1
|
Farrell G, Chapple C, Kennedy E, Reily-Bell M, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper or lower cervical spine mobilization in males with persistent post-concussion symptoms: a proof-of-concept trial. J Man Manip Ther 2024; 32:602-618. [PMID: 38904298 PMCID: PMC11578419 DOI: 10.1080/10669817.2024.2363018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The peripheral stress response, consisting of the autonomic nervous system (ANS) and hypothalamic pituitary adrenal-axis (HPA-axis), functions to maintain homeostasis in response to stressors. Cervical spine manual therapy has been shown to differentially modulate the stress response in healthy populations. No study has investigated whether cervical spine mobilizations can differentially modulate the stress response in individuals with persistent post-concussion symptoms (PPCS), a population characterized by a dysfunctional stress response. METHODS A randomized, controlled, parallel design trial was performed to investigate whether upper or lower cervical spine mobilization can differentially modulate components of the stress response in individuals with PPCS. The outcomes were salivary cortisol (sCOR) concentration (primary) and the HRV metric, rMSSD, measured with a smartphone application (secondary). Nineteen males diagnosed with PPCS, aged 19-35, were included. Participants were randomly assigned into either intervention group, upper (n = 10) or lower (n = 9) cervical spine mobilization. Each outcome was collected at different time points, pre- and post-intervention. Statistical analyses were performed using the Friedman's Two-Way ANOVA, Mann-Whitney U test, and Wilcoxon Signed Rank Test. RESULTS There was a statistically significant within-group reduction in sCOR concentration 30 minutes following lower cervical spine mobilizations and statistically significant within-group increase in rMSSD 30 minutes following upper cervical spine mobilizations. CONCLUSION The results of this trial provide preliminary evidence for cervical spine mobilizations to differentially modulate components of the stress response at specific time points. Understanding the mechanisms of the effect of cervical spine mobilizations on the stress response provides a novel rationale for selecting cervical spine mobilizations to rehabilitate individuals with PPCS.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, NC, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| |
Collapse
|
2
|
Kim S, Park DH, Moon S, Gu B, Mantik KEK, Kwak HB, Ryu JK, Kang JH. Ketogenic diet with aerobic exercise can induce fat browning: potential roles of β-hydroxybutyrate. Front Nutr 2024; 11:1443483. [PMID: 39267855 PMCID: PMC11390540 DOI: 10.3389/fnut.2024.1443483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Despite evidence suggesting that metabolic intermediates like β-HB influence white adipose tissue (WAT) metabolism, the precise molecular mechanisms remain unclear. The aim of this study was to investigate the impact of beta-hydroxybutyrate (β-HB) on the fat browning program and to explore the underlying molecular mechanisms using both in vitro and in vivo models. We assessed the effects of β-HB on fat browning in adipocytes using 3T3-L1 cells and rat models. Methods We evaluated the effects of β-HB on fat browning, thermogenesis, lipid accumulation, adipokine expression, and mitochondrial biogenesis by treating mature 3T3-L1 adipocytes with sodium β-HB for 24 h or by continuously exposing preadipocytes to β-HB during the 8-day differentiation process. Male Sprague Dawley rats were divided into control, exercise only (EX), ketogenic diet only (KD), and combined exercise and ketogenic diet (KE) groups for an 8-week intervention involving diet and/or exercise. After intervention, we evaluated WAT histology, plasma lipids and adipokines, and the expression of markers related to fat browning, thermogenesis and mitochondrial biogenesis in WAT of rats. Results In our adipocyte culture experiments, β-HB reduced intracellular lipid accumulation by enhancing lipolysis and stimulated the expression of thermogenic and fat browning genes like uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), and adipokines such as fibroblast growth factor 21 (FGF21) and Fibronectin type III domain-containing protein 5 (FDNC5). Additionally, β-HB activated the AMPK-SIRT1-PGC-1α pathway, with UCP1 and PRDM16 upregulation mediated by β-HB intracellular action and SIRT1 activity. In animal experiments, KE group raised β-HB levels, decreasing body weight and blood lipids. KD with EX promoted WAT browning possibly via AMPK-SIRT1-PGC-1α, augmenting PRDM16, UCP1, FGF21, and FNDC5 expression. Conclusion β-HB induction via KD and/or EX shows potential in promoting WAT browning by activating mitochondrial biogenesis, lipolysis, and thermogenesis, suggesting that dietary and physical intervention inducing β-HB may benefit metabolic health.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Keren Esther Kristina Mantik
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
- Department of Urology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Tokizane K, Brace CS, Imai SI. DMH Ppp1r17 neurons regulate aging and lifespan in mice through hypothalamic-adipose inter-tissue communication. Cell Metab 2024; 36:377-392.e11. [PMID: 38194970 PMCID: PMC10922643 DOI: 10.1016/j.cmet.2023.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia S Brace
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Ichiro Imai
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Farrell G, Reily-Bell M, Chapple C, Kennedy E, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper and lower cervical spine mobilization in healthy male adults: a randomized crossover trial. J Man Manip Ther 2023; 31:421-434. [PMID: 36794952 PMCID: PMC10642313 DOI: 10.1080/10669817.2023.2177071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cervical spine mobilizations may differentially modulate both components of the stress response, consisting of the autonomic nervous system and hypothalamic pituitary adrenal-axis, depending on whether the target location is the upper or lower cervical spine. To date, no study has investigated this. METHODS A randomized, crossover trial investigated the effects of upper versus lower cervical mobilization on both components of the stress response simultaneously. The primary outcome was salivary cortisol (sCOR) concentration. The secondary outcome was heart rate variability measured with a smartphone application. Twenty healthy males, aged 21-35, were included. Participants were randomly assigned to block-AB (upper then lower cervical mobilization, n = 10) or block-BA (lower than upper cervical mobilization, n = 10), separated by a one-week washout period. All interventions were performed in the same room (University clinic) under controlled conditions. Statistical analyses were performed with a Friedman's Two-Way ANOVA and Wilcoxon Signed Rank Test. RESULTS Within groups, sCOR concentration reduced thirty-minutes following lower cervical mobilization (p = 0.049). Between groups, sCOR concentration was different at thirty-minutes following the intervention (p = 0.018). CONCLUSION There was a statistically significant reduction in sCOR concentration following lower cervical spine mobilization, and between-group difference, 30 min following the intervention. This indicates that mobilizations applied to separate target locations within the cervical spine can differentially modulate the stress response.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, North Carolina, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| |
Collapse
|
5
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
6
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
7
|
Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, Szeląg E, Błaszczak K, Wiatrak B, Danielewski M, Piasny J, Szeląg A. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int J Mol Sci 2023; 24:6492. [PMID: 37047464 PMCID: PMC10094807 DOI: 10.3390/ijms24076492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Schizophrenia is a severe mental disorder with a chronic, progressive course. The etiology of this condition is linked to the interactions of multiple genes and environmental factors. The earlier age of onset of schizophrenia, the higher frequency of negative symptoms in the clinical presentation, and the poorer response to antipsychotic treatment in men compared to women suggests the involvement of sex hormones in these processes. This article aims to draw attention to the possible relationship between testosterone and some clinical features in male schizophrenic patients and discuss the complex nature of these phenomena based on data from the literature. PubMed, Web of Science, and Google Scholar databases were searched to select the papers without limiting the time of the publications. Hormone levels in the body are regulated by many organs and systems, and take place through the neuroendocrine, hormonal, neural, and metabolic pathways. Sex hormones play an important role in the development and function of the organism. Besides their impact on secondary sex characteristics, they influence brain development and function, mood, and cognition. In men with schizophrenia, altered testosterone levels were noted. In many cases, evidence from available single studies gave contradictory results. However, it seems that the testosterone level in men affected by schizophrenia may differ depending on the phase of the disease, types of clinical symptoms, and administered therapy. The etiology of testosterone level disturbances may be very complex. Besides the impact of the illness (schizophrenia), stress, and antipsychotic drug-induced hyperprolactinemia, testosterone levels may be influenced by, i.a., obesity, substances of abuse (e.g., ethanol), or liver damage.
Collapse
Affiliation(s)
- Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Krzysztof Kowalski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25/27, 50-375 Wroclaw, Poland
| | - Tomasz Tomkalski
- Department of Endocrinology, Diabetology and Internal Medicine, Tadeusz Marciniak Lower Silesia Specialist Hospital–Centre for Medical Emergency, A.E. Fieldorfa 2, 54-049 Wroclaw, Poland
| | - Dagmara Gaweł-Dąbrowska
- Department of Population Health, Division of Public Health, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Ewa Szeląg
- Department of Maxillofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Karolina Błaszczak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| |
Collapse
|
8
|
Bi Q, Wang C, Cheng G, Chen N, Wei B, Liu X, Li L, Lu C, He J, Weng Y, Yin C, Lin Y, Wan S, Zhao L, Xu J, Wang Y, Gu Y, Shen XZ, Shi P. Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity 2022; 55:1466-1482.e9. [PMID: 35863346 DOI: 10.1016/j.immuni.2022.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian He
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuancheng Weng
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chunyou Yin
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunfan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Yi Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
10
|
Guo B, Liu J, Wang B, Zhang C, Su Z, Zhao M, Qin L, Zhang W, Zheng R. Withaferin A Promotes White Adipose Browning and Prevents Obesity Through Sympathetic Nerve-Activated Prdm16-FATP1 Axis. Diabetes 2022; 71:249-263. [PMID: 34732538 DOI: 10.2337/db21-0470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022]
Abstract
The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. In this study, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure, decreased respiratory exchange ratio, and prevented high-fat diet-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly upregulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis, and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.
Collapse
Affiliation(s)
- Bingbing Guo
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China
| |
Collapse
|
11
|
Dalmasso C, Leachman JR, Ghuneim S, Ahmed N, Schneider ER, Thibault O, Osborn JL, Loria AS. Epididymal Fat-Derived Sympathoexcitatory Signals Exacerbate Neurogenic Hypertension in Obese Male Mice Exposed to Early Life Stress. Hypertension 2021; 78:1434-1449. [PMID: 34601958 PMCID: PMC8516729 DOI: 10.1161/hypertensionaha.121.17298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Eve R. Schneider
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jeffrey L. Osborn
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| |
Collapse
|
12
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
13
|
Elsaafien K, Kirchner MK, Mohammed M, Eikenberry SA, West C, Scott KA, de Kloet AD, Stern JE, Krause EG. Identification of Novel Cross-Talk between the Neuroendocrine and Autonomic Stress Axes Controlling Blood Pressure. J Neurosci 2021; 41:4641-4657. [PMID: 33858944 PMCID: PMC8260250 DOI: 10.1523/jneurosci.0251-21.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) controls neuroendocrine axes and the autonomic nervous system to mount responses that cope with the energetic burdens of psychological or physiological stress. Neurons in the PVN that express the angiotensin Type 1a receptor (PVNAgtr1a) are implicated in neuroendocrine and autonomic stress responses; however, the mechanism by which these neurons coordinate activation of neuroendocrine axes with sympathetic outflow remains unknown. Here, we use a multidisciplinary approach to investigate intra-PVN signaling mechanisms that couple the activity of neurons synthesizing corticotropin-releasing-hormone (CRH) to blood pressure. We used the Cre-Lox system in male mice with in vivo optogenetics and cardiovascular recordings to demonstrate that excitation of PVNAgtr1a promotes elevated blood pressure that is dependent on the sympathetic nervous system. Next, neuroanatomical experiments found that PVNAgtr1a synthesize CRH, and intriguingly, fibers originating from PVNAgtr1a make appositions onto neighboring neurons that send projections to the rostral ventrolateral medulla and express CRH type 1 receptor (CRHR1) mRNA. We then used an ex vivo preparation that combined optogenetics, patch-clamp electrophysiology, and Ca2+ imaging to discover that excitation of PVNAgtr1a drives the local, intra-PVN release of CRH, which activates rostral ventrolateral medulla-projecting neurons via stimulation of CRHR1(s). Finally, we returned to our in vivo preparation and found that CRH receptor antagonism specifically within the PVN lowered blood pressure basally and during optogenetic activation of PVNAgtr1a Collectively, these results demonstrate that angiotensin II acts on PVNAgtr1a to conjoin hypothalamic-pituitary-adrenal axis activity with sympathetically mediated vasoconstriction in male mice.SIGNIFICANCE STATEMENT The survival of an organism is dependent on meeting the energetic demands imposed by stressors. This critical function is accomplished by the CNS's ability to orchestrate simultaneous activities of neurosecretory and autonomic axes. Here, we unveil a novel signaling mechanism within the paraventricular nucleus of the hypothalamus that links excitation of neurons producing corticotropin-releasing-hormone with excitation of neurons controlling sympathetic nervous system activity and blood pressure. The implication is that chronic stress exposure may promote cardiometabolic disease by dysregulating the interneuronal cross-talk revealed by our experiments.
Collapse
Affiliation(s)
- Khalid Elsaafien
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Center of Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
| | - Matthew K Kirchner
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30302
| | - Mazher Mohammed
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
| | - Sophia A Eikenberry
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Chloe West
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30302
| | - Karen A Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Center of Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
- Center of Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, Georgia 30302
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Center of Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
14
|
Liu C, Lee CY, Asher G, Cao L, Terakoshi Y, Cao P, Kobayakawa R, Kobayakawa K, Sakurai K, Liu Q. Posterior subthalamic nucleus (PSTh) mediates innate fear-associated hypothermia in mice. Nat Commun 2021; 12:2648. [PMID: 33976193 PMCID: PMC8113537 DOI: 10.1038/s41467-021-22914-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
The neural mechanisms of fear-associated thermoregulation remain unclear. Innate fear odor 2-methyl-2-thiazoline (2MT) elicits rapid hypothermia and elevated tail temperature, indicative of vasodilation-induced heat dissipation, in wild-type mice, but not in mice lacking Trpa1-the chemosensor for 2MT. Here we report that Trpa1-/- mice show diminished 2MT-evoked c-fos expression in the posterior subthalamic nucleus (PSTh), external lateral parabrachial subnucleus (PBel) and nucleus of the solitary tract (NTS). Whereas tetanus toxin light chain-mediated inactivation of NTS-projecting PSTh neurons suppress, optogenetic activation of direct PSTh-rostral NTS pathway induces hypothermia and tail vasodilation. Furthermore, selective opto-stimulation of 2MT-activated, PSTh-projecting PBel neurons by capturing activated neuronal ensembles (CANE) causes hypothermia. Conversely, chemogenetic suppression of vGlut2+ neurons in PBel or PSTh, or PSTh-projecting PBel neurons attenuates 2MT-evoked hypothermia and tail vasodilation. These studies identify PSTh as a major thermoregulatory hub that connects PBel to NTS to mediate 2MT-evoked innate fear-associated hypothermia and tail vasodilation.
Collapse
Affiliation(s)
- Can Liu
- Peking University-Tsinghua University-NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Chia-Ying Lee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Greg Asher
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liqin Cao
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Terakoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Reiko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Qinghua Liu
- National Institute of Biological Sciences (NIBS), Beijing, China.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Contoreggi NH, Mazid S, Goldstein LB, Park J, Ovalles AC, Waters EM, Glass MJ, Milner TA. Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor β-containing neurons in the mouse hypothalamic paraventricular nucleus. J Comp Neurol 2021; 529:2283-2310. [PMID: 33341960 DOI: 10.1002/cne.25093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) β and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERβ with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERβ-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERβ-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERβ-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERβ-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERβ-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.
Collapse
Affiliation(s)
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Lily B Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - John Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| |
Collapse
|
16
|
Domingos-Souza G, Martinez D, Sinkler S, Heesch CM, Kline DD. Alpha adrenergic receptor signaling in the hypothalamic paraventricular nucleus is diminished by the chronic intermittent hypoxia model of sleep apnea. Exp Neurol 2021; 335:113517. [PMID: 33132201 PMCID: PMC7750300 DOI: 10.1016/j.expneurol.2020.113517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a model for obstructive sleep apnea. The paraventricular nucleus (PVN) of the hypothalamus has been suggested to contribute to CIH-induced exaggerated cardiorespiratory reflexes, sympathoexcitation and hypertension. This may occur, in part, via activation of the dense catecholaminergic projections to the PVN that originate in the brainstem. However, the contribution of norepinephrine (NE) and activation of its alpha-adrenergic receptors (α-ARs) in the PVN after CIH exposure is unknown. We hypothesized CIH would increase the contribution of catecholaminergic input. To test this notion, we determined the expression of α-AR subtypes, catecholamine terminal density, and synaptic properties of PVN parvocellular neurons in response to α-AR activation in male Sprague-Dawley normoxic (Norm) and CIH exposed rats. CIH decreased mRNA for α1d and α2b AR. Dopamine-β-hydroxylase (DβH) terminals in the PVN were similar between groups. NE and the α1-AR agonist phenylephrine (PE) increased sEPSC frequency after Norm but not CIH. Block of α1-ARs with prazosin alone did not alter sEPSCs after either Norm or CIH but did prevent agonist augmentation of sEPSC frequency following normoxia. These responses to NE were mimicked by PE during action potential block suggesting presynaptic terminal alterations in CIH. Altogether, these results demonstrate that α1-AR activation participates in neuronal responses in Norm, but are attenuated after CIH. These results may provide insight into the cardiovascular, respiratory and autonomic nervous systems alterations in obstructive sleep apnea.
Collapse
Affiliation(s)
- Gean Domingos-Souza
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Diana Martinez
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Steven Sinkler
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - Cheryl M Heesch
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America
| | - David D Kline
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, Univ. of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
17
|
Wenner MM, Stachenfeld NS. Point: Investigators should control for menstrual cycle phase when performing studies of vascular control that include women. J Appl Physiol (1985) 2020; 129:1114-1116. [DOI: 10.1152/japplphysiol.00443.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Megan M. Wenner
- University of Delaware, Department of Kinesiology and Applied Physiology, Newark, Delaware
| | - Nina S. Stachenfeld
- The John B. Pierce Laboratory, New Haven, Connecticut
- Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
Japundžić-Žigon N, Lozić M, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol 2020; 18:14-33. [PMID: 31544693 PMCID: PMC7327933 DOI: 10.2174/1570159x17666190717150501] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023] Open
Abstract
Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.
Collapse
Affiliation(s)
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Šarenac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Rocha-Santos C, Braga DC, Ceroni A, Michelini LC. Activity-Dependent Neuroplastic Changes in Autonomic Circuitry Modulating Cardiovascular Control: The Essential Role of Baroreceptors and Chemoreceptors Signaling. Front Physiol 2020; 11:309. [PMID: 32328002 PMCID: PMC7160511 DOI: 10.3389/fphys.2020.00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise training improves the autonomic control of the circulation. Emerging evidence has shown that exercise induces neuroplastic adaptive changes in preautonomic circuitry controlling sympathetic/parasympathetic outflow to heart and vessels. The mechanisms underlying neuronal plasticity are, however, incompletely understood. Knowing that sinoaortic denervation blocks training-induced cardiovascular benefits, we investigate whether baroreceptors’ and chemoreceptors’ signaling are able to drive neuronal plasticity within medullary and supramedullary pathways controlling autonomic outflow. Male Wistar rats submitted to sinoaortic denervation (SAD) or dopamine β-hydroxylase-saporin lesion (DBHx) and respective controls (SHAM) were allocated to training (T) or sedentary (S) protocols for 8 weeks. After hemodynamic measurements at rest, rats were deeply anesthetized for brain harvesting. The density of DBH and oxytocin (OT) cell bodies and terminals were analyzed in brainstem and hypothalamic brain areas (double immunofluorescence reactions, optic and confocal microscopy). In SHAM rats training augmented the density of DBH+ neurons in the nucleus of solitary tract, increased the density of ascending NORergic projections and the number of DBH+ boutons contacting preautonomic OT+ neurons into paraventricular hypothalamic preautonomic nuclei, augmented the density of local OTergic neurons and enhanced the density of OT+ terminals targeting brainstem autonomic areas. These plastic changes occurred simultaneously with reduced sympathetic/increased parasympathetic activity, augmented baroreflex sensitivity and reduced resting heart rate. SAD reduced the density of both DBH+ fibers ascending from brainstem to paraventricular nucleus of hypothalamus and preautonomic OT+ neurons projecting to the brainstem, abrogated training-induced plastic changes and autonomic adaptive responses without changing the treadmill performance. Minor neuroplastic changes with preserved baroreflex sensitivity were observed in trained rats after partial selective disruption of ascending NORergic projections. Our data indicated that afferent inputs conveyed by arterial baroreceptors and chemoreceptors are the main stimuli to drive both inactivity-induced and activity-dependent neuroplasticity within the autonomic circuitry.
Collapse
Affiliation(s)
- Carla Rocha-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Douglas Costa Braga
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
McNeal N, Watanasriyakul WT, Normann MC, Akinbo OI, Dagner A, Ihm E, Wardwell J, Grippo AJ. The negative effects of social bond disruption are partially ameliorated by sertraline administration in prairie voles. Auton Neurosci 2019; 219:5-18. [PMID: 31122602 PMCID: PMC6540807 DOI: 10.1016/j.autneu.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Negative social experiences influence both depression and cardiovascular dysfunction. Many individuals who experience negative mood states or cardiovascular conditions have limited social support. Therefore, investigation of drug treatments that may protect against the consequences of social stress will aid in designing effective treatment strategies. The current study used an animal model to evaluate the protective effect of sertraline administration on behavioral and cardiovascular consequences of social stress. Specifically, male prairie voles (Microtus ochrogaster), which are socially monogamous rodents that share several behavioral and physiological characteristics with humans, were isolated from a socially-bonded female partner, and treated with sertraline (16 mg/kg/day, ip) or vehicle during isolation. Unexpectedly, sertraline did not protect against depression-relevant behaviors, and it was associated with increased short- and long-term heart rate responses. However, sertraline administration improved heart rate variability recovery following a behavioral stressor, including increased parasympathetic regulation, and altered long-term neuronal activity in brain regions that modulate autonomic control and stress reactivity. These results indicate that sertraline may partially protect against the consequences of social stressors, and suggest a mechanism through which sertraline may beneficially influence neurobiological control of cardiac function.
Collapse
Affiliation(s)
- Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Elliott Ihm
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
21
|
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200-H1214. [PMID: 30095973 PMCID: PMC6297824 DOI: 10.1152/ajpheart.00216.2018] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.
Collapse
Affiliation(s)
- Roger A Dampney
- Department of Physiology, University of Sydney , Sydney, New South Wales , Australia
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - De-Pei Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
22
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
23
|
Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat 2017; 230:775-786. [PMID: 28295274 DOI: 10.1111/joa.12603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is the major autonomic output area of the hypothalamus and a critical regulatory center for energy homeostasis. The organism's energetic balance is very important for both the regular onset of puberty and regulation of fertility. Several studies have suggested a relationship among neural circuits controlling food intake, energy homeostasis and the kisspeptin peptide. The kisspeptin system is clustered in two main groups of cell bodies [the anterior ventral periventricular region (AVPV) and the arcuate nucleus (ARC)] projecting mainly to gonadotropin-releasing hormone (GnRH) neurons and to a few other locations, including the PVN. In the present study, we investigated the distribution of the kisspeptin fibers within the PVN of adult CD1 mice. We observed a significant sexual dimorphism for AVPV and ARC, as well as for the PVN innervation. Kisspeptin fibers showed a different density within the PVN, being denser in the medial part than in the lateral one; moreover, in female, the density changed, according to different phases of the estrous cycle (the highest density being in estrus phase). The presence of a profound effect of estrous cycle on the kisspeptin immunoreactivity in AVPV (with a higher signal in estrus) and ARC, and the strong co-localization between kisspeptin and NkB only in ARC and not in PVN suggested that the majority of the kisspeptin fibers found in the PVN might arise directly from AVPV.
Collapse
Affiliation(s)
- Marilena Marraudino
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Dèsirèe Miceli
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Alice Farinetti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - GianCarlo Panzica
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Stefano Gotti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
24
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:287-306. [DOI: 10.1007/978-981-10-4307-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
De Melo VU, Saldanha RRM, Dos Santos CR, De Campos Cruz J, Lira VA, Santana-Filho VJ, Michelini LC. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats. Front Physiol 2016; 7:461. [PMID: 27790154 PMCID: PMC5063006 DOI: 10.3389/fphys.2016.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 11/24/2022] Open
Abstract
The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.
Collapse
Affiliation(s)
- Vitor U De Melo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil; Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, University of IowaIowa, IA, USA
| | - Rayssa R M Saldanha
- Department of Physiology, Federal University of Sergipe São Cristóvão, Brazil
| | - Carla R Dos Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | | | - Vitor A Lira
- Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, University of Iowa Iowa, IA, USA
| | | | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
27
|
Samson WK. Oxytocin redux. Am J Physiol Regul Integr Comp Physiol 2016; 311:R710-R713. [PMID: 27511282 DOI: 10.1152/ajpregu.00307.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
28
|
Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016; 6:1239-78. [PMID: 27347892 DOI: 10.1002/cphy.c150037] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Hakan S Orer
- Department of Pharmacology, Koc University School of Medicine, Istanbul, Turkey
| | - Susan M Barman
- Department of Pharmacology &Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|