1
|
Longden T, Isaacs D. Pericyte Electrical Signalling and Brain Haemodynamics. Basic Clin Pharmacol Toxicol 2025; 136:e70030. [PMID: 40159653 PMCID: PMC11955720 DOI: 10.1111/bcpt.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Dominic Isaacs
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Razavi MS, Zhou H, Menzel L, Huang L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Kurpios NA, Ubellacker JM, Padera TP. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev Cell 2025; 60:1118-1133.e5. [PMID: 39731913 PMCID: PMC11981864 DOI: 10.1016/j.devcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Katarina J Ruscic
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johanna J Rajotte
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Meghan J O'Melia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marla Marquez
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad S Razavi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lutz Menzel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Johnson K, Bray JF, Heaps CL. Sexually dimorphic mechanisms of H 2O 2-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training. J Appl Physiol (1985) 2025; 138:950-963. [PMID: 40059640 DOI: 10.1152/japplphysiol.00761.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
We determined the impact of sex on H2O2-mediated dilation in coronary arterioles and the contribution of K+ channels after exercise training in ischemic heart disease. We hypothesized that arterioles from male and female swine would similarly display impaired H2O2-induced dilation after chronic occlusion that would be corrected by exercise training. Yucatan miniswine were surgically instrumented with an ameroid constrictor around the proximal left circumflex artery, gradually inducing occlusion and a collateral-dependent myocardium. Arterioles from the left anterior descending artery myocardial region served as nonoccluded controls. Eight weeks postoperatively, swine of each sex were separated into sedentary and exercise-trained (progressive treadmill regimen; 5 days/wk for 14 wk) groups. Collateral-dependent arterioles of sedentary female pigs displayed impaired sensitivity to H2O2 that was reversed with exercise training. In contrast, male pigs exhibited enhanced sensitivity to H2O2 in collateral-dependent versus nonoccluded arterioles in both sedentary and exercise-trained groups. Large-conductance, calcium-dependent K+ (BKCa) and 4-aminopyridine (AP)-sensitive voltage-gated K+ (Kv) channels contributed to H2O2-mediated dilation in nonoccluded and collateral-dependent arterioles of exercise-trained females, but not in arterioles of sedentary female or sedentary or exercise-trained male swine. BKCa channel, protein kinase A (PKA), and protein kinase G (PKG) protein levels were not significantly different between groups, nor were kinase enzymatic activities. Taken together, our studies suggest that in female swine, exercise training stimulates the coupling of H2O2 signaling with BKCa and 4-AP-sensitive Kv channels, compensating for impaired dilation in collateral-dependent arterioles. Interestingly, coronary arterioles from neither sedentary female or male swine, regardless of training status, depended upon BKCa or 4-AP-sensitive Kv channels for H2O2-mediated dilation.NEW & NOTEWORTHY The current studies reveal sexually dimorphic adaptations to H2O2-mediated dilation, and unique contributions of K+ channels, in coronary arterioles from swine subjected to chronic ischemia and exercise training; findings important for development of therapeutic strategies. In female swine, chronic ischemia attenuates dilation, which is reversed by exercise training via BKCa and Kv channel stimulation. In male swine, ischemia enhances dilation to H2O2, which is further augmented by exercise training and independent of BKCa and Kv channels.
Collapse
Affiliation(s)
- Kalen Johnson
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Jeff F Bray
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
4
|
Mahmood NMS, Mahmood AMR, Maulood IM. The roles of melatonin and potassium channels in relaxation response to ang 1-7 in diabetic rat isolated aorta. Cytotechnology 2025; 77:55. [PMID: 39927136 PMCID: PMC11799518 DOI: 10.1007/s10616-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
In a circadian cycle, the pineal gland produces and releases melatonin (MEL) into the bloodstream. By activating distinct melatonin receptors, MEL has been shown to variably change vascular endothelial dysfunction (VED) to various vascular beds. This study investigates the interaction of melatonin (MEL) and potassium ion (K+) on angiotensin 1-7 (Ang 1-7) vasorelaxant in streptozotocin (STZ)-induced diabetes mellitus (DM) and non-diabetes mellitus (non-DM) male albino rat aortic rings. The isometric tension of isolated aortic rings was assessed by generating a dose-response curve (DRC) for Ang 1-7 using a PowerLab data acquisition system. Accordingly, three experimental sets were carried out. In the first set the aortic rings were exposed MEL and MEL agonist ramelteon (RAM) and MEL antagonist luzindole (LUZ). In the second set, the aortic rings were exposed to various non-selective calcium activated potassium channel (KCa) blockers, including tetraethylammonium (TEA), a small and large-conductance calcium-activated K+ [(SKCa) and (BKCa)] channels blocker charybdotoxin (ChTx) and intermediate calcium-activated K+ channel (IKCa) blocker clotrimazole (CLT). In the third set, the aortic rings were exposed to various selective K+ channels blockers, including the selective blocker of KATP channel, glibenclamide (Glib), 4-aminopyridine (4-AP), a selective blocker of Kv channels and BaCl2, delayed inward rectifier K+ channels (Kir) blocker. The results highlight the significant role of MEL in modulating vascular reactivity, particularly in the DM aorta. By enhancing the vasorelaxant effects of Ang 1-7 through mechanisms involving its receptors and antioxidant activities, MEL demonstrates its potential to counteract oxidative stress and VED associated with diabetes. These findings advance the understanding of vascular reactivity in diabetes and suggest MEL as a promising therapeutic agent for improving vascular health in diabetic conditions.
Collapse
Affiliation(s)
- Nazar M. Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Almas M. R. Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| | - Ismail M. Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region Iraq
| |
Collapse
|
5
|
Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, Srivastava R, Suresh MX, Kumari R, Goodwin JE, Inoki K. The molecular determinants regulating redox signaling in diabetic endothelial cells. Front Pharmacol 2025; 16:1563047. [PMID: 40290438 PMCID: PMC12023289 DOI: 10.3389/fphar.2025.1563047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidation and reduction are vital for keeping life through several prime mechanisms, including respiration, metabolism, and other energy supplies. Mitochondria are considered the cell's powerhouse and use nutrients to produce redox potential and generate ATP and H2O through the process of oxidative phosphorylation by operating electron transfer and proton pumping. Simultaneously, mitochondria also produce oxygen free radicals, called superoxide (O2 -), non-enzymatically, which interacts with other moieties and generate reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hydroxyl radical (OH-). These reactive oxygen species modify nucleic acids, proteins, and carbohydrates and ultimately cause damage to organs. The nutrient-sensing kinases, such as AMPK and mTOR, function as a key regulator of cellular ROS levels, as loss of AMPK or aberrant activation of mTOR signaling causes ROS production and compromises the cell's oxidant status, resulting in various cellular injuries. The increased ROS not only directly damages DNA, proteins, and lipids but also alters cellular signaling pathways, such as the activation of MAPK or PI3K, the accumulation of HIF-1α in the nucleus, and NFkB-mediated transcription of pro-inflammatory cytokines. These factors cause mesenchymal activation in renal endothelial cells. Here, we discuss the biology of redox signaling that underlies the pathophysiology of diabetic renal endothelial cells.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - M. Masilamani Selvam
- Department of Pharmaceutical Technology, Paavai Engineering College, Namakkal, Tamil Nadu, India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - M. Xavier Suresh
- School of Advanced Sciences and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | - Reena Kumari
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Liu X, Liu M, Wang C, Duan L, Ren Q, Jiang S, Han J, Fu H, Sun X, Man D, Feng X. Gestational high-sucrose diet mediated vascular hyper-contractility in mesenteric arteries from offspring. Sci Rep 2025; 15:9083. [PMID: 40097492 PMCID: PMC11914075 DOI: 10.1038/s41598-025-93361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Prenatal high sucrose diet (HS) generates profound effects on vascular diseases in offspring later in life. This study aimed to determine whether and how prenatal HS affect vasoreactivity in resistance arteries from adult offspring. Pregnant Sprague-Dawley rats were fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Mesenteric arteries (MAs) from adult offspring were obtained and tested for vascular functions with DMT. The whole-transcriptome sequencing (RNA-seq) of MAs was performed to reveal the different genes and possible pathway. Real-time PCR and western blot were performed to access mRNA and protein expression. The thicker smooth muscle layer and mitochondrial swelling were observed in MAs in HS offspring. Prenatal HS mediated higher vasoconstriction/vascular sensitivity induced by phenylephrine (PE) and 5-Hydroxytryptamine (5-HT). RNA-Seq analysis revealed that the genes crystallin alpha B (CYRAB) and heat shock protein family E member 1 (HSPE1) were upregulated, while the gene adenomatous polyposis coli downregulated 1 (APCDD1) was downregulated in HS group, confirmed at mRNA and protein expression levels. Wingless-related integration site (Wnt)/Ca2+ indicated by KEGG analysis was the essential pathway inducing vascular dysfunction in HS group. As a Wnt5a inhibitor, Box5 reduced MA tension induced by PE or 5-HT in HS group. Both protein kinase C (PKC) inhibitor-GF109203X and Inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor-2-Aminoethoxydiphenyl borate (2-APB) significantly decreased MA tone in HS group. Ca2+ levels in MAs were markedly higher in HS offspring than in control (CON), likely contributing to enhanced vascular reactivity. Vascular relaxation induced by acetylcholine (ACh) in HS was lower than that in CON. N(G)-Nitro-L-arginine methyl ester (L-NAME) increased PE-mediated vascular tension in CON group, while no effect in HS group, suggesting that endothelial nitric oxide (NO) system dysfunction in MAs exposed to prenatal HS. This study demonstrated that prenatal HS induced hyper-vasocontraction in MAs from adult offspring, which was associated with the enhanced Wnt5a-PKC/IP3R-Ca2+ pathway and decreased endothelial NO function.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Meng Liu
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Chunxia Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Liting Duan
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Qinggui Ren
- Department of Mammary Gland Surgery, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Shuli Jiang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Jing Han
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Hongwei Fu
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Xiao Sun
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China.
| | - Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China.
| |
Collapse
|
7
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
8
|
Chen JF, Peng C, Ni H, Li BY, Ye JW, Liu F, Xiong L. Endothelium-independent vasorelaxant effects of Curcuma phaeocaulis essential oil and its representative compound isocurcumenol. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119366. [PMID: 39826788 DOI: 10.1016/j.jep.2025.119366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizomes of Curcuma phaeocaulis Val. are a Rhizoma curcumae source in Chinese pharmacopoeia, and this traditional Chinese medicine has been extensively used in China to promote blood circulation and remove blood stasis. However, little is known regarding the vasodilatory effects and underlying mechanisms. AIM OF THE STUDY This study investigated the vasorelaxant effects and mechanisms of C. phaeocaulis essential oil (CPEO) and its representative compound, isocurcumenol. MATERIALS AND METHODS The effects of CPEO and isocurcumenol on the contractile tension of isolated rat thoracic aortic rings in a resting state and a KCl or phenylephrine (PHE) preincubation state in the tissue organ bath system were studied. The potential vasodilatory mechanisms of CPEO and isocurcumenol were investigated using a series of experiments that included endothelium removal, CPEO and isocurcumenol preincubation, extracellular Ca2+-induced contraction and intracellular Ca2+ release, and incubation with various blockers. Laser confocal microscopy was used to evaluate the effect of isocurcumenol on the intracellular Ca2+ fluorescence intensity in A7r5 cells. The influence of isocurcumenol on the myosin light chain (MLC) protein expression and phosphorylation was determined using a Western blot assay. Furthermore, the whole-cell patch clamp technique was used to investigate the effect of isocurcumenol on voltage-dependent K⁺ channel (Kv) current cells. RESULTS CPEO (0.25-25 mg/L) and isocurcumenol (0.25-25 μM) exhibited concentration-dependent vasodilatory effects on endothelial intact vascular rings that were pre-contracted using KCl or PHE. These vasodilatory effects did not significantly change after the endothelium was removed. Notably, the vasodilatory effects of the CPEO and isocurcumenol were attenuated when preincubation was performed using with 4-aminopyridine (4-AP, a Kv channel blocker) or verapamil hydrochloride (an L-type calcium channel blocker). In the cell experiments, isocurcumenol suppressed an increase in the Ca2+ fluorescence intensity and inhibited the phosphorylation of the MLC protein in A7r5 cells. The results of the whole-cell patch clamp assay indicated that 25 μM of isocurcumenol enhanced Kv channel currents. CONCLUSIONS In this study, we confirmed that CPEO and isocurcumenol had significant endothelium-independent vasorelaxant effects. The underlying mechanism was attributed to the activation Kv channels and the suppression of L-type calcium channels. This resulted in a Ca2+ influx decrease in vascular smooth muscle cells and subsequent vascular contraction inhibition.
Collapse
Affiliation(s)
- Jin-Feng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ni
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo-Yu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Wen Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Heo R, Park M, Mun SY, Zhuang W, Jeong J, Park H, Han ET, Han JH, Chun W, Jung WK, Choi IW, Park WS. Vasorelaxant mechanisms of the antidiabetic anagliptin in rabbit aorta: roles of Kv channels and SERCA pump. Acta Diabetol 2025; 62:241-251. [PMID: 39103505 DOI: 10.1007/s00592-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
AIMS The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minju Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
10
|
Hou Y, Ye W, Tang Z, Li F. Anesthetics in pathological cerebrovascular conditions. J Cereb Blood Flow Metab 2025; 45:32-47. [PMID: 39450477 PMCID: PMC11563546 DOI: 10.1177/0271678x241295857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuhui Hou
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Ye
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziyuan Tang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Shvetsova AA, Shateeva VS, Khlystova MA, Makukha YA, Tarasova OS, Gaynullina DK. NADPH oxidase derived ROS promote arterial contraction in early postnatal rats by activation of L-type voltage-gated Ca 2+ channels. Free Radic Res 2025; 59:49-60. [PMID: 39879138 DOI: 10.1080/10715762.2024.2448483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca2+ channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained Nox2, Nox4, Duox1 and Duox2 mRNAs, among which Nox2 mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O2•- production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.
Collapse
Affiliation(s)
- Anastasia A Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Valentina S Shateeva
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Margarita A Khlystova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Makukha
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physiology and Pathology, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dina K Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Hu XQ, Song R, Dasgupta C, Liu T, Zhang M, Twum-Barimah S, Blood AB, Zhang L. Rad-mediated inhibition of Ca V1.2 channel activity contributes to uterine artery haemodynamic adaptation to pregnancy. J Physiol 2024; 602:6729-6744. [PMID: 39612361 DOI: 10.1113/jp287334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The striking increase of uterine blood flow during pregnancy is essential for normal fetal development as well as for cardiovascular well-being of the mother. Yet, the underlying mechanisms of pregnancy-mediated vasodilatation of the uterine artery are not fully understood. In this study, we test the hypothesis that Rad, a monomeric G protein, is a novel regulatory mechanism in inhibiting CaV1.2 channel currents in uterine artery haemodynamic adaptation to pregnancy in a sheep model. We found that pregnancy significantly upregulates Rad expression and decreases CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad knockdown ex vivo and in vivo increases CaV1.2 activity and channel window currents by reducing steady-state inactivation in uterine arteries of pregnant sheep, recapitulating the phenotype of uterine arteries in non-pregnant animals. Moreover, Rad knockdown in vivo in pregnant sheep enhances myogenic tone and phenylephrine-induced vasoconstriction of uterine arteries. Whereas knockdown of Rad has no effect on mesenteric arterial CaV1.2 channel activity and mean arterial blood pressure, it significantly increases uterine vascular resistance and decreases uterine artery blood flow. Our study reveals a novel cause-and-effect mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arteries to facilitate increased uterine blood flow, providing new insights into fundamental mechanisms of uterine haemodynamic adaptation to pregnancy. KEY POINTS: Pregnancy suppresses CaV1.2 channel currents in uterine arterial smooth muscle cells. Rad, a monomeric G protein, is upregulated in uterine arteries of pregnant sheep. Rad knockdown ex vivo or in vivo increases CaV1.2 channel currents in uterine arteries from pregnant ewes. In vivo knockdown of Rad elevates uterine vascular resistance and decreases uterine blood flow in pregnant sheep. The study reveals a novel mechanism of Rad in pregnancy-induced suppression of CaV1.2 channel activity in uterine arterial haemodynamic adaptation to pregnancy.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Uterine Artery/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Channels, L-Type/genetics
- Sheep
- Adaptation, Physiological/physiology
- Hemodynamics
- Vasoconstriction/physiology
- Vasodilation/physiology
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/metabolism
- Vascular Resistance/physiology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephen Twum-Barimah
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
13
|
Marinko M, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW, Novakovic A. Involvement of different K + channel subtypes in hydrogen sulfide-induced vasorelaxation of human internal mammary artery. Fundam Clin Pharmacol 2024; 38:1155-1167. [PMID: 39246043 DOI: 10.1111/fcp.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Changes in K+ channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K+ channels. Their involvement in hydrogen sulfide (H2S)-mediated vasorelaxation is still unclear, and data about human vessels are limited. OBJECTIVE To determine the role of K+ channel subtypes in the vasorelaxant mechanism of H2S donor, sodium-hydrosulfide (NaHS), on isolated human internal mammary artery (HIMA). RESULTS NaHS (1 × 10-6-3 × 10-3 mol/L) induced a concentration-dependent relaxation of HIMA pre-contracted by phenylephrine and high K+. Among K+ channel blockers, iberiotoxin, glibenclamide, 4-aminopyridine (4-AP), and margatoxin significantly inhibited NaHS-induced relaxation of phenylephrine-contracted HIMA (P < 0.01), whereas in the presence of apamin/1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) combination, the HIMA relaxation was partially reduced (P < 0.05). The effect of NaHS was antagonized by NO pathway inhibitors, L-NAME and KT5823, and by cyclo-oxygenase inhibitor, indomethacin (P < 0.01). Under conditions of blocked NO/prostacyclin synthesis and release, apamin/TRAM-34 and glibenclamide caused further decrease in NaHS-induced vasorelaxation (P < 0.01), while iberiotoxin, 4-AP, and margatoxin were without additional effect (P > 0.05). In the presence of nifedipine, NaHS induced partial relaxation of HIMA (P < 0.01). CONCLUSION Our results demonstrated that H2S donor, NaHS, induced concentration-dependent relaxation of isolated HIMA. Vasorelaxant mechanisms of H2S included direct or indirect opening of different K+ channel subtypes, KATP, BKCa, SKCa/IKCa, and KV (subtype KV1.3), in addition to NO pathway activation and interference with extracellular Ca2+ influx.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Dias P, Salam R, Pourová J, Vopršalová M, Konečný L, Jirkovský E, Duintjer Tebbens J, Mladěnka P. The quercetin metabolite 4-methylcatechol causes vasodilation via voltage-gated potassium (K V) channels. Food Funct 2024; 15:11047-11059. [PMID: 39422021 DOI: 10.1039/d3fo04672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dietary polyphenols have been associated with many beneficial cardiovascular effects. However, these effects are rather attributed to small phenolic metabolites formed by the gut microbiota, which reach sufficient concentrations in systemic circulation. 4-Methylcatechol (4-MC) is one such metabolite. As it is shown to possess considerable vasorelaxant effects, this study aimed to unravel its mechanism of action. To this end, experimental in vitro and in silico approaches were employed. In the first step, isometric tension recordings were performed on rat aortic rings. 4-MC potentiated the effect of cyclic nucleotides, but the effect was not mediated by either soluble guanylyl cyclase (sGC), modification of cyclic adenosine monophosphate levels, or protein kinase G. Hence, downstream targets such as calcium or potassium channels were considered. Inhibition of voltage-gated K+ channels (KV) markedly decreased the effect of 4-MC, and vasodilation was partly decreased by inhibition of the KV7 isoform. Contrarily, other types of K+ channels or L-type Ca2+ channels were not involved. In silico reverse docking confirmed that 4-MC binds to KV7.4 through hydrogen bonding and hydrophobic interactions. In particular, it interacts with two crucial residues for KV7.4 activation: Trp242 and Phe246. In summary, our findings suggested that 4-MC exerts vasorelaxation by opening KV channels with the involvement of KV7.4.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
- Division of Outcomes & Translational Sciences, Pelotonia Research Center, The Ohio State University, 2255 Kenny Rd, Columbus, OH, USA
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Lukáš Konečný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
15
|
Nelapudi N, Boskind M, Hu XQ, Mallari D, Chan M, Wilson D, Romero M, Albert-Minckler E, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Long-term hypoxia modulates depolarization activation of BK Ca currents in fetal sheep middle cerebral arterial myocytes. Front Physiol 2024; 15:1479882. [PMID: 39563935 PMCID: PMC11573761 DOI: 10.3389/fphys.2024.1479882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Previous evidence indicates that gestational hypoxia disrupts cerebrovascular development, increasing the risk of intracranial hemorrhage and stroke in the newborn. Due to the role of cytosolic Ca2+ in regulating vascular smooth muscle (VSM) tone and fetal cerebrovascular blood flow, understanding Ca2+ signals can offer insight into the pathophysiological disruptions taking place in hypoxia-related perinatal cerebrovascular disease. This study aimed to determine the extent to which gestational hypoxia disrupts local Ca2+ sparks and whole-cell Ca2+ signals and coupling with BKCa channel activity. Methods Confocal imaging of cytosolic Ca2+ and recording BKCa currents of fetal sheep middle cerebral arterial (MCA) myocytes was performed. MCAs were isolated from term fetal sheep (∼140 days of gestation) from ewes held at low- (700 m) and high-altitude (3,801 m) hypoxia (LTH) for 100+ days of gestation. Arteries were depolarized with 30 mM KCl (30K), in the presence or absence of 10 μM ryanodine (Ry), to block RyR mediated Ca2+ release. Results Membrane depolarization increased Ry-sensitive Ca2+ spark frequency in normoxic and LTH groups along with BKCa activity. LTH reduced Ca2+ spark and whole-cell Ca2+ activity and induced a large leftward shift in the voltage-dependence of BKCa current activation. The influence of LTH on the spatial and temporal aspects of Ca2+ sparks and whole-cell Ca2+ responses varied. Discussion Overall, LTH attenuates Ca2+ signaling while increasing the coupling of Ca2+ sparks to BKCa activity; a process that potentially helps maintain oxygen delivery to the developing brain.
Collapse
Affiliation(s)
- Nikitha Nelapudi
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Madison Boskind
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Xiang-Qun Hu
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - David Mallari
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Michelle Chan
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Devin Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Eris Albert-Minckler
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Christopher G Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose Luis Puglisi
- Department of Biostatistics, California Northstate University School of Medicine, Elk Grove, CA, United States
| | - Sean M Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
16
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
17
|
Zhao C, He L, Li L, Deng F, Zhang M, Wang C, Qiu J, Gao Q. Prenatal glucocorticoids exposure and adverse cardiovascular effects in offspring. Front Endocrinol (Lausanne) 2024; 15:1430334. [PMID: 39351527 PMCID: PMC11439645 DOI: 10.3389/fendo.2024.1430334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Glucocorticoids (GCs) are steroid hormones fundamental to the body's normal physiological functions and are pivotal in fetal growth and development. During gestation, the mother's cortisol concentration (active GCs) escalates to accommodate the requirements of fetal organ development and maturation. A natural placental GCs barrier, primarily facilitated by 11β hydroxysteroid dehydrogenase 2, exists between the mother and fetus. This enzyme transforms biologically active cortisol into biologically inactive corticosterone, thereby mitigating fetal GCs exposure. However, during pregnancy, the mother may be vulnerable to adverse factor exposures such as stress, hypoxia, caffeine, and synthetic GCs use. In these instances, maternal serum GCs levels may surge beyond the protective capacity of the placental GCs barrier. Moreover, these adverse factors could directly compromise the placental GCs barrier, resulting in excessive fetal exposure to GCs. It is well-documented that prenatal GCs exposure can detrimentally impact the offspring's cardiovascular system, particularly in relation to blood pressure, vascular function, and heart function. In this review, we succinctly delineate the alterations in GCs levels during pregnancy and the potential mechanisms driving these changes, and also analyze the possible causes of prenatal GCs exposure. Furthermore, we summarize the current advancements in understanding the adverse effects and mechanisms of prenatal GCs exposure on the offspring's cardiovascular system.
Collapse
Affiliation(s)
- Chenxuan Zhao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei He
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengying Deng
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Changhong Wang
- Genetics and Prenatal Diagnosis Center, Fuyang People’s Hospital, Fuyang, China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Dias P, Salam R, Moravcová M, Saadat S, Pourová J, Vopršalová M, Jirkovský E, Tebbens JD, Mladěnka P. 3-methoxycatechol causes vasodilation likely via K V channels: ex vivo, in silico docking and in vivo study. Vascul Pharmacol 2024; 156:107418. [PMID: 39159736 DOI: 10.1016/j.vph.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
Collapse
MESH Headings
- Animals
- Vasodilation/drug effects
- Male
- Catechols/pharmacology
- Catechols/chemistry
- Molecular Docking Simulation
- Vasodilator Agents/pharmacology
- Vasodilator Agents/chemistry
- Female
- Rats, Inbred SHR
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Swine
- Dose-Response Relationship, Drug
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertension/metabolism
- Arterial Pressure/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Rats
- Sex Factors
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Structure-Activity Relationship
- Cyclic GMP/metabolism
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Saina Saadat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
19
|
Orth T, Pyanova A, Lux S, Kaiser P, Reinheimer I, Nielsen DL, Khalid JA, Rognant S, Jepps TA, Matchkov VV, Schubert R. Vascular smooth muscle BK channels limit ouabain-induced vasocontraction: Dual role of the Na/K-ATPase as a hub for Src-kinase and the Na/Ca-exchanger. FASEB J 2024; 38:e70046. [PMID: 39259502 DOI: 10.1096/fj.202400628rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.
Collapse
Affiliation(s)
- Tobias Orth
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simon Lux
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kaiser
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Reinheimer
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Josef Ali Khalid
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rudolf Schubert
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
20
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Singhrao N, Flores-Tamez VA, Moustafa YA, Reddy GR, Burns AE, Pinkerton KE, Chen CY, Navedo MF, Nieves-Cintrón M. Nicotine Impairs Smooth Muscle cAMP Signaling and Vascular Reactivity. Microcirculation 2024; 31:e12871. [PMID: 38805589 PMCID: PMC11303104 DOI: 10.1111/micc.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs β adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS Isoproterenol (ISO)-induced β-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS These results imply that nicotine alters VSM β adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.
Collapse
Affiliation(s)
- Navid Singhrao
- Department of Pharmacology, University of California, Davis, USA
| | | | | | | | - Abby E. Burns
- Department of Pharmacology, University of California, Davis, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, USA
| | | |
Collapse
|
22
|
Pyanova A, Serebryakov VN, Gagov H, Mladenov M, Schubert R. BK Channels in Tail Artery Vascular Smooth Muscle Cells of Normotensive (WKY) and Hypertensive (SHR) Rats Possess Similar Calcium Sensitivity But Different Responses to the Vasodilator Iloprost. Int J Mol Sci 2024; 25:7140. [PMID: 39000253 PMCID: PMC11241265 DOI: 10.3390/ijms25137140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
It has been reported that, in the spontaneously hypertensive rat (SHR) model of hypertension, different components of the G-protein/adenylate cyclase (AC)/Calcium-activated potassium channel of high conductance (BK) channel signaling pathway are altered differently. In the upstream part of the pathway (G-protein/AC), a comparatively low efficacy has been established, whereas downstream BK currents seem to be increased. Thus, the overall performance of this signaling pathway in SHR is elusive. For a better understanding, we focused on one aspect, the direct targeting of the BK channel by the G-protein/AC pathway and tested the hypothesis that the comparatively low AC pathway efficacy in SHR results in a reduced agonist-induced stimulation of BK currents. This hypothesis was investigated using freshly isolated smooth muscle cells from WKY and SHR rat tail artery and the patch-clamp technique. It was observed that: (1) single BK channels have similar current-voltage relationships, voltage-dependence and calcium sensitivity; (2) BK currents in cells with a strong buffering of the BK channel activator calcium have similar current-voltage relationships; (3) the iloprost-induced concentration-dependent increase of the BK current is larger in WKY compared to SHR; (4) the effects of activators of the PKA pathway, the catalytic subunit of PKA and the potent and selective cAMP-analogue Sp-5,6-DCl-cBIMPS on BK currents are similar. Thus, our data suggest that the lower iloprost-induced stimulation of the BK current in freshly isolated rat tail artery smooth muscle cells from SHR compared with WKY is due to the lower efficacy of upstream elements of the G-Protein/AC/BK channel pathway.
Collapse
MESH Headings
- Animals
- Rats, Inbred SHR
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Rats
- Calcium/metabolism
- Iloprost/pharmacology
- Rats, Inbred WKY
- Hypertension/metabolism
- Hypertension/drug therapy
- Vasodilator Agents/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Male
- Arteries/drug effects
- Arteries/metabolism
- Tail/blood supply
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany;
| | | | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, 1000 Skopje, North Macedonia;
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany;
| |
Collapse
|
23
|
Xu X, Fan Y, Yang X, Liu Y, Wang Y, Zhang J, Hou X, Fan Y, Zhang M. Anji white tea relaxes precontracted arteries, represses voltage-gated Ca 2+ channels and voltage-gated K + channels in the arterial smooth muscle cells: Comparison with green tea main component (-)-epigallocatechin gallate. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117855. [PMID: 38346524 DOI: 10.1016/j.jep.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
24
|
Kang M, Mun SY, Zhuang W, Park M, Jeong J, Park H, Jung WK, Choi IW, Na S, Park WS. Inhibition of voltage-gated potassium channel by aripiprazole in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2024; 973:176610. [PMID: 38663541 DOI: 10.1016/j.ejphar.2024.176610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 μM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.
Collapse
Affiliation(s)
- Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
25
|
Stefanski M, Arora Y, Cheung M, Dutta A. Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies-A Review of Technology Concepts. Brain Sci 2024; 14:591. [PMID: 38928591 PMCID: PMC11201600 DOI: 10.3390/brainsci14060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh-Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health.
Collapse
Affiliation(s)
- Marcel Stefanski
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| | - Yashika Arora
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Mancheung Cheung
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
26
|
Park M, Mun SY, Zhuang W, Jeong J, Kim HR, Park H, Han ET, Han JH, Chun W, Li H, Park WS. The antidiabetic drug ipragliflozin induces vasorelaxation of rabbit femoral artery by activating a Kv channel, the SERCA pump, and the PKA signaling pathway. Eur J Pharmacol 2024; 972:176589. [PMID: 38631503 DOI: 10.1016/j.ejphar.2024.176589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 μM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 μM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 μM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 μM) and XE991 (10 μM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 μM) and cyclopiazonic acid (10 μM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 μM) and KT5720 (1 μM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.
Collapse
Affiliation(s)
- Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
27
|
Son NT, Gianibbi B, Panti A, Spiga O, Bastos JK, Fusi F. Vasorelaxant Activity of (2S)-Sakuranetin and Other Flavonoids Isolated from the Green Propolis of the Caatinga Mimosa tenuiflora. PLANTA MEDICA 2024; 90:454-468. [PMID: 38599606 DOI: 10.1055/a-2294-7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.
Collapse
Affiliation(s)
- Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Caugiay, Hanoi, Vietnam
| | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Alice Panti
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| |
Collapse
|
28
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Xie L, You Q, Mao J, Wu F, Xia C, Hai R, Wei Y, Zhou X. Thyrotropin induces atherosclerosis by upregulating large conductance Ca 2+-activated K + channel subunits. Mol Cell Endocrinol 2024; 583:112145. [PMID: 38184154 DOI: 10.1016/j.mce.2024.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Hypothyroidism is associated with elevated levels of serum thyrotropin (TSH), which have been shown to promote abnormal proliferation of vascular smooth muscle cells and contribute to the development of atherosclerosis. However, the specific mechanisms underlying the TSH-induced abnormal proliferation of vascular smooth muscle cells remain unclear. The objective of this study was to investigate the role of TSH in the progression of atherosclerosis. Our research findings revealed that hypothyroidism can trigger early atherosclerotic changes in the aorta of Wistar rats. In alignment with our in vitro experiments, we observed that TSH induces abnormal proliferation of aortic smooth muscle cells by modulating the expression of α and β1 subunits of large conductance Ca2+-activated K+ (BKCa) channels within these cells via the cAMP/PKA signaling pathway. These results collectively indicate that TSH acts through the cAMP/PKA signaling pathway to upregulate the expression of α and β1 subunits of BKCa channels, thereby promoting abnormal proliferation of arterial smooth muscle cells. These findings may provide a basis for the clinical prevention and treatment of atherosclerosis caused by elevated TSH levels.
Collapse
Affiliation(s)
- Linjun Xie
- Department of Thyroid and Breast Surgery, The First People's Hospital of Zigong, Zigong, Sichuan, China; Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Qian You
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Breast, Thyroid and Vessel Surgery, The Neijiang First People's Hospital, Neijiang, 641000, China.
| | - Jingying Mao
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Fei Wu
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Chengwei Xia
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Rui Hai
- Department of Vascular, Breast, Thyroid Surgery, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yan Wei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
30
|
Mensah EA, Daneshtalab N, Tabrizchi R. Effects of vasoactive substances on biomechanics of small resistance arteries of male and female Dahl salt-sensitive rats. Pharmacol Res Perspect 2024; 12:e1180. [PMID: 38421097 PMCID: PMC10902908 DOI: 10.1002/prp2.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Changes in vascular biomechanics leading to increase in arterial stiffness play a pivotal role in circulatory dysfunction. Our objectives were to examine sex-specific pharmacological changes related to the biomechanics and any structural modifications in small resistance arteries of Dahl salt-sensitive male and female rats. The composite Young modulus (CYM) was determined using pressure myograph recordings, and immunohistochemistry was used for the evaluation of any structural changes in the third-order mesenteric arteries (n = 6). Animals on high-salt diet developed hypertension with significant elevation in central and peripheral blood pressures and pulse wave velocity compared to those on regular diet. There were no significant differences observed in the CYM between any of the groups (i.e., males and females) in vehicle-treated time-control studies. The presence of verapamil (0.3 μM) significantly reduced CYM in hypertensive males without changes within females compared to vehicle. This effect was abolished by phenylephrine (0.3 μM). BaCl2 (100 μM), ouabain (100 μM), and L-NAME (0.3 μM) combined significantly increased CYM in vessels from in normotensive males and females but not in hypertensive males compared to vehicle. The increase in CYM was abolished in the presence of phenylephrine. Sodium nitroprusside (0.3 μM), in the presence of phenylephrine, significantly reduced CYM in male normotensive versus hypertensive, with no differences within females. Significant differences were observed in immunohistochemical assessment of biomechanical markers of arterial stiffness between males and females. Our findings suggest sex possibly due to pressure differences to be responsible for adaptive changes in biomechanics, and varied pharmacological responses in hypertensive state.
Collapse
Affiliation(s)
- Eric A. Mensah
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Noriko Daneshtalab
- School of PharmacyMemorial University NewfoundlandSt. John'sNewfoundlandCanada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
31
|
Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, Greensmith DJ. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol 2024; 326:H950-H970. [PMID: 38334967 DOI: 10.1152/ajpheart.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.
Collapse
Affiliation(s)
- Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Roberto O Ybañez-Julca
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Cristhian N Rodriguez-Silva
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EphyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - David J Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, The University of Salford, Salford, United Kingdom
| |
Collapse
|
32
|
Son NT, Gianibbi B, Panti A, Spiga O, Bastos JK, Fusi F. 3,3'-O-dimethylquercetin: A bi-functional vasodilator isolated from green propolis of the Caatinga Mimosa tenuiflora. Eur J Pharmacol 2024; 967:176400. [PMID: 38331336 DOI: 10.1016/j.ejphar.2024.176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.
Collapse
Affiliation(s)
- Ninh The Son
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil; Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam; Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Alice Panti
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil.
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
33
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
34
|
Whitworth CP, Polacheck WJ. Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. Expert Opin Drug Discov 2024; 19:339-351. [PMID: 38117223 PMCID: PMC10922379 DOI: 10.1080/17460441.2023.2294947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models. AREAS COVERED The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration. EXPERT OPINION Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.
Collapse
Affiliation(s)
- Chloe P Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
35
|
Zhuang W, Mun SY, Park M, Jeong J, Kim HR, Na S, Lee SJ, Park H, Park WS. Inhibition of voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells by the atypical antipsychotic agent sertindole. J Appl Toxicol 2024; 44:391-399. [PMID: 37786982 DOI: 10.1002/jat.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
The regulation of membrane potential and the contractility of vascular smooth muscle cells (VSMCs) by voltage-dependent K+ (Kv) potassium channels are well-established. In this study, native VSMCs from rabbit coronary arteries were used to investigate the inhibitory effect of sertindole, an atypical antipsychotic agent, on Kv channels. Sertindole induced dose-dependent inhibition of Kv channels, with an IC50 of 3.13 ± 0.72 μM. Although sertindole did not cause a change in the steady-state activation curve, it did lead to a negative shift in the steady-state inactivation curve. The application of 1- or 2-Hz train pulses failed to alter the sertindole-induced inhibition of Kv channels, suggesting use-independent effects of the drug. The inhibitory response to sertindole was significantly diminished by pretreatment with a Kv1.5 inhibitor but not by Kv2.1 and Kv7 subtype inhibitors. These findings demonstrate the sertindole dose-dependent and use-independent inhibition of vascular Kv channels (mainly the Kv1.5 subtype) through a mechanism that involves altering steady-state inactivation curves. Therefore, the use of sertindole as an antipsychotic drug may have adverse effects on the cardiovascular system.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se Jin Lee
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
36
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Mironova GY, Kowalewska PM, El-Lakany M, Tran CHT, Sancho M, Zechariah A, Jackson WF, Welsh DG. The conducted vasomotor response and the principles of electrical communication in resistance arteries. Physiol Rev 2024; 104:33-84. [PMID: 37410448 PMCID: PMC11918294 DOI: 10.1152/physrev.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The "conducted vasomotor response" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paulina M Kowalewska
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammed El-Lakany
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Cam Ha T Tran
- Department of Physiology, Faculty of Medicine, University of Nevada (Reno), Reno, Nevada, United States
| | - Maria Sancho
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anil Zechariah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Santos EW, Khatoon S, Di Mise A, Zheng YM, Wang YX. Mitochondrial Dynamics in Pulmonary Hypertension. Biomedicines 2023; 12:53. [PMID: 38255160 PMCID: PMC10813473 DOI: 10.3390/biomedicines12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock. Hypoxia and nicotine exposure can cause dysfunctions in mitochondrial dynamics, increases in mitochondrial reactive oxygen species generation and calcium concentration, and decreases in ATP production. These mitochondrial changes contribute significantly to pulmonary vascular oxidative stress, inflammatory responses, contractile dysfunction, pathologic remodeling, and eventually pulmonary hypertension. In this review article, therefore, we primarily summarize recent advances in basic, translational, and clinical studies of circadian roles in mitochondrial metabolism in the pulmonary vasculature. This knowledge may not only be crucial to fully understanding the development of pulmonary hypertension, but also greatly help to create new therapeutic strategies for treating this devastating disease and other related pulmonary disorders.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Subika Khatoon
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| |
Collapse
|
39
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
40
|
Rognant S, Baldwin SN, Pritchard HAT, Greenstein A, Calloe K, Aalkjaer C, Jepps TA. Acute, pro-contractile effects of prorenin on rat mesenteric arteries. FASEB J 2023; 37:e23282. [PMID: 37994700 DOI: 10.1096/fj.202301480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Prorenin and the prorenin receptor ((P)RR) are important, yet controversial, members of the renin-angiotensin-aldosterone system. The ((P)RR) is expressed throughout the body, including the vasculature, however, the direct effect of prorenin on arterial contractility is yet to be determined. Within rat mesenteric arteries, immunostaining and proximity ligation assays were used to determine the interacting partners of (P)RR in freshly isolated vascular smooth muscle cells (VSMCs). Wire myography examined the functional effect of prorenin. Simultaneous changes in [Ca2+ ]i and force were recorded in arteries loaded with Fura-2AM. Spontaneously transient outward currents were recorded via perforated whole-cell patch-clamp configuration in freshly isolated VSMCs. We found that the (P)RR is located within a distance of less than 40 nm from the V-ATPase, caveolin-1, ryanodine receptors, and large conductance Ca2+ -activated K+ channels (BKCa ) in VSMCs. [Ca2+ ]i imaging and isometric tension recordings indicate that 1 nM prorenin enhanced α1-adrenoreceptor-mediated contraction, associated with an increased number of Ca2+ waves, independent of voltage-gated Ca2+ channels activation. Incubation of VSMCs with 1 nM prorenin decreased the amplitude and frequency of spontaneously transient outward currents and attenuated BKCa -mediated relaxation. Inhibition of the V-ATPase with 100 nM bafilomycin prevented prorenin-mediated inhibition of BKCa -derived relaxation. Renin (1 nM) had no effect on BKCa -mediated relaxation. In conclusion, prorenin enhances arterial contractility by inhibition of BKCa and increasing intracellular Ca2+ release. It is likely that this effect is mediated through a local shift in pH upon activation of the (P)RR and stimulation of the V-ATPase.
Collapse
Affiliation(s)
- Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Samuel N Baldwin
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester University Teaching Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester University Teaching Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Kirstine Calloe
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
41
|
Sahinturk S. Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat 2023; 169:106782. [PMID: 37741358 DOI: 10.1016/j.prostaglandins.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE This study aimed to investigate vasoactive effect mechanisms of cilostazol in rat thoracic aorta. MATERIALS AND METHODS The vessel rings prepared from the thoracic aortas of the male rats were placed in the chambers of the isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration phase, potassium chloride or phenylephrine was used to contract the vessel rings. When achieving a steady contraction, cilostazol was applied cumulatively (10-8-10-4 M). In the presence of potassium channel blockers or signaling pathway inhibitors, the same experimental procedure was performed. RESULTS Cilostazol exhibited a significant vasorelaxant effect in a concentration-dependent manner (pD2: 5.94 ± 0.94) (p < .001). The vasorelaxant effect level of cilostazol was significantly reduced by the endothelial nitric oxide synthase inhibitor L-NAME (10-4 M), soluble guanylate cyclase inhibitor methylene blue (10 µM), cyclooxygenase 1/2 inhibitor indomethacin (5 µM), adenosine monophosphate-activated protein kinase inhibitor compound C (10 µM), non-selective potassium channel blocker tetraethylammonium chloride (10 mM), large-conductance calcium-activated potassium channel blocker iberiotoxin (20 nM), voltage-gated potassium channel blocker 4-Aminopyridine (1 mM), and inward-rectifier potassium channel blocker BaCl2 (30 µM) (p < .001). Moreover, incubation of cilostazol (10-4 M) significantly reduced caffeine (10 mM), cyclopiazonic acid (10 µM), and phorbol 12-myristate 13-acetate-induced (100 µM) vascular contractions (p < .001). CONCLUSIONS In the rat thoracic aorta, the vasodilator action level of cilostazol is quite noticeable. The vasorelaxant effects of cilostazol are mediated by the eNOS/NO/cGMP pathway, prostanoids, AMPK pathway, PKC, potassium channels, and calcium channels.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Bursa Uludag University Medicine School, Physiology Department, 16059, Bursa, Turkey.
| |
Collapse
|
42
|
Baldwin SN, Jepps TA, Greenwood IA. Cycling matters: Sex hormone regulation of vascular potassium channels. Channels (Austin) 2023; 17:2217637. [PMID: 37243715 PMCID: PMC10228406 DOI: 10.1080/19336950.2023.2217637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle are often neglected experimental factors in vascular basic preclinical scientific research. Recent research by our own laboratory indicates that cyclical changes in serum concentrations of sex -hormones across the rat estrus cycle, primary estradiol, have significant consequences for the subcellular trafficking and function of KV. Vascular potassium channels, including KV, are essential components of vascular reactivity. Our study represents a small part of a growing field of literature aimed at determining the role of sex hormones in regulating arterial ion channel function. This review covers key findings describing the current understanding of sex hormone regulation of vascular potassium channels, with a focus on KV channels. Further, we highlight areas of research where the estrus cycle should be considered in future studies to determine the consequences of physiological oscillations in concentrations of sex hormones on vascular potassium channel function.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
43
|
Mun SY, Zhuang W, Park M, Jeong J, Na SH, Lee SJ, Jung WK, Choi IW, Park H, Park WS. Inhibition of voltage-dependent K + currents of rabbit coronary arterial smooth muscle cells by the atypical antipsychotic paliperidone. J Appl Toxicol 2023; 43:1926-1933. [PMID: 37551856 DOI: 10.1002/jat.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Paliperidone, an atypical antipsychotic, is widely used to treat schizophrenia. In this study, we explored whether paliperidone inhibited the voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells. Paliperidone reduced Kv channel activity in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 16.58 ± 3.03 μM and a Hill coefficient of 0.60 ± 0.04. It did not significantly shift the steady-state activation or inactivation curves, suggesting that the drug did not affect the gating properties of Kv channels. In the presence of paliperidone, the application of 20 repetitive depolarizing pulses at 1 and 2 Hz gradually increased the inhibition of the Kv current. Further, the recovery time constant after Kv channel inactivation was increased by paliperidone, indicating that it inhibited the Kv channel in a use (state)-dependent manner. Its inhibitory effects were reduced by pretreatment with a Kv1.5 subtype inhibitor. However, pretreatment with a Kv2.1 or Kv7 inhibitor did not reduce its inhibitory effect. We conclude that paliperidone inhibits Kv channels (mainly Kv1.5 subtype channels) in a concentration- and use (state)-dependent manner without changing channel gating.
Collapse
Affiliation(s)
- Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Hun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se Jin Lee
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
44
|
Choi S, Haam CE, Byeon S, Oh EY, Choi SK, Lee YH. Investigating the Cardiovascular Benefits of Dapagliflozin: Vasodilatory Effect on Isolated Rat Coronary Arteries. Int J Mol Sci 2023; 24:16873. [PMID: 38069193 PMCID: PMC10706647 DOI: 10.3390/ijms242316873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, is an antidiabetic medication that reduces blood glucose. Although it is well known that dapagliflozin has additional benefits beyond glycemic control, such as reducing blood pressure and lowering the risk of cardiovascular events, no sufficient research data are available on the direct effect of dapagliflozin on cardiovascular function. Thus, in this study, we investigated the direct vascular effect of dapagliflozin on isolated rat coronary arteries. The left descending coronary arteries of 13-week-old male Sprague Dawley rats were cut into segments 2-3 mm long and mounted in a multi-wire myography system to measure isometric tension. Dapagliflozin effectively reduced blood vessel constriction induced by U-46619 (500 nM) in coronary arteries regardless of the endothelium. Treatment with an eNOS inhibitor (L-NNA, 100 μM), sGC inhibitor (ODQ, 5 μM), or COX inhibitor (indomethacin, 3 μM) did not affect the vasodilation induced by dapagliflozin. The application of a Ca2+-activated K+ channel (KCa) blocker (TEA, 2 mM), voltage-dependent K+ channel (KV) blocker (4-AP, 2 mM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (3 μM), and inward-rectifier K+ channel (KIR) blocker (BaCl2, 30 μM) did not affect the dapagliflozin-induced vasodilation either. The treatment with dapagliflozin decreased contractile responses induced by the addition of Ca2+, which suggested that the extracellular Ca2+ influx was inhibited by dapagliflozin. Treatment with dapagliflozin decreased the phosphorylation level of the 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that dapagliflozin has a significant vasodilatory effect on rat coronary arteries. Our findings suggest a novel pharmacologic approach for the treatment of cardiovascular diseases in diabetic patients through the modulation of Ca2+ homeostasis via dapagliflozin administration.
Collapse
Affiliation(s)
| | | | | | | | - Soo-Kyoung Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea; (S.C.); (C.E.H.)
| | - Young-Ho Lee
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea; (S.C.); (C.E.H.)
| |
Collapse
|
45
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
46
|
Moser JC, da Silva RDCV, Costa P, da Silva LM, Cassemiro NS, Gasparotto Junior A, Silva DB, de Souza P. Role of K + and Ca 2+ Channels in the Vasodilator Effects of Plectranthus barbatus (Brazilian Boldo) in Hypertensive Rats. Cardiovasc Ther 2023; 2023:9948707. [PMID: 38024105 PMCID: PMC10673663 DOI: 10.1155/2023/9948707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Plectranthus barbatus, popularly known as Brazilian boldo, is used in Brazilian folk medicine to treat cardiovascular disorders including hypertension. This study investigated the chemical profile by UFLC-DAD-MS and the relaxant effect by using an isolated organ bath of the hydroethanolic extract of P. barbatus (HEPB) leaves on the aorta of spontaneously hypertensive rats (SHR). A total of nineteen compounds were annotated from HEPB, and the main metabolite classes found were flavonoids, diterpenoids, cinnamic acid derivatives, and organic acids. The HEPB promoted an endothelium-dependent vasodilator effect (~100%; EC50 ~347.10 μg/mL). Incubation of L-NAME (a nonselective nitric oxide synthase inhibitor; EC50 ~417.20 μg/mL), ODQ (a selective inhibitor of the soluble guanylate cyclase enzyme; EC50 ~426.00 μg/mL), propranolol (a nonselective α-adrenergic receptor antagonist; EC50 ~448.90 μg/mL), or indomethacin (a nonselective cyclooxygenase enzyme inhibitor; EC50 ~398.70 μg/mL) could not significantly affect the relaxation evoked by HEPB. However, in the presence of atropine (a nonselective muscarinic receptor antagonist), there was a slight reduction in its vasorelaxant effect (EC50 ~476.40 μg/mL). The addition of tetraethylammonium (a blocker of Ca2+-activated K+ channels; EC50 ~611.60 μg/mL) or 4-aminopyridine (a voltage-dependent K+ channel blocker; EC50 ~380.50 μg/mL) significantly reduced the relaxation effect of the extract without the interference of glibenclamide (an ATP-sensitive K+ channel blocker; EC50 ~344.60 μg/mL) or barium chloride (an influx rectifying K+ channel blocker; EC50 ~360.80 μg/mL). The extract inhibited the contractile response against phenylephrine, CaCl2, KCl, or caffeine, similar to the results obtained with nifedipine (voltage-dependent calcium channel blocker). Together, the HEPB showed a vasorelaxant effect on the thoracic aorta of SHR, exclusively dependent on the endothelium with the participation of muscarinic receptors and K+ and Ca2+ channels.
Collapse
Affiliation(s)
- Jeniffer Cristóvão Moser
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Philipe Costa
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Nadla Soares Cassemiro
- Laboratory of Natural Products and Mass Spectrometry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| |
Collapse
|
47
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
48
|
Zhuang W, Mun SY, Park M, Jeong J, Park H, Na S, Lee SJ, Jung WK, Choi IW, Li H, Park WS. Lurasidone blocks the voltage-gated potassium channels of coronary arterial smooth muscle cells. Eur J Pharmacol 2023; 957:176005. [PMID: 37611842 DOI: 10.1016/j.ejphar.2023.176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Lurasidone is a second-generation antipsychotic drug used to treat schizophrenia, mania, and bipolar disorder. The drug is an antagonist of the 5-HT2A and D2 receptors. No effect of lurasidone on the voltage-gated K+ (Kv) channels has yet been identified. Here, we show that lurasidone inhibits the vascular Kv channels of rabbit coronary arterial smooth muscle cells in a dose-dependent manner with an IC50 of 1.88 ± 0.21 μM and a Hill coefficient of 0.98 ± 0.09. Although lurasidone (3 μM) did not affect the activation kinetics, the drug negatively shifted the inactivation curve, suggesting that the drug interacted with the voltage sensors of Kv channels. Application of 1 or 2 Hz train steps in the presence of lurasidone significantly increased Kv current inhibition. The recovery time after channel inactivation increased in the presence of lurasidone. These results suggest that the inhibitory action of lurasidone is use (state)-dependent. Pretreatment with a Kv 1.5 subtype inhibitor effectively reduced the inhibitory effect of lurasidone. However, the inhibitory effect on Kv channels did not markedly change after pretreatment with a Kv 2.1 or a Kv7 subtype inhibitor. In summary, lurasidone inhibits vascular Kv channels (primarily the Kv1.5 subtype) in a concentration- and use (state)-dependent manner by shifting the steady-state inactivation curve.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Se Jin Lee
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
49
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
de Jesus-López E, Cuéllar-Balleza L, Díaz-Peña LF, Luna-Vázquez FJ, Ibarra-Alvarado C, García-Arredondo JA. Vasodilator activity of Poecilotheria ornata venom involves activation of the NO/cGMP pathway and inhibition of calcium influx to vascular smooth muscle cells. Toxicon X 2023; 19:100159. [PMID: 37251689 PMCID: PMC10220391 DOI: 10.1016/j.toxcx.2023.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Tarantula venoms may be a natural source of new vasodilator components useful in pharmacological research. Moreover, biological function data of the venoms are important to enhance the knowledge about the biodiversity and evolution of these species. The present study aims to describe the vasodilatory activity induced by the venom of Poecilotheria ornata on isolated rat aortic rings. This venom induced a vasodilator activity that was significantly reduced after incubation with L-NAME or ODQ. Measurements of nitrite concentrations on rat aorta homogenates showed that the venom significantly increased the basal levels. Moreover, the venom attenuates the contraction induced by calcium. These results suggest that P. ornata venom contains a mixture of vasodilator components that act through the activation of the nitric oxide/cGMP pathway, as well as, through an endothelium-independent mechanism that involves the calcium influx into vascular smooth muscle cells.
Collapse
Affiliation(s)
- Enrique de Jesus-López
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - Luis Cuéllar-Balleza
- Aracnario, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, 76230, Juriquilla, Querétaro, Mexico
| | - Luis Fernando Díaz-Peña
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - Francisco Javier Luna-Vázquez
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - César Ibarra-Alvarado
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - José Alejandro García-Arredondo
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| |
Collapse
|