.1002/cne.24088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masakazu Hamamoto
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Aichi, 444-8787, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tamotsu Harada
- Department of Otolaryngology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Okayama, 701-0192, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| |
Collapse
|
29
|
Coppola JJ, Ward NJ, Jadi MP, Disney AA. Modulatory compartments in cortex and local regulation of cholinergic tone. ACTA ACUST UNITED AC 2016; 110:3-9. [PMID: 27553093 DOI: 10.1016/j.jphysparis.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023]
Abstract
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.
Collapse
Affiliation(s)
- Jennifer J Coppola
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Nicholas J Ward
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Monika P Jadi
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10610 North Torrey Pines Road, La Jolla, CA 92093, USA.
| | - Anita A Disney
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| |
Collapse
|
30
|
Sherpa AD, Xiao F, Joseph N, Aoki C, Hrabetova S. Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 2016; 70:307-16. [PMID: 27085090 DOI: 10.1002/syn.21908] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022]
Abstract
Brain extracellular space (ECS) is an interconnected channel that allows diffusion-mediated transport of signaling molecules, metabolites, and drugs. We tested the hypothesis that β-adrenergic receptor (βAR) activation impacts extracellular diffusion-mediated transport of molecules through alterations in the morphology of astrocytes. Two structural parameters of ECS-volume fraction and tortuosity-govern extracellular diffusion. Volume fraction (α) is the volume of ECS relative to the total tissue volume. Tortuosity (λ) is a measure of the hindrance that molecules experience in the ECS, compared to a free medium. The real-time iontophoretic (RTI) method revealed that treatment of acutely prepared visual cortical slices of adult female rats with a βAR agonist, DL-isoproterenol (ISO), decreases α significantly, from 0.22 ± 0.03 (mean ± SD) for controls without agonist to 0.18 ± 0.03 with ISO, without altering λ (control: 1.64 ± 0.04; ISO: 1.63 ± 0.04). Electron microscopy revealed that the ISO treatment significantly increased the cytoplasmic area of astrocytic distal endings per unit area of neuropil by 54%. These findings show that norepinephrine decreases α, in part, through an increase in astrocytic volume following βAR activation. Norepinephrine is recognized to be released within the brain during the awake state and increase neurons' signal-to-noise ratio through modulation of neurons' biophysical properties. Our findings uncover a new mechanism for noradrenergic modulation of neuronal signals. Through astrocytic activation leading to a reduction of α, noradrenergic modulation increases extracellular concentration of neurotransmitters and neuromodulators, thereby facilitating neuronal interactions, especially during wakefulness. Synapse 70:307-316, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ang Doma Sherpa
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203
- Neural and Behavioral Science Graduate Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, 11203
| | - Fanrong Xiao
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203
| | | | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York, 10003
| | - Sabina Hrabetova
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York, 11203
| |
Collapse
|
31
|
Garzón M, Pickel VM. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum. J Comp Neurol 2016; 524:3084-103. [PMID: 27038330 DOI: 10.1002/cne.24010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023]
Abstract
Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R-labeled somata and 16% of the more numerous M2R-labeled dendrites coexpressed VAchT. M2R and M2R/VAchT-labeled dendritic profiles received synapses from inhibitory- and excitatory-type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT-negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084-3103, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain.,Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Virginia M Pickel
- Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
32
|
Hotta H. Neurogenic control of parenchymal arterioles in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2016; 225:3-39. [DOI: 10.1016/bs.pbr.2016.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Hirase H, Iwai Y, Takata N, Shinohara Y, Mishima T. Volume transmission signalling via astrocytes. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130604. [PMID: 25225097 PMCID: PMC4173289 DOI: 10.1098/rstb.2013.0604] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures.
Collapse
Affiliation(s)
- Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan Saitama University Brain Science Institute, Saitama, Saitama, Japan
| | - Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Norio Takata
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Yoshiaki Shinohara
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tsuneko Mishima
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
34
|
Gagnon D, Gregoire L, Di Paolo T, Parent M. Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct 2015; 221:3675-91. [DOI: 10.1007/s00429-015-1125-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/23/2022]
|
35
|
Eid L, Parent M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 2015; 9:111. [PMID: 26321923 PMCID: PMC4531254 DOI: 10.3389/fnana.2015.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 106 axon varicosities/mm3 of tissue) and GPi (0.17 ± 0.01 × 106), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 103 neurons/mm3) and GPi (2.69 ± 0.18 × 103) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| |
Collapse
|
36
|
Abstract
Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.
Collapse
Affiliation(s)
- Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, and Departments of Otolaryngology, Neuroscience, and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
37
|
Groleau M, Kang JI, Huppé-Gourgues F, Vaucher E. Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex. Front Synaptic Neurosci 2015; 7:10. [PMID: 26150786 PMCID: PMC4472999 DOI: 10.3389/fnsyn.2015.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/04/2015] [Indexed: 11/13/2022] Open
Abstract
Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex's (V1) microcircuitry.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Jun Il Kang
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
38
|
Hay YA, Lambolez B, Tricoire L. Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors. Cereb Cortex 2015; 26:2549-2562. [PMID: 25934969 DOI: 10.1093/cercor/bhv085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4β2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4β2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4β2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4β2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors.
Collapse
Affiliation(s)
- Y Audrey Hay
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Bertrand Lambolez
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Ludovic Tricoire
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| |
Collapse
|
39
|
Abstract
In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.
Collapse
|
40
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
41
|
Lustig C, Sarter M. Attention and the Cholinergic System: Relevance to Schizophrenia. Curr Top Behav Neurosci 2015; 28:327-62. [PMID: 27418070 DOI: 10.1007/7854_2015_5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditional methods of drug discovery often rely on a unidirectional, "bottom-up" approach: A search for molecular compounds that target a particular neurobiological substrate (e.g., a receptor type), the refinement of those compounds, testing in animal models using high-throughput behavioral screening methods, and then human testing for safety and effectiveness. Many attempts have found the "effectiveness" criterion to be a major stumbling block, and we and others have suggested that success may be improved by an alternative approach that considers the neural circuits mediating the effects of genetic and molecular manipulations on behavior and cognition. We describe our efforts to understand the cholinergic system's role in attention using parallel approaches to test main hypotheses in both rodents and humans as well as generating converging evidence using methods and levels of analysis tailored to each species. The close back-and-forth between these methods has enhanced our understanding of the cholinergic system's role in attention both "bottom-up" and "top-down"-that is, the basic neuroscience identifies potential neuronal circuit-based mechanisms of clinical symptoms, and the patient and genetic populations serve as natural experiments to test and refine hypotheses about its contribution to specific processes. Together, these studies have identified (at least) two major and potentially independent contributions of the cholinergic system to attention: a neuromodulatory component that influences cognitive control in response to challenges from distractors that either make detection more difficult or draw attention away from the distractor, and a phasic or transient cholinergic signal that instigates a shift from ongoing behavior and the activation of cue-associated response. Right prefrontal cortex appears to play a particularly important role in the neuromodulatory component integrating motivational and cognitive influences for top-down control across populations, whereas the transient cholinergic signal involves orbitofrontal regions associated with shifts between internal and external attention. Understanding how these two modes of cholinergic function interact and are perturbed in schizophrenia will be an important prerequisite for developing effective treatments.
Collapse
Affiliation(s)
- Cindy Lustig
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48103, USA.
| | - Martin Sarter
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48103, USA
| |
Collapse
|
42
|
Eid L, Parent A, Parent M. Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 2014; 221:1139-55. [PMID: 25523104 PMCID: PMC4771818 DOI: 10.1007/s00429-014-0960-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/06/2014] [Indexed: 11/23/2022]
Abstract
The internal (GPi) and external (GPe) segments of the primate globus pallidus receive a significant cholinergic (ACh) innervation from the brainstem pedunculopontine tegmental nucleus. The present immunohistochemical study describes this innervation in the squirrel monkey (Saimiri sciureus), as visualized with an antibody raised against choline acetyltransferase (ChAT). At the light microscopic level, unbiased stereological quantification of ChAT positive (+) axon varicosities reveals a significantly lower density of innervation in GPi (0.26 ± 0.03 × 106) than in GPe (0.47 ± 0.07 × 106 varicosities/mm3 of tissue), with the anterior half of both segments more densely innervated than the posterior half. Neuronal density of GPi (3.00 ± 0.13 × 103 neurons/mm3) and GPe (3.62 ± 0.22 × 103 neurons/mm3) yields a mean ratio of ChAT+ axon varicosities per pallidal neuron of 74 ± 10 in the GPi and 128 ± 28 in the GPe. At the electron microscopic level, the pallidal ChAT+ axon varicosities are significantly smaller than their unlabeled counterparts, but are comparable in size and shape in the two pallidal segments. Only a minority of ChAT+ varicosities displays a synaptic specialization (12 % in the GPi and 17 % in the GPe); these scarce synaptic contacts are mostly of the symmetrical type and occur exclusively on pallidal dendrites. No ChAT+ axo-axonic synaptic contacts are observed, suggesting that ACh exerts its modulatory action on pallidal afferents through diffuse transmission, whereas pallidal neurons may be influenced by both volumic and synaptic delivery of ACh.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), F-6530-1, 2601, ch. de la Canardière, Quebec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - André Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), F-6530-1, 2601, ch. de la Canardière, Quebec, QC, G1J 2G3, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Martin Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), F-6530-1, 2601, ch. de la Canardière, Quebec, QC, G1J 2G3, Canada. .,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
43
|
Kang JI, Huppé-Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci 2014; 8:172. [PMID: 25278848 PMCID: PMC4167004 DOI: 10.3389/fnsys.2014.00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.
Collapse
Affiliation(s)
- Jun Il Kang
- École d'optométrie, Université de Montréal Montréal, QC, Canada ; Département de Neuroscience, Université de Montréal Montréal, QC, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
44
|
McQuiston AR. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front Synaptic Neurosci 2014; 6:20. [PMID: 25278874 PMCID: PMC4165287 DOI: 10.3389/fnsyn.2014.00020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine release in the central nervous system (CNS) has an important role in attention, recall, and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB). Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors, and astrocytes. A significant portion of acetylcholine's effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons, and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.
Collapse
Affiliation(s)
- A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
45
|
Disney AA, Reynolds JH. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human. J Comp Neurol 2014; 522:986-1003. [PMID: 23983014 PMCID: PMC3945972 DOI: 10.1002/cne.23456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex.
Collapse
Affiliation(s)
- Anita A Disney
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, 92037
| | | |
Collapse
|
46
|
Arroyo S, Bennett C, Hestrin S. Nicotinic modulation of cortical circuits. Front Neural Circuits 2014; 8:30. [PMID: 24734005 PMCID: PMC3975109 DOI: 10.3389/fncir.2014.00030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
The ascending cholinergic neuromodulatory system sends projections throughout cortex and has been shown to play an important role in a number of cognitive functions including arousal, working memory, and attention. However, despite a wealth of behavioral and anatomical data, understanding how cholinergic synapses modulate cortical function has been limited by the inability to selectively activate cholinergic axons. Now, with the development of optogenetic tools and cell-type specific Cre-driver mouse lines, it has become possible to stimulate cholinergic axons from the basal forebrain (BF) and probe cholinergic synapses in the cortex for the first time. Here we review recent work studying the cell-type specificity of nicotinic signaling in the cortex, synaptic mechanisms mediating cholinergic transmission, and the potential functional role of nicotinic modulation.
Collapse
Affiliation(s)
- Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
47
|
Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol 2014; 26:149-60. [PMID: 24637201 DOI: 10.1016/j.conb.2014.02.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 01/01/2023]
Abstract
Cholinergic actions are critical for normal cortical cognitive functions. The release of acetylcholine (ACh) in neocortex and the impact of this neuromodulator on cortical computations exhibit remarkable spatiotemporal precision, as required for the regulation of behavioral processes underlying attention and learning. We discuss how the organization of the cholinergic projections to the cortex and their release properties might contribute to this specificity. We also review recent studies suggesting that the modulatory influences of ACh on the properties of cortical neurons can have the necessary temporal dynamic range, emphasizing evidence of powerful interneuron subtype-specific effects. We discuss areas that require further investigation and point to technical advances in molecular and genetic manipulations that promise to make headway in understanding the neural bases of cholinergic modulation of cortical cognitive operations.
Collapse
Affiliation(s)
- William Muñoz
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States
| | - Bernardo Rudy
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States.
| |
Collapse
|
48
|
Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. J Neurosci 2013; 33:17951-66. [PMID: 24198382 DOI: 10.1523/jneurosci.1644-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Different levels of cholinergic neuromodulatory tone have been hypothesized to set the state of cortical circuits either to one dominated by local cortical recurrent activity (low ACh) or to one dependent on thalamic input (high ACh). High ACh levels depress intracortical but facilitate thalamocortical synapses, whereas low levels potentiate intracortical synapses. Furthermore, recent work has implicated the thalamus in controlling cortical network state during waking and attention, when ACh levels are highest. To test this hypothesis, we used rat thalamocortical slices maintained in medium to generate spontaneous up- and down-states and applied different ACh concentrations to slices in which thalamocortical connections were either maintained or severed. The effects on spontaneous and evoked up-states were measured using voltage-sensitive dye imaging, intracellular recordings, local field potentials, and single/multiunit activity. We found that high ACh can increase the frequency of spontaneous up-states, but reduces their duration in slices with intact thalamocortical connections. Strikingly, when thalamic connections are severed, high ACh instead greatly reduces or abolishes spontaneous up-states. Furthermore, high ACh reduces the spatial propagation, velocity, and depolarization amplitude of evoked up-states. In contrast, low ACh dramatically increases up-state frequency regardless of the presence or absence of intact thalamocortical connections and does not reduce the duration, spatial propagation, or velocity of evoked up-states. Therefore, our data support the hypothesis that strong cholinergic modulation increases the influence, and thus the signal-to-noise ratio, of afferent input over local cortical activity and that lower cholinergic tone enhances recurrent cortical activity regardless of thalamic input.
Collapse
|
49
|
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J Comp Neurol 2013; 521:4124-44. [PMID: 23852922 PMCID: PMC4175400 DOI: 10.1002/cne.23415] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/11/2013] [Accepted: 06/28/2013] [Indexed: 01/15/2023]
Abstract
The nucleus basalis is located at the confluence of the limbic and reticular activating systems. It receives dopaminergic input from the ventral tegmental area/substantia nigra, serotonergic input from the raphe nuclei, and noradrenergic input from the nucleus locus coeruleus. Its cholinergic contingent, known as Ch4, provides the principal source of acetylcholine for the cerebral cortex and amygdala. More than half of presynaptic varicosities along its cholinergic axons make traditional synaptic contacts with cortical neurons. Limbic and paralimbic cortices of the brain receive the heaviest cholinergic input from Ch4 and are also the principal sources of reciprocal cortical projections back to the nucleus basalis. This limbic affiliation explains the role of the nucleus basalis in modulating the impact and memorability of incoming sensory information. The anatomical continuity of the nucleus basalis with other basomedial limbic structures may underlie its early and high vulnerability to the tauopathy and neurofibrillary degeneration of Alzheimer's disease. The tauopathy in Ch4 eventually leads to the degeneration of the cholinergic axons that it sends to the cerebral cortex. The early involvement of Ch4 has a magnifying effect on Alzheimer's pathology, because neurofibrillary degeneration in a small number of neurons can perturb neurotransmission in all cortical areas. Although the exact contribution of the Ch4 lesion to the cognitive changes of Alzheimer's disease remains poorly understood, the cholinergic circuitry of the nucleus basalis is emerging as one of the most strategically positioned and behaviorally consequential modulatory systems of the human cerebral cortex. J. Comp. Neurol. 521:4124-4144, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M.-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
50
|
Csaba Z, Krejci E, Bernard V. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. J Comp Neurol 2013. [PMID: 23184757 DOI: 10.1002/cne.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20-30%) of plasma membrane-associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission.
Collapse
Affiliation(s)
- Zsolt Csaba
- Université Paris Descartes, 75006 Paris, France.
| | | | | |
Collapse
|