1
|
Veith AC, Carney PR, Wu A, Rojas BL, Vazquez-Rivera E, Berres ME, Harrison C, Rubinstein CD, Bradfield CA. Retrospective analysis and decentralized distribution to improve the lifecycle of Ah receptor research assets. Biochem Pharmacol 2025; 236:116874. [PMID: 40118284 DOI: 10.1016/j.bcp.2025.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Scientific progress benefits from the sharing of "research assets" such as data, reagents, models, and experimental samples. To improve asset shareability, we evaluated the availability, quality, and characterization of recombinant DNA molecules, recombinant mouse models, and tissue samples described by our laboratory in ten publications spanning over thirty years. Employing state-of-the-art molecular technologies, we identified existing samples, updated their localization, generated modern sequences and maps of recombinant models, and ported the associated metadata to an internal blockchain-dependent resource using a standardized description for each asset class. We also created non-fungible tokens representing research assets on the public blockchain network Solana. In addition to providing an audit of previously reported shareable assets and improving the value of recombinant models, this re-analysis also provides evidence for the utility of extant tissue samples that may be difficult and expensive to regenerate. The results demonstrate how retrospective analysis can improve and expand upon the spectrum of shareable research assets through updates on molecular characterization and physical location, as well as improving the availability of biological samples of potential high experimental value. Moreover, the development of a decentralized ledger harboring this revised metadata provides a path to the description and tokenization of scientific assets and provides a strategy to extend the life of scientific assets even after laboratories or sources close.
Collapse
Affiliation(s)
- Alex C Veith
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Patrick R Carney
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Aijing Wu
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brenda L Rojas
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Emmanuel Vazquez-Rivera
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher Harrison
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - C Dustin Rubinstein
- University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher A Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; University of Wisconsin Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Stephens VR, Ameli S, Major AS, Wanjalla CN. Mouse Models of HIV-Associated Atherosclerosis. Int J Mol Sci 2025; 26:3417. [PMID: 40244289 PMCID: PMC11989901 DOI: 10.3390/ijms26073417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Several factors are implicated in the pathogenesis of CVD, and efforts have been made to reduce traditional risks, yet CVD remains a complex burden. Notably, people living with HIV (PLWH) are twice as likely to develop CVD compared to persons without HIV (PWoH). Intensive statin therapy, the first-line treatment to prevent cardiovascular events, is effective at reducing morbidity and mortality. However, statin therapy has not reduced the overall prevalence of CVD. Despite antiretroviral therapy (ART), and new guidelines for statin use, PLWH have persistent elevation of inflammatory markers, which is suggested to be a bigger driver of future cardiovascular events than low-density lipoprotein. Herein, we have summarized the development of atherosclerosis and highlighted mouse models of atherosclerosis in the presence and absence of HIV. Since most mouse strains have several mechanisms that are atheroprotective, researchers have developed mouse models to study CVD using dietary and genetic manipulations. In evaluating the current methodologies for studying HIV-associated atherosclerosis, we have detailed the benefits of integrating multi-omics analyses, genetic manipulations, and immune cell profiling within mouse models. These advanced approaches significantly enhance our capacity to address critical gaps in understanding the immune mechanisms driving CVD, including in the context of HIV.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sharareh Ameli
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy S. Major
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Valley Health System, Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Celestine N. Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.); (A.S.M.)
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2025; 33:313-321. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Haque R, Song AD, Lee J, Lee SJV, Suh JM. Essential resources and best practices for laboratory mouse research. Mol Cells 2025; 48:100178. [PMID: 39788324 PMCID: PMC11847101 DOI: 10.1016/j.mocell.2025.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
The laboratory mouse (Mus musculus) is the most widely used mammalian model organism in biomedical and life science research. This concise guide aims to provide essential information to assist researchers new to working with mice, covering topics such as mouse husbandry, maintenance, and available resources for obtaining mouse strains and associated data. Additionally, we discuss ethical considerations, emphasizing the 3Rs (replacement, reduction, and refinement) to ensure responsible and humane research practices.
Collapse
Affiliation(s)
- Rosa Haque
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Aysenur Deniz Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jongsun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
5
|
Patel VN, Ball JR, Choi SH, Lane ED, Wang Z, Aure MH, Villapudua CU, Zheng C, Bleck C, Mohammed H, Syed Z, Liu J, Hoffman MP. Loss of 3-O-sulfotransferase enzymes, Hs3st3a1 and Hs3st3b1, reduces kidney and glomerular size and disrupts glomerular architecture. Matrix Biol 2024; 133:134-149. [PMID: 38944161 PMCID: PMC11402573 DOI: 10.1016/j.matbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Changyu Zheng
- Translational Research Core, Nationa Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Christopher Bleck
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Heba Mohammed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Zulfeqhar Syed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
6
|
Joo HK, Kim S, Choi E, Jin H, Lee YR, Lee EO, Kim CS, Jeon BH. Heterozygous Apex1 deficiency exacerbates lipopolysaccharide-induced systemic inflammation in a murine model. Free Radic Biol Med 2024; 223:96-108. [PMID: 39067624 DOI: 10.1016/j.freeradbiomed.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The biological role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (Apex1) in modulating systemic inflammation remains unclear. This study aimed to assess the impact of Apex1 deficiency on systemic inflammation triggered by lipopolysaccharide (LPS) in a murine model. The methods involved transcriptomic analysis and assessments of inflammatory responses in age-matched 8-week-old Apex1+/- and wild-type Apex1+/+ mice, generated using the CRISPR/Cas9 system. Apex1+/- mice displayed no overt changes in body weight, however, Apex1 protein expressions in tissues were significantly reduced compared to wild-type mice. Furthermore, in Apex1+/- mice transcriptomic analysis showed that genes associated with antioxidant pathways were downregulated, and levels of superoxide production, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) were increased. Moreover, hematological analysis showed increased neutrophil levels and a twofold increase in the count of splenic lymphocyte antigen 6 family member G+ (Ly6G+) neutrophils in the Apex1+/- mice compared to those in Apex1+/+ mice. Furthermore, following LPS treatment, the levels of cytokines and chemokines, including interleukin-1β, interleukin-10, tumor necrosis factor-α, and monocyte chemoattractant protein 1, increased in the Apex1+/- mice. The Kaplan-Meier curve showed a significant reduction in the survival rates of Apex1+/- mice treated with LPS compared to those of Apex1+/+ mice. The hepatic and lung injury scores and Ly6G+ neutrophil infiltration levels also increased in Apex1+/- mice after LPS treatment. These results showed that Apex1 deficiency exacerbated the LPS-induced tissue damage in the lung and liver. These findings illustrate that in vivo Apex1 deficiency exacerbates LPS-induced systemic inflammation, tissue damage, and mortality in a murine model, highlighting the crucial role of Apex1 in mitigating inflammatory responses and maintaining a holistic physiological equilibrium.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Sungmin Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Eunju Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Hao Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Eun-Ok Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Cuk-Seong Kim
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| |
Collapse
|
7
|
Noda K, Atale N, Al‐Zahrani A, Furukawa M, Snyder ME, Ren X, Sanchez PG. Heparanase-induced endothelial glycocalyx degradation exacerbates lung ischemia/reperfusion injury in male mice. Physiol Rep 2024; 12:e70113. [PMID: 39448392 PMCID: PMC11502304 DOI: 10.14814/phy2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The endothelial glycocalyx (eGC) is a carbohydrate-rich layer on the vascular endothelium, and its damage can lead to endothelial and organ dysfunction. Heparanase (HPSE) degrades the eGC in response to cellular stress, but its role in organ dysfunction remains unclear. This study investigates HPSE's role in lung ischemia-reperfusion (I/R) injury. A left lung hilar occlusion model was used in B6 wildtype (WT) and HPSE genetic knockout (-/-) mice to induce I/R injury in vivo. The left lungs were ischemic for 1 h followed by reperfusion for 4 h prior to investigations of lung function and eGC status. Data were compared between uninjured lungs and I/R-injured lungs in WT and HPSE-/- mice. WT lungs showed significant functional impairment after I/R injury, whereas HPSE-/- lungs did not. Inhibition or knockout of HPSE prevented eGC damage, inflammation, and cellular migration after I/R injury by reducing matrix metalloproteinase activities. HPSE-/- mice exhibited compensatory regulation of related gene expressions. HPSE facilitates eGC degradation leading to inflammation and impaired lung function after I/R injury. HPSE may be a therapeutic target to attenuate graft damage in lung transplantation.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Neha Atale
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Amer Al‐Zahrani
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Pablo G. Sanchez
- Section of Thoracic Surgery, Department of SurgeryUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
8
|
Standley A, Xie J, Lau AW, Grote L, Gifford AJ. Working with Miraculous Mice: Mus musculus as a Model Organism. Curr Protoc 2024; 4:e70021. [PMID: 39435766 DOI: 10.1002/cpz1.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The laboratory mouse has been described as a "miracle" model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anick Standley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelica Wy Lau
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW, Australia
| | - Lauren Grote
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Reyhani-Ardabili M, Fathi M, Ghafouri-Fard S. CRISPR/Cas9 technology in the modeling of and evaluation of possible treatments for Niemann-Pick C. Mol Biol Rep 2024; 51:828. [PMID: 39033258 DOI: 10.1007/s11033-024-09801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.
Collapse
Affiliation(s)
- Mehran Reyhani-Ardabili
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gregor A, Zweier C. Modelling phenotypes, variants and pathomechanisms of syndromic diseases in different systems. MED GENET-BERLIN 2024; 36:121-131. [PMID: 38854643 PMCID: PMC11154186 DOI: 10.1515/medgen-2024-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems. Models discussed include budding yeast, the nematode worm, the fruit fly, the frog, zebrafish, mice and human cell-based systems.
Collapse
Affiliation(s)
- Anne Gregor
- University of BernDepartment of Human GeneticsInselspital Bern3010BernSwitzerland
| | | |
Collapse
|
11
|
Du X, Wang C, Liu J, Yu M, Ju H, Xue S, Li Y, Liu J, Dai R, Chen J, Zhai Y, Rao J, Wang X, Sun Y, Sun L, Wu X, Xu H, Shen Q. GEN1 as a risk factor for human congenital anomalies of the kidney and urinary tract. Hum Genomics 2024; 18:41. [PMID: 38654324 PMCID: PMC11041010 DOI: 10.1186/s40246-024-00606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are prevalent birth defects. Although pathogenic CAKUT genes are known, they are insufficient to reveal the causes for all patients. Our previous studies indicated GEN1 as a pathogenic gene of CAKUT in mice, and this study further investigated the correlation between GEN1 and human CAKUT. METHODS In this study, DNA from 910 individuals with CAKUT was collected; 26 GEN1 rare variants were identified, and two GEN1 (missense) variants in a non-CAKUT group were found. Mainly due to the stability results of the predicted mutant on the website, in vitro, 10 variants (eight CAKUT, two non-CAKUT) were selected to verify mutant protein stability. In addition, mainly based on the division of the mutation site located in the functional region of the GEN1 protein, 8 variants (six CAKUT, two non-CAKUT) were selected to verify enzymatic hydrolysis, and the splice variant GEN1 (c.1071 + 3(IVS10) A > G) was selected to verify shear ability. Based on the results of in vitro experiments and higher frequency, three sites with the most significant functional change were selected to build mouse models. RESULTS Protein stability changed in six variants in the CAKUT group. Based on electrophoretic mobility shift assay of eight variants (six CAKUT, two non-CAKUT), the enzymatic hydrolysis and DNA-binding abilities of mutant proteins were impaired in the CAKUT group. The most serious functional damage was observed in the Gen1 variant that produced a truncated protein. A mini-gene splicing assay showed that the variant GEN1 (c.1071 + 3(IVS10) A > G) in the CAKUT group significantly affected splicing function. An abnormal exon10 was detected in the mini-gene splicing assay. Point-mutant mouse strains were constructed (Gen1: c.1068 + 3 A > G, p.R400X, and p.T105R) based on the variant frequency in the CAKUT group and functional impairment in vitro study and CAKUT phenotypes were replicated in each. CONCLUSION Overall, our findings indicated GEN1 as a risk factor for human CAKUT.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Rufeng Dai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yubo Sun
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Lei Sun
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
- National Key Laboratory of Kidney Diseases, 201102, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
| |
Collapse
|
12
|
Li J, Canham SM, Wu H, Henault M, Chen L, Liu G, Chen Y, Yu G, Miller HR, Hornak V, Brittain SM, Michaud GA, Tutter A, Broom W, Digan ME, McWhirter SM, Sivick KE, Pham HT, Chen CH, Tria GS, McKenna JM, Schirle M, Mao X, Nicholson TB, Wang Y, Jenkins JL, Jain RK, Tallarico JA, Patel SJ, Zheng L, Ross NT, Cho CY, Zhang X, Bai XC, Feng Y. Activation of human STING by a molecular glue-like compound. Nat Chem Biol 2024; 20:365-372. [PMID: 37828400 PMCID: PMC10907298 DOI: 10.1038/s41589-023-01434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Hua Wu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoxun Liu
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yu Chen
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Gary Yu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Viktor Hornak
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | - Antonin Tutter
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Wendy Broom
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Helen T Pham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - George S Tria
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Sejal J Patel
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Charles Y Cho
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yan Feng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
13
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
14
|
Lee Y, Kim J. Unraveling the mystery of oligogenic inheritance under way? Mol Cells 2024; 47:100003. [PMID: 38376484 PMCID: PMC10880077 DOI: 10.1016/j.mocell.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- Yerim Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
15
|
Wei R, Han X, Li M, Ji Y, Zhang L, Christodoulou MI, Hameed Aga NJ, Zhang C, Gao R, Liu J, Fu J, Lu G, Xiao X, Liu X, Yang PC, McInnes IB, Sun Y, Gao P, Qin C, Huang SK, Zhou Y, Xu D. The nuclear cytokine IL-37a controls lethal cytokine storms primarily via IL-1R8-independent transcriptional upregulation of PPARγ. Cell Mol Immunol 2023; 20:1428-1444. [PMID: 37891333 PMCID: PMC10687103 DOI: 10.1038/s41423-023-01091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPβ and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biom--acromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Yuan Ji
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Maria-Ioanna Christodoulou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus
| | | | - Caiyan Zhang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jinrong Fu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyu Liu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ying Sun
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peisong Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.
| | - Shau-Ku Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China.
| | - Yufeng Zhou
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China.
| | - Damo Xu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
16
|
Wright T, Wang Y, Stratton SA, Sebastian M, Liu B, Johnson DG, Bedford MT. Loss of the methylarginine reader function of SND1 confers resistance to hepatocellular carcinoma. Biochem J 2023; 480:1805-1816. [PMID: 37905668 PMCID: PMC10860161 DOI: 10.1042/bcj20230384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.
Collapse
Affiliation(s)
- Tanner Wright
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- MD Anderson UTHealth Houston, Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, U.S.A
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Sabrina A. Stratton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Manu Sebastian
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
17
|
Limaye A, Cho K, Hall B, Khillan JS, Kulkarni AB. Genotyping Protocols for Genetically Engineered Mice. Curr Protoc 2023; 3:e929. [PMID: 37984376 PMCID: PMC10754054 DOI: 10.1002/cpz1.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Historically, the laboratory mouse has been the mammalian species of choice for studying gene function and for modeling diseases in humans. This was mainly due to their availability from mouse fanciers. In addition, their short generation time, small size, and minimal food consumption compared to that of larger mammals were definite advantages. This led to the establishment of large hubs for the development of genetically modified mouse models, such as the Jackson Laboratory. Initial research into inbred mouse strains in the early 1900s revolved around coat color genetics and cancer studies, but gene targeting in embryonic stem cells and the introduction of transgenes through pronuclear injection of a mouse zygote, along with current clustered regularly interspaced short palindromic repeat (CRISPR) RNA gene editing, have allowed easy manipulation of the mouse genome. Originally, to distribute a mouse model to other facilities, standard methods had to be developed to ensure that each modified mouse trait could be consistently identified no matter which laboratory requested it. The task of establishing uniform protocols became easier with the development of the polymerase chain reaction (PCR). This chapter will provide guidelines for identifying genetically modified mouse models, mainly using endpoint PCR. In addition, we will discuss strategies to identify genetically modified mouse models that have been established using newer gene-editing technology such as CRISPR. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Digestion with proteinase K followed by purification of genomic DNA using phenol/chloroform Alternate Protocol: Digestion with proteinase K followed by crude isopropanol extraction of genomic DNA for tail biopsy and ear punch samples Basic Protocol 2: Purification of genomic DNA using a semi-automated system Basic Protocol 3: Purification of genomic DNA from semen, blood, or buccal swabs Basic Protocol 4: Purification of genomic DNA from mouse blastocysts to assess CRISPR gene editing Basic Protocol 5: Routine endpoint-PCR-based genotyping using DNA polymerase and thermal cycler Basic Protocol 6: T7E1/Surveyor assays to detect insertion or deletions following CRISPR editing Basic Protocol 7: Detecting off-target mutations following CRISPR editing Basic Protocol 8: Detecting genomic sequence deletion after CRISPR editing using a pair of guide RNAs Basic Protocol 9: Detecting gene knock-in events following CRISPR editing Basic Protocol 10: Screening of conditional knockout floxed mice.
Collapse
Affiliation(s)
- Advait Limaye
- National Institute of Dental and Craniofacial Research
| | - Kyoungin Cho
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research
| | - Jaspal S. Khillan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Wang Y, Wang M, Bao R, Wang L, Du X, Qiu S, Yang C, Song H. A novel humanized tri-receptor transgenic mouse model of HAdV infection and pathogenesis. J Med Virol 2023; 95:e29026. [PMID: 37578851 DOI: 10.1002/jmv.29026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Human adenovirus (HAdV) is a highly virulent respiratory pathogen that poses clinical challenges in terms of diagnostics and treatment. Currently, no effective therapeutic drugs or prophylactic vaccines are available for HAdV infections. One factor contributing to this deficiency is that existing animal models, including wild-type and single-receptor transgenic mice, are unsuitable for HAdV proliferation and pathology testing. In this study, a tri-receptor transgenic mouse model expressing the three best-characterized human cellular receptors for HAdV (hCAR, hCD46, and hDSG2) was generated and validated via analysis of transgene insertion, receptor mRNA expression, and protein abundance distribution. Following HAdV-7 infection, the tri-receptor mice exhibited high transcription levels at the early and late stages of the HAdV gene, as well as viral protein expression. Furthermore, the tri-receptor mice infected with HAdV exhibited dysregulated cytokine responses and multiple tissue lesions. This transgenic mouse model represents human HAdV infection and pathogenesis with more accuracy than any other reported animal model. As such, this model facilitates the comprehensive investigation of HAdV pathogenesis as well as the evaluation of potential vaccines and therapeutic modalities for HAdV.
Collapse
Affiliation(s)
- Yawei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Min Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Heaith, China Medical University, Shenyang, China
| | - Renlong Bao
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Cui M, Liu Y, Men X, Li T, Liu D, Deng Y. Large animal models in the study of gynecological diseases. Front Cell Dev Biol 2023; 11:1110551. [PMID: 36755972 PMCID: PMC9899856 DOI: 10.3389/fcell.2023.1110551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Gynecological diseases are a series of diseases caused by abnormalities in the female reproductive organs or breast, which endanger women's fertility and even their lives. Therefore, it is important to investigate the mechanism of occurrence and treatment of gynecological diseases. Animal models are the main objects for people to study the development of diseases and explore treatment options. Large animals, compared to small rodents, have reproductive organs with structural and physiological characteristics closer to those of humans, and are also better suited for long-term serial examinations for gynecological disease studies. This review gives examples of large animal models in gynecological diseases and provides a reference for the selection of animal models for gynecological diseases.
Collapse
Affiliation(s)
- Minghua Cui
- Gynecology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuehui Liu
- Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaoping Men
- Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tao Li
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Da Liu, ; Yongzhi Deng,
| | - Yongzhi Deng
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Da Liu, ; Yongzhi Deng,
| |
Collapse
|
20
|
Tian H, Niu H, Luo J, Yao W, Gao W, Wen Y, Cheng M, Lei A, Hua J. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10:e13945. [PMID: 36124130 PMCID: PMC9482360 DOI: 10.7717/peerj.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Lipid synthesis is an indispensable process during embryo and growth development. Abnormal lipid synthesis metabolism can cause multiple metabolic diseases including obesity and hyperlipidemia. Stearoyl-Coenzyme A desaturase 1 (SCD1) is responsible for catalyzing the synthesis of monounsaturated fatty acids (MUFA) and plays an essential role in lipid metabolism. The aim of our study was to evaluate the effects of SCD1 on embryo development and lipid synthesis in a knockout mice model. Methods We used the CRISPR/Cas9 system together with microinjection for the knockout mouse model generation. Ten-week-old female C57BL/6 mice were used for zygote collection. RNase-free water was injected into mouse zygotes at different cell phases in order to select the optimal time for microinjection. Five sgRNAs were designed and in vitro transcription was performed to obtain sgRNAs and Cas9 mRNA. RNase-free water, NC sgRNA/Cas9 mRNA, and Scd1 sgRNA/Cas9 mRNA were injected into zygotes to observe the morula and blastocyst formation rates. Embryos that were injected with Scd1 sgRNA/Cas9 mRNA and developed to the two-cell stage were used for embryo transfer. Body weight, triacylglycerol (TAG), and cholesterol in Scd1 knockout mice serum were analyzed to determine the effects of SCD1 on lipid metabolism. Results Microinjection performed during the S phase presented with the highest zygote survival rate (P < 0.05). Of the five sgRNAs targeted to Scd1, two sgRNAs with relatively higher gene editing efficiency were used for Scd1 knockout embryos and mice generation. Genome sequence modification was observed at Scd1 exons in embryos, and Scd1 knockout reduced blastocyst formation rates (P < 0.05). Three Scd1 monoallelic knockout mice were obtained. In mice, the protein level of SCD1 decreased (P < 0.05), and the body weight and serum TAG and cholesterol contents were all reduced (P < 0.01).
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
O’Neill TJ, Krappmann D, Gewies A. Optimized CRISPR-Cas9-based Strategy for Complex Gene Targeting in Murine Embryonic Stem Cells for Germline Transmission. Bio Protoc 2022; 12:e4423. [PMID: 35813027 PMCID: PMC9184063 DOI: 10.21769/bioprotoc.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Although CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening in vitro before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations. Here, we demonstrate that after transfection of homology templates and PX458 CRISPR-Cas9 plasmids, EGFP-positive ESCs can be sorted with a flow cytometer for the enrichment of CRISPR-Cas9-expressing cells. Cell sorting obviates antibiotic selection and therefore allows for more gentle culture conditions and faster outgrowth of ESC clones, which are then screened by qPCR for correct genomic modifications. qPCR screening is more convenient and less time-consuming compared to analyzing PCR samples on agarose gels. Positive ESC clones are validated by PCR analysis and sequencing and can serve for injection into early-stage mouse embryos for the generation of chimeric mice with germline transmission. Therefore, we describe here a simple and straightforward protocol for CRISPR-Cas9-directed gene targeting in ESCs. Graphical abstract.
Collapse
Affiliation(s)
- Thomas J. O’Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapies Center (MTTC), Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapies Center (MTTC), Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Andreas Gewies
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapies Center (MTTC), Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany,
*For correspondence:
| |
Collapse
|
22
|
Cho A, Hall BE, Limaye AS, Wang S, Chung MK, Kulkarni AB. Nociceptive signaling through transient receptor potential vanilloid 1 is regulated by Cyclin Dependent Kinase 5-mediated phosphorylation of T407 in vivo. Mol Pain 2022; 18:17448069221111473. [PMID: 35726573 PMCID: PMC9251968 DOI: 10.1177/17448069221111473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclin dependent kinase 5 (Cdk5) is a key neuronal kinase whose activity can modulate thermo-, mechano-, and chemo-nociception. Cdk5 can modulate nociceptor firing by phosphorylating pain transducing ion channels like the transient receptor potential vanilloid 1 (TRPV1), a thermoreceptor that is activated by noxious heat, acidity, and capsaicin. TRPV1 is phosphorylated by Cdk5 at threonine-407 (T407), which then inhibits Ca2+ dependent desensitization. To explore the in vivo implications of Cdk5-mediated TRPV1 phosphorylation on pain perception, we engineered a phospho-null mouse where we replaced T407 with alanine (T407A). The T407A point mutation did not affect the expression of TRPV1 in nociceptors of the dorsal root ganglia and trigeminal ganglia (TG). However, behavioral tests showed that the TRPV1T407A knock-in mice have reduced aversion to oral capsaicin along with a trend towards decreased facial displays of pain after a subcutaneous injection of capsaicin into the vibrissal pad. In addition, the TRPV1T407A mice display basal thermal hypoalgesia with increased paw withdrawal latency while tested on a hot plate. These results indicate that phosphorylation of TRPV1 by Cdk5 can have important consequences on pain perception, as loss of the Cdk5 phosphorylation site reduced capsaicin- and heat-evoked pain behaviors in mice.
Collapse
Affiliation(s)
- Andrew Cho
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Advait S Limaye
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Ashok B Kulkarni
- Gene Transfer Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
24
|
Kim EC, Zhang J, Tang AY, Bolton EC, Rhodes JS, Christian-Hinman CA, Chung HJ. Spontaneous seizure and memory loss in mice expressing an epileptic encephalopathy variant in the calmodulin-binding domain of K v7.2. Proc Natl Acad Sci U S A 2021; 118:e2021265118. [PMID: 34911751 PMCID: PMC8713762 DOI: 10.1073/pnas.2021265118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2+/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andy Y Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
25
|
Li P, Wang L, Yang J, Di LJ, Li J. Applications of the CRISPR-Cas system for infectious disease diagnostics. Expert Rev Mol Diagn 2021; 21:723-732. [PMID: 33899643 DOI: 10.1080/14737159.2021.1922080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Rapid and accurate diagnostic approaches are essential for impeding the spread of infectious diseases. This review aims to summarize current progress of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) systems in the applications for diagnostics of infectious diseases including the ongoing COVID-19 epidemic. AREAS COVERED In this review, we discuss class 2 CRISPR-Cas biosensing systems-based diagnostics in various emerging and reemerging infectious diseases, CRISPR-Cas systems have created a new era for early diagnostics of infectious diseases, especially with the discovery of the collateral cleavage activity of Cas12 and Cas13. We mainly focus on different CRISPR-Cas effectors for the detection of pathogenic microorganisms as well as provide a detailed explanation of the pros and cons of CRISPR-Cas biosensing systems. In addition, we also introduce future research perspectives. EXPERT COMMENTARY However, further improvement of newly discovered systems and engineering existing ones should be developed to increase the specificity, sensitivity or stability of the diagnostic tools. It may be a long journey to finish the clinical transition from research use. CRISPR-Cas approaches will emerge as more promising and robust tools for infectious disease diagnosis in the future.
Collapse
Affiliation(s)
- Peipei Li
- Kobilka Institute of Innovative Drug Discovery, Faculty of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong, China.,Cancer Center, Faculty of Health Sciences, University of Macau, China
| | - Li Wang
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Junning Yang
- Frontage Laboratories Inc, Exton, Pennsylvania, USA
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, China
| | - Jingjing Li
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.,Cancer Center, Faculty of Health Sciences, University of Macau, China
| |
Collapse
|
26
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
27
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
28
|
Lin B, Sun J, Fraser IDC. Single-tube genotyping for small insertion/deletion mutations: simultaneous identification of wild type, mutant and heterozygous alleles. Biol Methods Protoc 2020; 5:bpaa007. [PMID: 33782652 DOI: 10.1093/biomethods/bpaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Current methods of genotyping small insertion/deletion (indel) mutations are costly, laborious, and can be unreliable. To address this, we have developed a method for small indel genotyping in a single polymerase chain reaction, with wild-type, heterozygous and mutant alleles distinguishable by band pattern in routine agarose gel electrophoresis. We demonstrate this method with multiple genes to distinguish 10 bp, 4 bp and even 1 bp deletions from the wild type. Through systematic testing of numerous primer designs, we also propose guidelines for genotyping small indel mutations. Our method provides a convenient approach to genotyping small indels derived from clustered regularly interspaced short palindromic repeats-mediated gene editing, N-ethyl-N-nitrosourea induced mutagenesis or diagnosis of naturally occurring polymorphisms/mutations.
Collapse
Affiliation(s)
- Bin Lin
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Sun
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Ahmed HMM, Hildebrand L, Wimmer EA. Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnol 2019; 19:85. [PMID: 31805916 PMCID: PMC6896403 DOI: 10.1186/s12896-019-0588-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The invasive fruit pest Drosophila suzukii was reported for the first time in Europe and the USA in 2008 and has spread since then. The adoption of type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) as a tool for genome manipulation provides new ways to develop novel biotechnologically-based pest control approaches. Stage or tissue-specifically expressed genes are of particular importance in the field of insect biotechnology. The enhancer/promoter of the spermatogenesis-specific beta-2-tubulin (β2t) gene was used to drive the expression of fluorescent proteins or effector molecules in testes of agricultural pests and disease vectors for sexing, monitoring, and reproductive biology studies. Here, we demonstrate an improvement to CRISPR/Cas-based genome editing in D. suzukii and establish a sperm-marking system. RESULTS To improve genome editing, we isolated and tested the D. suzukii endogenous promoters of the small nuclear RNA gene U6 to drive the expression of a guide RNA and the Ds heat shock protein 70 promoter to express Cas9. For comparison, we used recombinant Cas9 protein and in vitro transcribed gRNA as a preformed ribonucleoprotein. We demonstrate the homology-dependent repair (HDR)-based genome editing efficiency by applying a previously established transgenic line that expresses DsRed ubiquitously as a target platform. In addition, we isolated the Ds_β2t gene and used its promoter to drive the expression of a red fluorescence protein in the sperm. A transgenic sperm-marking strain was then established by the improved HDR-based genome editing. CONCLUSION The deployment of the endogenous promoters of the D. suzukii U6 and hsp70 genes to drive the expression of gRNA and Cas9, respectively, enabled the effective application of helper plasmid co-injections instead of preformed ribonucleoproteins used in previous reports for HDR-based genome editing. The sperm-marking system should help to monitor the success of pest control campaigns in the context of the Sterile Insect Technique and provides a tool for basic research in reproductive biology of this invasive pest. Furthermore, the promoter of the β2t gene can be used in developing novel transgenic pest control approaches and the CRISPR/Cas9 system as an additional tool for the modification of previously established transgenes.
Collapse
Affiliation(s)
- Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
- Department of Crop Protection, Faculty of Agriculture-University of Khartoum, P.O. Box 32, 13314, Khartoum, Khartoum North, Sudan
| | - Luisa Hildebrand
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
30
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|