1
|
Salnikov OG, Chukanov NV, Pravdivtsev AN, Burueva DB, Sviyazov SV, Them K, Hövener JB, Koptyug IV. Heteronuclear Parahydrogen-Induced Hyperpolarization via Side Arm Hydrogenation. Chemphyschem 2025:e2401119. [PMID: 40211662 DOI: 10.1002/cphc.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/22/2025] [Indexed: 05/02/2025]
Abstract
Nuclear spin hyperpolarization dramatically enhances the sensitivity of nuclear magnetic resonance spectroscopy and imaging. Hyperpolarization of biomolecules (e.g., pyruvate) is of particular interest as it allows one to follow their metabolism, providing a diagnostic tool for various pathologies, including cancer. In this regard, the hyperpolarization of 13C nuclei is especially beneficial due to its typically relatively long hyperpolarization lifetime and the absence of a background signal. Parahydrogen-induced polarization (PHIP) is arguably the most affordable hyperpolarization technique. PHIP exploits the pairwise addition of parahydrogen to an unsaturated substrate. This sets limitations on the range of compounds amenable to direct PHIP hyperpolarization. The range of molecules that can be hyperpolarized with PHIP significantly expanded in 2015 when PHIP by means of side arm hydrogenation (PHIP-SAH) was introduced. Herein, parahydrogen is added to an unsaturated alcoholic moiety of an ester followed by polarization transfer to carboxylate 13C nuclei with a subsequent side arm cleavage. In this review, the recent advances in PHIP-SAH are discussed, including the synthetic methodology to produce isotopically labeled precursors, peculiarities of pairwise addition of parahydrogen to PHIP-SAH precursors, polarization transfer approaches, hyperpolarization lifetime, side arm cleavage, purification of hyperpolarized solution, and, finally, in vitro and in vivo applications.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Nikita V Chukanov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Sergey V Sviyazov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Them K, Kuhn J, Pravdivtsev AN, Hövener JB. Nuclear spin polarization of lactic acid via exchange of parahydrogen-polarized protons. Commun Chem 2024; 7:172. [PMID: 39112677 PMCID: PMC11306230 DOI: 10.1038/s42004-024-01254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Hyperpolarization has become a powerful tool to enhance the sensitivity of magnetic resonance. A universal tool to hyperpolarize small molecules in solution, however, has not yet emerged. Transferring hyperpolarized, labile protons between molecules is a promising approach towards this end. Therefore, hydrogenative parahydrogen-induced polarization (PHIP) was recently proposed as a source to polarize exchanging protons (PHIP-X). Here, we identified four key components that govern PHIP-X: adding the spin order, polarizing the labile proton, proton exchange, and polarization of the target nucleus. We investigated the last two steps experimentally and using simulations. We found optimal exchange rates and field cycling methods to polarize the target molecules. We also investigated the influence of spin relaxation of exchanging protons on the target polarization. It was found experimentally that transferring the polarization from protons directly bound to the target X-nucleus (here 13C) of lactate and methanol using a pulse sequence was more efficient than applying a corresponding sequence to the labile proton. Furthermore, varying the concentrations of the transfer and target molecules yielded a distinct maximum 13C polarization. We believe this work will further help to understand and optimize PHIP-X towards a broadly applicable hyperpolarization method.
Collapse
Affiliation(s)
- Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
3
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Assaf CD, Gui X, Auer AA, Duckett SB, Hövener JB, Pravdivtsev AN. J Coupling Constants of <1 Hz Enable 13C Hyperpolarization of Pyruvate via Reversible Exchange of Parahydrogen. J Phys Chem Lett 2024; 15:1195-1203. [PMID: 38271215 PMCID: PMC10860132 DOI: 10.1021/acs.jpclett.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Observing pyruvate metabolism in vivo has become a focal point of molecular magnetic resonance imaging. Signal amplification by reversible exchange (SABRE) has recently emerged as a versatile hyperpolarization technique. Tuning of the spin order transfer (SOT) in SABRE is challenging as the small 1H-13C J couplings, in the 13C-pyruvate case, result in SOT being not readily discernible. We demonstrate an experimental method using frequency-selective excitation of parahydrogen-derived polarization SOT sequence (SEPP-SPINEPT); its application led to up to 5700-fold 13C signal gain. In this way, we estimated the lifetime of two Ir-pyruvate SABRE complexes alongside the individual probing of eight small 1H-13C J couplings that connect the hydride protons in these complexes to 1- and 2-13C pyruvate spins, affording values between 0 and 2.69 Hz. Using electronic structure calculations, we define the low-energy structure of the corresponding complexes. Hence, this study demonstrates a novel approach to analyzing the spin topology of short-lived organometallic complexes.
Collapse
Affiliation(s)
- Charbel D Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Xin Gui
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington YO10 5NY, U.K
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
5
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Huynh MT, Buchanan E, Chirayil S, Adebesin AM, Kovacs Z. StereoPHIP: Stereoselective Parahydrogen-Induced Polarization. Angew Chem Int Ed Engl 2023; 62:e202311669. [PMID: 37714818 PMCID: PMC10842948 DOI: 10.1002/anie.202311669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Parahydrogen-induced polarization (PHIP) followed by polarization transfer to 13 C is a rapidly developing technique for the generation of 13 C-hyperpolarized substrates. Chirality plays an essential role in living systems and differential metabolism of enantiomeric pairs of metabolic substrates is well documented. Inspired by asymmetric hydrogenation, here we report stereoPHIP, which involves the addition of parahydrogen to a prochiral substrate with a chiral catalyst followed by polarization transfer to 13 C spins. We demonstrate that parahydrogen could be rapidly added to the prochiral precursor to both enantiomers of lactic acid (D and L), with both the (R,R) and (S,S) enantiomers of a chiral rhodium(I) catalyst to afford highly 13 C-hyperpolarized (over 20 %) L- and D-lactate ester derivatives, respectively, with excellent stereoselectivity. We also show that the hyperpolarized 1 H signal decays obtained with the (R,R) and (S,S) catalysts were markedly different. StereoPHIP expands the scope of conventional PHIP to the production of 13 C hyperpolarized chiral substrates with high stereoselectivity.
Collapse
Affiliation(s)
- Mai T Huynh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Emily Buchanan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Adeniyi M Adebesin
- Department Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
7
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
8
|
Stevanato G, Ding Y, Mamone S, Jagtap AP, Korchak S, Glöggler S. Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP. J Am Chem Soc 2023; 145:5864-5871. [PMID: 36857108 PMCID: PMC10021011 DOI: 10.1021/jacs.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.
Collapse
Affiliation(s)
- Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Yonghong Ding
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Gierse M, Nagel L, Keim M, Lucas S, Speidel T, Lobmeyer T, Winter G, Josten F, Karaali S, Fellermann M, Scheuer J, Müller C, van Heijster F, Skinner J, Löffler J, Parker A, Handwerker J, Marshall A, Salhov A, El-Kassem B, Vassiliou C, Blanchard JW, Picazo-Frutos R, Eills J, Barth H, Jelezko F, Rasche V, Schilling F, Schwartz I, Knecht S. Parahydrogen-Polarized Fumarate for Preclinical in Vivo Metabolic Magnetic Resonance Imaging. J Am Chem Soc 2023; 145:5960-5969. [PMID: 36857421 DOI: 10.1021/jacs.2c13830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.
Collapse
Affiliation(s)
- Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Tobias Speidel
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Tobias Lobmeyer
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Senay Karaali
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | | | - Frits van Heijster
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jason Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
| | | | | | | | - Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|
10
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
11
|
Hune T, Mamone S, Schroeder H, Jagtap AP, Sternkopf S, Stevanato G, Korchak S, Fokken C, Müller CA, Schmidt AB, Becker D, Glöggler S. Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1- 13 C-Pyruvate-d 3. Chemphyschem 2023; 24:e202200615. [PMID: 36106366 PMCID: PMC10092681 DOI: 10.1002/cphc.202200615] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.
Collapse
Affiliation(s)
- Theresa Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christoph A Müller
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Andreas B Schmidt
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.,Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, 48202, Detroit, MI, USA
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| |
Collapse
|
12
|
Jardim-Perassi BV, Irrera P, Lau JYC, Budzevich M, Whelan CJ, Abrahams D, Ruiz E, Ibrahim-Hashim A, Damgaci Erturk S, Longo DL, Pilon-Thomas SA, Gillies RJ. Intraperitoneal Delivery of Iopamidol to Assess Extracellular pH of Orthotopic Pancreatic Tumor Model by CEST-MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1944970. [PMID: 36704211 PMCID: PMC9836819 DOI: 10.1155/2023/1944970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Collapse
Affiliation(s)
| | - Pietro Irrera
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Justin Y. C. Lau
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikalai Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher J. Whelan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sultan Damgaci Erturk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimages (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Shari A. Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
13
|
Pokochueva EV, Svyatova AI, Burueva DB, Koptyug IV. Chemistry of nuclear spin isomers of the molecules: from the past of the Universe to emerging technologies. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Schmidt AB, de Maissin H, Adelabu I, Nantogma S, Ettedgui J, TomHon P, Goodson BM, Theis T, Chekmenev EY. Catalyst-Free Aqueous Hyperpolarized [1- 13C]Pyruvate Obtained by Re-Dissolution Signal Amplification by Reversible Exchange. ACS Sens 2022; 7:3430-3439. [PMID: 36379005 PMCID: PMC9983023 DOI: 10.1021/acssensors.2c01715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite great successes in oncology, patient outcomes are often still discouraging, and hence the diagnostic imaging paradigm is increasingly shifting toward functional imaging of the pathology to better understand individual disease biology and to personalize therapies. The dissolution Dynamic Nuclear Polarization (d-DNP) hyperpolarization method has enabled unprecedented real-time MRI sensing of metabolism and tissue pH using hyperpolarized [1-13C]pyruvate as a biosensor with great potential for diagnosis and monitoring of cancer patients. However, current d-DNP is expensive and suffers from long hyperpolarization times, posing a substantial translational roadblock. Here, we report the development of Re-Dissolution Signal Amplification By Reversible Exchange (Re-D SABRE), which relies on fast and low-cost hyperpolarization of [1-13C]pyruvate by chemical exchange with parahydrogen at microtesla magnetic fields. [1-13C]pyruvate is precipitated from catalyst-containing methanol using ethyl acetate and rapidly reconstituted in aqueous media. 13C polarization of 9 ± 1% is demonstrated after redissolution in water with residual iridium mass fraction of 8.5 ± 1.5 ppm; further improvement is anticipated via process automation. Re-D SABRE makes hyperpolarized [1-13C]pyruvate biosensor available at a fraction of the cost (<$10,000) and production time (≈1 min) of currently used techniques and makes aqueous hyperpolarized [1-13C]pyruvate "ready" for in vivo applications.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Henri de Maissin
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Isaiah Adelabu
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Shiraz Nantogma
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Rockville, Maryland 20850, United States
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27606, United States
- Vizma Life Sciences LLC, Durham, NC 27707-3669, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, United States
| | - Eduard Y. Chekmenev
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| |
Collapse
|
15
|
Pravdivtsev AN, Brahms A, Ellermann F, Stamp T, Herges R, Hövener JB. Parahydrogen-induced polarization and spin order transfer in ethyl pyruvate at high magnetic fields. Sci Rep 2022; 12:19361. [PMID: 36371512 PMCID: PMC9653431 DOI: 10.1038/s41598-022-22347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Nuclear magnetic resonance has experienced great advances in developing and translating hyperpolarization methods into procedures for fundamental and clinical studies. Here, we propose the use of a wide-bore NMR for large-scale (volume- and concentration-wise) production of hyperpolarized media using parahydrogen-induced polarization. We discuss the benefits of radio frequency-induced parahydrogen spin order transfer, we show that 100% polarization is theoretically expected for homogeneous B0 and B1 magnetic fields for a three-spin system. Moreover, we estimated that the efficiency of spin order transfer is not significantly reduced when the B1 inhomogeneity is below ± 5%; recommendations for the sample size and RF coils are also given. With the latest breakthrough in the high-yield synthesis of 1-13C-vinyl pyruvate and its deuterated isotopologues, the high-field PHIP-SAH will gain increased attention. Some remaining challenges will be addressed shortly.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Tim Stamp
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
16
|
Brahms A, Pravdivtsev AN, Stamp T, Ellermann F, Sönnichsen FD, Hövener J, Herges R. Synthesis of 13 C and 2 H Labeled Vinyl Pyruvate and Hyperpolarization of Pyruvate. Chemistry 2022; 28:e202201210. [PMID: 35905033 PMCID: PMC9804285 DOI: 10.1002/chem.202201210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/05/2023]
Abstract
The hyperpolarization of nuclear spins has enabled unique applications in chemistry, biophysics, and particularly metabolic imaging. Parahydrogen-induced polarization (PHIP) offers a fast and cost-efficient way of hyperpolarization. Nevertheless, PHIP lags behind dynamic nuclear polarization (DNP), which is already being evaluated in clinical studies. This shortcoming is mainly due to problems in the synthesis of the corresponding PHIP precursor molecules. The most widely used DNP tracer in clinical studies, particularly for the detection of prostate cancer, is 1-13 C-pyruvate. The ideal derivative for PHIP is the deuterated vinyl ester because the spin physics allows for 100 % polarization. Unfortunately, there is no efficient synthesis for vinyl esters of β-ketocarboxylic acids in general and pyruvate in particular. Here, we present an efficient new method for the preparation of vinyl esters, including 13 C labeled, fully deuterated vinyl pyruvate using a palladium-catalyzed procedure. Using 50 % enriched parahydrogen and mild reaction conditions, a 13 C polarization of 12 % was readily achieved; 36 % are expected with 100 % pH2 . Higher polarization values can be potentially achieved with optimized reaction conditions.
Collapse
Affiliation(s)
- Arne Brahms
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Tim Stamp
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Frowin Ellermann
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Rainer Herges
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
17
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field-Independent Method for the Rapid Generation of Hyperpolarized [1- 13 C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206298. [PMID: 35723041 PMCID: PMC9543135 DOI: 10.1002/anie.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Hyperpolarization methods in magnetic resonance enhance the signals by several orders of magnitude, opening new windows for real-time investigations of dynamic processes in vitro and in vivo. Here, we propose a field-independent para-hydrogen-based pulsed method to produce rapidly hyperpolarized 13 C-labeled substrates. We demonstrate the method by polarizing the carboxylic carbon of the pyruvate moiety in a purposely designed precursor to 24 % at ≈22 mT. Following a fast purification procedure, we measure 8 % polarization on free [1-13 C]pyruvate in clean water solutions at physiological conditions at 7 T. The enhanced signals allow real-time monitoring of the pyruvate-lactate conversion in cancer cells, demonstrating the potential of the method for biomedical applications in combination with existing or developing magnetic resonance technologies.
Collapse
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Anil P. Jagtap
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Stefan Glöggler
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| |
Collapse
|
19
|
Van Dyke ET, Eills J, Picazo-Frutos R, Sheberstov KF, Hu Y, Budker D, Barskiy DA. Relayed hyperpolarization for zero-field nuclear magnetic resonance. SCIENCE ADVANCES 2022; 8:eabp9242. [PMID: 35857837 PMCID: PMC9299534 DOI: 10.1126/sciadv.abp9242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 05/14/2023]
Abstract
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that provides rich spectroscopic information in the absence of large magnetic fields. However, signal acquisition still requires a mechanism for generating a bulk magnetic moment for detection, and the currently used methods only apply to a limited pool of chemicals or come at prohibitively high cost. We demonstrate that the parahydrogen-based SABRE (signal amplification by reversible exchange)-Relay method can be used as a more general means of generating hyperpolarized analytes for ZULF NMR by observing zero-field J-spectra of [13C]-methanol, [1-13C]-ethanol, and [2-13C]-ethanol in both 13C-isotopically enriched and natural abundance samples. We explore the magnetic field dependence of the SABRE-Relay efficiency and show the existence of a second maximum at 19.0 ± 0.3 mT. Despite presence of water, SABRE-Relay is used to hyperpolarize ethanol extracted from a store-bought sample of vodka (%PH ~ 0.1%).
Collapse
Affiliation(s)
- Erik T. Van Dyke
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - James Eills
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Román Picazo-Frutos
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Kirill F. Sheberstov
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- École normale supérieure, Paris Sciences et Lettres University, 75005 Paris, France
| | - Yinan Hu
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- University of California at Berkeley, Berkeley, CA 94720-7300, USA
| | - Danila A. Barskiy
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
20
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field‐Independent Method for the Rapid Generation of Hyperpolarized [1‐13C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary Sciences - Fassberg Campus: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Anil P Jagtap
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry NMR Signal Enhancement Group Am Fassberg 11 37077 Göttingen GERMANY
| |
Collapse
|
21
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
22
|
Aime S, Longo DL, Reineri F, Geninatti Crich S. New tools to investigate tumor metabolism by NMR/MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107198. [PMID: 35339957 DOI: 10.1016/j.jmr.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Changes in metabolism is an hallmark that characterizes tumour cells from healthy ones. Their detection can be highly relevant for staging the tumor and for monitoring the response to therapeutic treatments. Herein it is shown the readout of these changes can be achieved either by assessing the pH of the extracellular space in the tumour region and by monitoring real time transformations of hyperpolarized C-13 labelled substrates. Mapping pH in a MR image is possible by measuring the CEST response of an administered contrast agent such as Iopamidol that can provide accurate measurements of the heterogeneity of tumour acidosis. Direct detection of relevant enzymatic activities have been acquired by using Pyruvate and Fumarate hyperpolarized by the incorporation of a molecule of para-H2. Finally, it has been found that the tumour transformation involves an increase in the water exchange rate between the intra- and the extra-cellular compartments. A quantitative estimation of these changes can be obtained by acquiring the longitudinal relaxation times of tissue water protons at low magnetic field strength on Fast Field Cycling Relaxometers. This finding has been exploited in an application devoted to the assessment of the presence of residual tumour tissue in the margins of the resected mass in breast conservative surgery.
Collapse
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
23
|
Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry (Basel) 2022. [DOI: 10.3390/sym14030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well known that the association of parahydrogen (pH2) with an unsaturated molecule or a transient metalorganic complex can enhance the intensity of NMR signals; the effect is known as parahydrogen-induced polarization (PHIP). During recent decades, numerous methods were proposed for converting pH2-derived nuclear spin order to the observable magnetization of protons or other nuclei of interest, usually 13C or 15N. Here, we analyze the constraints imposed by the topological symmetry of the spin systems on the amplitude of transferred polarization. We find that in asymmetric systems, heteronuclei can be polarized to 100%. However, the amplitude drops to 75% in A2BX systems and further to 50% in A3B2X systems. The latter case is of primary importance for biological applications of PHIP using sidearm hydrogenation (PHIP-SAH). If the polarization is transferred to the same type of nuclei, i.e., 1H, symmetry constraints impose significant boundaries on the spin-order distribution. For AB, A2B, A3B, A2B2, AA’(AA’) systems, the maximum average polarization for each spin is 100%, 50%, 33.3%, 25%, and 0, respectively, (where A and B (or A’) came from pH2). Remarkably, if the polarization of all spins in a molecule is summed up, the total polarization grows asymptotically with ~1.27 and can exceed 2 in the absence of symmetry constraints (where is the number of spins). We also discuss the effect of dipole–dipole-induced pH2 spin-order distribution in heterogeneous catalysis or nematic liquid crystals. Practical examples from the literature illustrate our theoretical analysis.
Collapse
|
24
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
25
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
26
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
27
|
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020332. [PMID: 35056646 PMCID: PMC8778821 DOI: 10.3390/molecules27020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
In recent years the NMR hyperpolarisation method signal amplification by reversible exchange (SABRE) has been applied to multiple substrates of potential interest for in vivo investigation. Unfortunately, SABRE commonly requires an iridium-containing catalyst that is unsuitable for biomedical applications. This report utilizes inductively coupled plasma-optical emission spectroscopy (ICP-OES) to investigate the potential use of metal scavengers to remove the iridium catalytic species from the solution. The most sensitive iridium emission line at 224.268 nm was used in the analysis. We report the effects of varying functionality, chain length, and scavenger support identity on iridium scavenging efficiency. The impact of varying the quantity of scavenger utilized is reported for the three scavengers with the highest iridium removed from initial investigations: 3-aminopropyl (S1), 3-(imidazole-1-yl)propyl (S4), and 2-(2-pyridyl) (S5) functionalized silica gels. Exposure of an activated SABRE sample (1.6 mg mL-1 of iridium catalyst) to 10 mg of the most promising scavenger (S5) resulted in <1 ppm of iridium being detectable by ICP-OES after 2 min of exposure. We propose that combining the approach described herein with other recently reported approaches, such as catalyst separated-SABRE (CASH-SABRE), would enable the rapid preparation of a biocompatible SABRE hyperpolarized bolus.
Collapse
|
28
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parahydrogen-Induced Polarization of Amino Acids. Angew Chem Int Ed Engl 2021; 60:23496-23507. [PMID: 33635601 PMCID: PMC8596608 DOI: 10.1002/anie.202100109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH2 ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Gerd Buntkowsky
- Technical University DarmstadtEduard-Zintl-Institute for Inorganic and Physical ChemistryAlarich-Weiss-Strasse 864287DarmstadtGermany
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York, HeslingtonYorkYO10 5NYUK
| | - Igor V. Koptyug
- International Tomography CenterSB RAS3A Institutskaya st.630090NovosibirskRussia
- Novosibirsk State University2 Pirogova st.630090NovosibirskRussia
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
29
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parawasserstoff‐induzierte Polarisation von Aminosäuren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Gerd Buntkowsky
- Technical University Darmstadt Eduard-Zintl-Institute for Inorganic and Physical Chemistry Alarich-Weiss-Straße 8 64287 Darmstadt Deutschland
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM) Department of Chemistry University of York, Heslington York YO10 5NY Vereinigtes Königreich
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya st. 630090 Novosibirsk Russland
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russland
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| |
Collapse
|
30
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
31
|
Carrera C, Cavallari E, Digilio G, Bondar O, Aime S, Reineri F. ParaHydrogen Polarized Ethyl-[1- 13 C]pyruvate in Water, a Key Substrate for Fostering the PHIP-SAH Approach to Metabolic Imaging. Chemphyschem 2021; 22:1042-1048. [PMID: 33720491 PMCID: PMC8251755 DOI: 10.1002/cphc.202100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Indexed: 01/01/2023]
Abstract
An efficient synthesis of vinyl-[1-13 C]pyruvate has been reported, from which 13 C hyperpolarized (HP) ethyl-[1-13 C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13 C and 1 H hyperpolarizations of ethyl-[1-13 C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13 C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13 C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13 C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.
Collapse
Affiliation(s)
- Carla Carrera
- Institute of Biostructures and BioimagingNational Research CouncilVia Nizza 5210126TorinoItaly
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Giuseppe Digilio
- Department of Science and Technologic InnovationUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Oksana Bondar
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| |
Collapse
|
32
|
Hale WG, Zhao TY, Choi D, Ferrer MJ, Song B, Zhao H, Hagelin-Weaver HE, Bowers CR. Toward Continuous-Flow Hyperpolarisation of Metabolites via Heterogenous Catalysis, Side-Arm-Hydrogenation, and Membrane Dissolution of Parahydrogen. Chemphyschem 2021; 22:822-827. [PMID: 33689210 DOI: 10.1002/cphc.202100119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Side-arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in-vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous-flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2 -nanorod supported Rh catalyst, we demonstrate continuous-flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube-in-tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl-acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch-mode technique of parahydrogen bubbling through a suspension of the same catalyst.
Collapse
Affiliation(s)
- William G Hale
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Tommy Y Zhao
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Diana Choi
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Maria-Jose Ferrer
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Bochuan Song
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | - Hanqin Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | | | - Clifford R Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611.,National High Magnetic Field Laboratory, Gainesville, Florida, 32611
| |
Collapse
|
33
|
Svyatova A, Kozinenko VP, Chukanov NV, Burueva DB, Chekmenev EY, Chen YW, Hwang DW, Kovtunov KV, Koptyug IV. PHIP hyperpolarized [1- 13C]pyruvate and [1- 13C]acetate esters via PH-INEPT polarization transfer monitored by 13C NMR and MRI. Sci Rep 2021; 11:5646. [PMID: 33707497 PMCID: PMC7952547 DOI: 10.1038/s41598-021-85136-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen-induced polarization of 13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for 1H to 13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in 13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for 1H to 13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant 13C NMR signal enhancement with respect to thermal polarization allowed us to perform 13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090 ,grid.418953.2Institute of Cytology and Genetics SB RAS, 10 Ac. Lavrentieva Ave., Novosibirsk, Russia 630090
| | - Vitaly P. Kozinenko
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Nikita V. Chukanov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Dudari B. Burueva
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Eduard Y. Chekmenev
- grid.254444.70000 0001 1456 7807Department of Chemistry, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Integrative Biosciences, Wayne State University, Detroit, MI 48201 USA ,grid.4886.20000 0001 2192 9124Russian Academy of Sciences, Moscow, Russia 119991
| | - Yu-Wen Chen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Dennis W. Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Kirill V. Kovtunov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Igor V. Koptyug
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090
| |
Collapse
|
34
|
Pravdivtsev AN, Brahms A, Kienitz S, Sönnichsen FD, Hövener J, Herges R. Catalytic Hydrogenation of Trivinyl Orthoacetate: Mechanisms Elucidated by Parahydrogen Induced Polarization. Chemphyschem 2021; 22:370-377. [PMID: 33319391 PMCID: PMC7986815 DOI: 10.1002/cphc.202000957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Indexed: 12/24/2022]
Abstract
Parahydrogen (pH2 ) induced polarization (PHIP) is a unique method that is used in analytical chemistry to elucidate catalytic hydrogenation pathways and to increase the signal of small metabolites in MRI and NMR. PHIP is based on adding or exchanging at least one pH2 molecule with a target molecule. Thus, the spin order available for hyperpolarization is often limited to that of one pH2 molecule. To break this limit, we investigated the addition of multiple pH2 molecules to one precursor. We studied the feasibility of the simultaneous hydrogenation of three arms of trivinyl orthoacetate (TVOA) intending to obtain hyperpolarized acetate. It was found that semihydrogenated TVOA underwent a fast decomposition accompanied by several minor reactions including an exchange of geminal methylene protons of a vinyl ester with pH2 . The study shows that multiple vinyl ester groups are not suitable for a fast and clean (without any side products) hydrogenation and hyperpolarization that is desired in biochemical applications.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Arne Brahms
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Stephan Kienitz
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Rainer Herges
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| |
Collapse
|
35
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
36
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
37
|
Cavallari E, Carrera C, Di Matteo G, Bondar O, Aime S, Reineri F. In-vitro NMR Studies of Prostate Tumor Cell Metabolism by Means of Hyperpolarized [1- 13C]Pyruvate Obtained Using the PHIP-SAH Method. Front Oncol 2020; 10:497. [PMID: 32363160 PMCID: PMC7180174 DOI: 10.3389/fonc.2020.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear Magnetic Resonance allows the non-invasive detection and quantitation of metabolites to be carried out in cells and tissues. This means that that metabolic changes can be revealed without the need for sample processing and the destruction of the biological matrix. The main limitation to the application of this method to biological studies is its intrinsic low sensitivity. The introduction of hyperpolarization techniques and, in particular, of dissolution-Dynamic Nuclear Polarization (d-DNP) and ParaHydrogen Induced Polarization (PHIP) is a significant breakthrough for the field as the MR signals of molecules and, most importantly, metabolites, can be increased by some orders of magnitude. Hyperpolarized pyruvate is the metabolite that has been most widely used for the investigation of metabolic alterations in cancer and other diseases. Although d-DNP is currently the gold-standard hyperpolarization method, its high costs and intrinsically slow hyperpolarization procedure are a hurdle to the application of this tool. However, PHIP is cost effective and fast and hyperpolarized pyruvate can be obtained using the so-called Side Arm Hydrogenation approach (PHIP-SAH). The potential toxicity of a solution of the hyperpolarized metabolite that is obtained in this way is presented herein. HP pyruvate has then been used for metabolic studies on different prostate cancer cells lines (DU145, PC3, and LnCap). The results obtained using the HP metabolite have been compared with those from conventional biochemical assays.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Turin, Italy
| | - Ginevra Di Matteo
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Oksana Bondar
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, Center of Molecular Imaging, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev 2020; 38:25-49. [PMID: 30762162 PMCID: PMC6647493 DOI: 10.1007/s10555-019-09782-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.
Collapse
Affiliation(s)
- Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Lorena Consolino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Francesca Arena
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.,Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Dario Livio Longo
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy. .,Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.
| |
Collapse
|
39
|
Joalland B, Schmidt AB, Kabir MSH, Chukanov NV, Kovtunov KV, Koptyug IV, Hennig J, Hövener JB, Chekmenev EY. Pulse-Programmable Magnetic Field Sweeping of Parahydrogen-Induced Polarization by Side Arm Hydrogenation. Anal Chem 2020; 92:1340-1345. [PMID: 31800220 PMCID: PMC7436199 DOI: 10.1021/acs.analchem.9b04501] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among the hyperpolarization techniques geared toward in vivo magnetic resonance imaging, parahydrogen-induced polarization (PHIP) shows promise due to its low cost and fast speed of contrast agent preparation. The synthesis of 13C-labeled, unsaturated precursors to perform PHIP by side arm hydrogenation has recently opened new possibilities for metabolic imaging owing to the biological compatibility of the reaction products, although the polarization transfer between the parahydrogen-derived protons and the 13C heteronucleus must yet be better understood, characterized, and eventually optimized. In this realm, a new experimental strategy incorporating pulse-programmable magnetic field sweeping and in situ detection has been developed. The approach is evaluated by measuring the 13C polarization of ethyl acetate-1-13C, i.e., the product of pairwise addition of parahydrogen to vinyl acetate-1-13C, resulting from zero-crossing magnetic field ramps of various durations, amplitudes, and step sizes. The results demonstrate (i) the profound effect these parameters have on the 1H to 13C polarization transfer efficiency and (ii) the high reproducibility of the technique.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
40
|
Robertson TBR, Antonides LH, Gilbert N, Benjamin SL, Langley SK, Munro LJ, Sutcliffe OB, Mewis RE. Hyperpolarization of Pyridyl Fentalogues by Signal Amplification By Reversible Exchange (SABRE). ChemistryOpen 2019; 8:1375-1382. [PMID: 31844604 PMCID: PMC6892445 DOI: 10.1002/open.201900273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
Fentanyl, also known as 'jackpot', is a synthetic opiate that is 50-100 times more potent than morphine. Clandestine laboratories produce analogues of fentanyl, known as fentalogues to circumvent legislation regarding its production. Three pyridyl fentalogues were synthesized and then hyperpolarized by signal amplification by reversible exchange (SABRE) to appraise the forensic potential of the technique. A maximum enhancement of -168-fold at 1.4 T was recorded for the ortho pyridyl 1H nuclei. Studies of the activation parameters for the three fentalogues revealed that the ratio of ligand loss trans to hydride and hydride loss in the complex [Ir(IMes)(L)3(H)2]+ (IMes=1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene) ranged from 0.52 to 1.83. The fentalogue possessing the ratio closest to unity produced the largest enhancement subsequent to performing SABRE at earth's magnetic field. It was possible to hyperpolarize a pyridyl fentalogue selectively from a matrix that consisted largely of heroin (97 : 3 heroin:fentalogue) to validate the use of SABRE as a forensic tool.
Collapse
Affiliation(s)
- Thomas B. R. Robertson
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
| | - Lysbeth H. Antonides
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
- Leverhulme Research Centre for Forensic ScienceUniversity of DundeeDundeeDD1 5EHUK
| | - Nicolas Gilbert
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE)Manchester Metropolitan University John Dalton Building, Chester St.ManchesterM1 5GDUK
| | - Sophie L. Benjamin
- School of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - Stuart K. Langley
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
| | - Lindsey J. Munro
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
| | - Oliver B. Sutcliffe
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
- MANchester DRug Analysis and Knowledge Exchange (MANDRAKE)Manchester Metropolitan University John Dalton Building, Chester St.ManchesterM1 5GDUK
| | - Ryan E. Mewis
- Department of Natural SciencesManchester Metropolitan University John Dalton Building, Chester St.Manchester, M1 5GDUK
| |
Collapse
|
41
|
Buckenmaier K, Scheffler K, Plaumann M, Fehling P, Bernarding J, Rudolph M, Back C, Koelle D, Kleiner R, Hövener J, Pravdivtsev AN. Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields. Chemphyschem 2019; 20:2823-2829. [PMID: 31536665 PMCID: PMC6900040 DOI: 10.1002/cphc.201900757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/17/2019] [Indexed: 11/26/2022]
Abstract
The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by signal amplification by reversible exchange (SABRE) and detected at ULF with a superconducting quantum interference device (SQUID)-based NMR system.
Collapse
Affiliation(s)
- Kai Buckenmaier
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Klaus Scheffler
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenHoppe-Seyler-Str. 372076TübingenGermany
| | - Markus Plaumann
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Paul Fehling
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Johannes Bernarding
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Matthias Rudolph
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Christoph Back
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Dieter Koelle
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Reinhold Kleiner
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| |
Collapse
|
42
|
Ardenkjaer-Larsen JH. Hyperpolarized MR - What's up Doc? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:124-127. [PMID: 31307893 DOI: 10.1016/j.jmr.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Hyperpolarized MR by dissolution Dynamic Nuclear Polarization (dDNP) appeared on the scene in 2003. Since then, it has been translated to the clinic and several sites are now conducting human studies. This has happened at record pace despite all its complexities. The method has reached a pivotal point, and the coming years will be critical in realizing its full potential. Though the field has been characterized by strong collaboration between academia, government and industry, the key message of this perspective paper is that accelerated consensus building is of the essence in fulfilling the original vision for the method and ensuring widespread adoption. The challenge is to gain acceptance among clinicians based on strong indications and clear evidence. The future appears bright; initial clinical data looks promising and the scope for improvement is significant.
Collapse
Affiliation(s)
- Jan H Ardenkjaer-Larsen
- Technical University of Denmark, Department of Health Technology, Denmark; GE Healthcare, Denmark.
| |
Collapse
|
43
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
44
|
Dutta P, Salzillo TC, Pudakalakatti S, Gammon ST, Kaipparettu BA, McAllister F, Wagner S, Frigo DE, Logothetis CJ, Zacharias NM, Bhattacharya PK. Assessing Therapeutic Efficacy in Real-time by Hyperpolarized Magnetic Resonance Metabolic Imaging. Cells 2019; 8:E340. [PMID: 30978984 PMCID: PMC6523855 DOI: 10.3390/cells8040340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Precisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([18F]FDG) has been used as a routine diagnostic tool in the clinic. Recently developed hyperpolarized Magnetic Resonance (HP-MR), which radically increases the sensitivity of conventional MRI, has created a renewed interest in functional and metabolic imaging. The successful translation of this technique to the clinic was achieved recently with measurements of 13C-pyruvate metabolism. Here, we review the potential clinical roles for metabolic imaging with hyperpolarized MRI as applied in assessing therapeutic intervention in different cancer systems.
Collapse
Affiliation(s)
- Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Seth T Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Clinical Therapeutics, University of Athens, 11527 Athens, Greece.
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
45
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|