1
|
Frigon A, Lecomte CG. Stepping up after spinal cord injury: negotiating an obstacle during walking. Neural Regen Res 2025; 20:1919-1929. [PMID: 39254549 PMCID: PMC11691478 DOI: 10.4103/nrr.nrr-d-24-00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles. After spinal cord injury, stepping over an obstacle becomes challenging. Stepping over an obstacle requires sensorimotor transformations in several structures of the brain, including the parietal cortex, premotor cortex, and motor cortex. Sensory information and planning are transformed into motor commands, which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory, coordinate the limbs, and maintain balance. After spinal cord injury, bidirectional communication between the brain and spinal cord is disrupted and animals, including humans, fail to voluntarily modify limb trajectory to step over an obstacle. Therefore, in this review, we discuss the neuromechanical control of stepping over an obstacle, why it fails after spinal cord injury, and how it recovers to a certain extent.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Kuroki S, Hamazaki T, Kajimoto H, Nishida S. Passive human touch cannot recognize the shape of a pattern imprinted on the fingertip. iScience 2025; 28:112331. [PMID: 40276770 PMCID: PMC12020845 DOI: 10.1016/j.isci.2025.112331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
While tactile spatial pattern recognition has been suggested to be qualitatively similar to visual recognition, our study challenges this notion, particularly under passive touch. Previous electrophysiological and behavioral research suggested that the tactile system can process complex spatial patterns in the same way as the visual system and can be modeled as a low-pass version of visual spatial perception. However, we found that when using energy-matched simple patterns, participants were highly dependent on local skin deformation and largely ineffective at distinguishing basic shape features, such as a closed triangle vs. an open arrow, or to discern the similarity of rotated versions of the same shape, regardless of whether they were presented as vibrotactile patterns or braille patterns. This study provides compelling evidence that tactile representation of spatial patterns differs not only in resolution but also in how the brain processes shape features compared to visual representation in standard passive viewing.
Collapse
Affiliation(s)
- Scinob Kuroki
- Communication Science Laboratories, NTT, Atsugi, Kanagawa 243-0198, Japan
| | - Takumi Hamazaki
- Department of Informatics, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Hiroyuki Kajimoto
- Department of Informatics, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Shin’ya Nishida
- Communication Science Laboratories, NTT, Atsugi, Kanagawa 243-0198, Japan
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Vlachou ME, Legros J, Sellin C, Paleressompoulle D, Massi F, Simoneau M, Mouchnino L, Blouin J. Tactile contribution extends beyond exteroception during spatially guided finger movements. Sci Rep 2025; 15:14959. [PMID: 40301588 PMCID: PMC12041493 DOI: 10.1038/s41598-025-99503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch's involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.
Collapse
Affiliation(s)
- Maria Evangelia Vlachou
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France.
- Maria Evangelia Vlachou, Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, 3 place Victor Hugo, Marseille, 13003, France.
| | - Juliette Legros
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France
| | - Cécile Sellin
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France
| | - Dany Paleressompoulle
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France
| | - Francesco Massi
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Università degli Studi di Roma La Sapienza, Rome, Italy
- Laboratoire de Mécanique des Contacts et des Structures, Institut National des Sciences Appliquées de Lyon (INSA LYON), Lyon, France
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Readaptation et Integration Sociale (CIRRIS) Du CIUSSS de La Capitale-Nationale, Université Laval, Québec, Québec, Canada
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada
| | - Laurence Mouchnino
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France
- Institut Universitaire de France, Paris, France
| | - Jean Blouin
- Centre de Recherche en Psychologie et Neurosciences, Aix-Marseille Université, CNRS (UMR 7077), Marseille, France
| |
Collapse
|
4
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2025; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Alexandrov A, Morton A, Molino J, Pelusi J, Chrostek CA, Crisco JJ, Arcand MA. Investigating the Effect of Elevation and Sex-Based Differences on Shoulder Proprioceptive Accuracy. Orthop J Sports Med 2025; 13:23259671251315524. [PMID: 40012841 PMCID: PMC11863210 DOI: 10.1177/23259671251315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 02/28/2025] Open
Abstract
Background Evaluating shoulder proprioception provides functional data that supplement imaging for the diagnosis/rehabilitation of rotator cuff injuries. There is a need for a system capable of establishing normal ranges for proprioceptive accuracy in healthy shoulders during unrestricted 3-dimensional motion. Purpose To conduct passive joint position sense (JPS) testing in men and women with no history of shoulder injury using a novel testing system, identifying differences in proprioceptive accuracy based on sex, shoulder elevation, and crossbody position. Study Design Controlled laboratory study. Methods We recruited 20 (10 male and 10 female) healthy participants aged between 18 and 25 years for JPS testing. Participants used a single wrist-worn sensor, and our primary outcome was errors in position matching (first guiding a participant's dominant arm from a neutral starting position to a target position and then having participants independently return from the start position to the same target) across 12 targets comprised of all possible combinations of shoulder elevation angles (EAs) (30°, 60°, 90°, and 120°) and crossbody angles (CAs) (0°, 45°, and 90°). A linear mixed model was employed to evaluate sex- and position-based differences in JPS accuracy. Results Position-matching accuracy increased in both males and females as target EAs increased from 30° to 120° (P < .001). The greatest EA position-matching accuracy in both sexes was observed at EAs of 90° and 120° (P < .0001). A change in the direction of error was observed in both males and females as target EAs increased from 90° to 120°, transitioning from positive (overshooting) to negative (undershooting) error (P < .005). A sex-based difference was observed at EAs of 60°, 90°, and 120° in the 90° CA plane, where females exhibited more negative CA matching error compared with males (P < .01). Conclusion Proprioceptive accuracy increased in both sexes at higher shoulder elevations. In the 90° CA plane, females demonstrated greater CA undershoot than males. Clinical Relevance While magnetic resonance imaging and ultrasound are effective tools for determining the size/age of rotator cuff tears, they do not provide functional prognostic insight for pain or mobility. Proprioceptive testing, as a functional metric based on free shoulder motion, may assist in clinically characterizing a patient's shoulder injury and rehabilitative success at multiple time points.
Collapse
Affiliation(s)
| | - Amy Morton
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Janine Molino
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Lifespan Biostatistics, Epidemiology, Research Design and Informatics Core, Rhode Island Hospital, Providence, Rhode Island, USA
| | | | - Cynthia A. Chrostek
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Rhode Island Hospital, Providence, Rhode Island, USA
| | - Joseph J. Crisco
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Michel A. Arcand
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Nisky I, Makin TR. A neurocognitive pathway for engineering artificial touch. SCIENCE ADVANCES 2024; 10:eadq6290. [PMID: 39693427 PMCID: PMC11654688 DOI: 10.1126/sciadv.adq6290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
Artificial haptics has the potential to revolutionize the way we integrate physical and virtual technologies in our daily lives, with implications for teleoperation, motor skill acquisition, rehabilitation, gaming, interpersonal communication, and beyond. Here, we delve into the intricate interplay between the somatosensory system and engineered haptic inputs for perception and action. We critically examine the sensory feedback's fidelity and the cognitive demands of interfacing with these systems. We examine how artificial touch interfaces could be redesigned to better align with human sensory, motor, and cognitive systems, emphasizing the dynamic and context-dependent nature of sensory integration. We consider the various learning processes involved in adapting to artificial haptics, highlighting the need for interfaces that support both explicit and implicit learning mechanisms. We emphasize the need for technologies that are not only physiologically biomimetic but also behaviorally and cognitively congruent with the user, affording a range of alternative solutions to users' needs.
Collapse
Affiliation(s)
- Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Israel
| | - Tamar R. Makin
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Jelonek W, Malik J, Łochyński D. Effects of attentional focus on spatial localization of distal body parts and touch in two-arm position matching. Exp Brain Res 2024; 243:27. [PMID: 39699636 DOI: 10.1007/s00221-024-06976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
This study investigated how the judgment of proximal joint position can be affected by touch alone, focused attention on the distal body part, or touch spatial localization. Participants completed a two-arm elbow joint position-matching task, in which they indicated the location of one forearm by the placement of the other. In four test conditions, matching was performed during (1) detection of touch (tactile stimulation of index finger pads), (2) spatial localization of fingers (attention focused on the position of index finger pads), (3) spatial localization of touch on fingers (attention focused on tactile stimulation of index finger pads), and (4) detection of touch but localization of fingers (tactile stimulation of index finger pads, but attention focusing on the spatial position of the pads). In the first experiment (n = 23), the sensitivity of muscle spindle receptors in both reference and indicator arms was reduced and equalized by both-slack conditioning. In the second experiment (n = 20), the illusion of excessive elbow flexion in the reference arm and excessive extension in the indicator arm was generated through extension-flexion conditioning. In the first experiment, the accuracy and precision of matching were unaffected in any test condition. In the second experiment, participants made amplified undershooting errors under attention-focused conditions. In conclusion, focused attention on the location of a distal body part and touch affects both the spatial localization of the limb and tactile remapping only when the perceived forearm position is misinterpreted due to imbalanced proprioceptive input from antagonistic arm muscles.
Collapse
Affiliation(s)
- Wojciech Jelonek
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland.
| | - Jakub Malik
- Department of Pedagogy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland
| | - Dawid Łochyński
- Department of Neuromuscular Physiotherapy, Poznan University of Physical Education, Królowej Jadwigi 27/39, Poznan, 61-871, Poland
| |
Collapse
|
8
|
Soghoyan G, Biktimirov AR, Piliugin NS, Matvienko Y, Kaplan AY, Sintsov MY, Lebedev MA. Restoration of natural somatic sensations to the amputees: finding the right combination of neurostimulation methods. Front Neurosci 2024; 18:1466684. [PMID: 39654645 PMCID: PMC11626906 DOI: 10.3389/fnins.2024.1466684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Limb amputation results in such devastating consequences as loss of motor and sensory functions and phantom limb pain (PLP). Neurostimulation-based approaches have been developed to treat this condition, which provide artificial somatosensory feedback such as peripheral nerve stimulation (PNS), spinal cord stimulation (SCS), and transcutaneous electrical nerve stimulation (TENS). Yet, the effectiveness of different neurostimulation methods has been rarely tested in the same participants. Meanwhile, such tests would help to select the most effective method or a combination of methods and could contribute to the development of multisensory limb prostheses. In this study, two transhumeral amputees were implanted with stimulating electrodes placed in the medial nerve and over the spinal cord epidurally. PNS and SCS were tested in each participant as approaches to enable tactile and proprioceptive sensations and suppress PLP. Both PNS and SCS induced sensation in different parts of the phantom hand, which correlated with cortical responses detected with electroencephalographic (EEG) recordings. The sensations produced by PNS more often felt natural compared to those produced by SCS. Еvoked response potentials (ERPs) were more lateralized and adapted faster for PNS compared to SCS. In the tasks performed with the bionic hand, neurostimulation-induced sensations enabled discrimination of object size. As the participants practiced with neurostimulation, they improved on the object-size discrimination task and their sensations became more natural. А combination of PNS and TENS enabled sensations that utilized both tactile and proprioceptive information. This combination was effective to convey the perception of object softness. In addition to enabling sensations, neurostimulation led to a decrease in PLP. Clinical trial registration https://clinicaltrials.gov/, identifier, #NCT05650931.
Collapse
Affiliation(s)
- Gurgen Soghoyan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artur R. Biktimirov
- Laboratory of Experimental and Translational Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikita S. Piliugin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Alexander Y. Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| |
Collapse
|
9
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Kuroki S, Nishida S. Touch Cannot Attentionally Select Signals Based on Feature Binding. IEEE TRANSACTIONS ON HAPTICS 2024; 17:604-613. [PMID: 38376976 DOI: 10.1109/toh.2024.3367944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
For human sensory processing, cluttered real-world environments where signals from multiple objects or events overlap are challenging. A cognitive function useful in such situations is an attentional selection of one signal from others based on the difference in bound feature. For instance, one can visually select a specific orientation if it is uniquely colored. However, here we show that unlike vision, touch is very poor at feature-based signal selection. We presented two-orthogonal line segments with different vibration textures to a fingertip. Though observers were markedly sensitive to each feature, they were generally unable to identify the orientation bound with a specific texture when the segments were presented simultaneously or in rapid alternation. A similar failure was observed for a direction judgment task. These results demonstrate a general cognitive limitation of touch, highlighting its unique bias to integrate multiple signals into a global event rather than segment them into separate events.
Collapse
|
11
|
Silvoni S, Occhigrossi C, Di Giorgi M, Lulé D, Birbaumer N. Brain Function, Learning, and Role of Feedback in Complete Paralysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6366. [PMID: 39409405 PMCID: PMC11478792 DOI: 10.3390/s24196366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
The determinants and driving forces of communication abilities in the locked-in state are poorly understood so far. Results from an experimental-clinical study on a completely paralyzed person involved in communication sessions after the implantation of a microelectrode array were retrospectively analyzed. The aim was to focus on the prerequisites and determinants for learning to control a brain-computer interface for communication in paralysis. A comparative examination of the communication results with the current literature was carried out in light of an ideomotor theory of thinking. We speculate that novel skill learning took place and that several aspects of the wording of sentences during the communication sessions reflect preserved cognitive and conscious processing. We also present some speculations on the operant learning procedure used for communication, which argues for the reformulation of the previously postulated hypothesis of the extinction of response planning and goal-directed ideas in the completely locked-in state. We highlight the importance of feedback and reinforcement in the thought-action-consequence associative chain necessary to maintain purposeful communication. Finally, we underline the necessity to consider the psychosocial context of patients and the duration of complete immobilization as determinants of the 'extinction of thinking' theory and to identify the actual barriers preventing communication in these patients.
Collapse
Affiliation(s)
- Stefano Silvoni
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
- ALS Voice gGmbH, 72116 Mössingen, Germany; (C.O.); (M.D.G.)
| | | | | | - Dorothée Lulé
- Department of Neurology, Ulm University, 89081 Ulm, Germany;
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen University, 72076 Tübingen, Germany;
- Physical Medicine and Rehabilitation, University of Padua, 35121 Padua, Italy
| |
Collapse
|
12
|
Callier T, Gitchell T, Harvey MA, Bensmaia SJ. Disentangling Temporal and Rate Codes in the Primate Somatosensory Cortex. J Neurosci 2024; 44:e0036242024. [PMID: 39164107 PMCID: PMC11411585 DOI: 10.1523/jneurosci.0036-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Millisecond-scale temporal spiking patterns encode sensory information in the periphery, but their role in the neocortex remains controversial. The sense of touch provides a window into temporal coding because tactile neurons often exhibit precise, repeatable, and informative temporal spiking patterns. In the somatosensory cortex (S1), responses to skin vibrations exhibit phase locking that faithfully carries information about vibratory frequency. However, the respective roles of spike timing and rate in frequency coding are confounded because vibratory frequency shapes both the timing and rates of responses. To disentangle the contributions of these two neural features, we measured S1 responses as rhesus macaques performed frequency discrimination tasks in which differences in frequency were accompanied by orthogonal variations in amplitude. We assessed the degree to which the strength and timing of responses could account for animal performance. First, we showed that animals can discriminate frequency, but their performance is biased by amplitude variations. Second, rate-based representations of frequency are susceptible to changes in amplitude but in ways that are inconsistent with the animals' behavioral biases, calling into question a rate-based neural code for frequency. In contrast, timing-based representations are highly informative about frequency but impervious to changes in amplitude, which is also inconsistent with the animals' behavior. We account for the animals' behavior with a model wherein frequency coding relies on a temporal code, but frequency judgments are biased by perceived magnitude. We conclude that information about vibratory frequency is not encoded in S1 firing rates but primarily in temporal patterning on millisecond timescales.
Collapse
Affiliation(s)
- Thierri Callier
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60627
| | - Thomas Gitchell
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60627
| | - Michael A Harvey
- Department of Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60627
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60627
- Neuroscience Institute, University of Chicago, Chicago, Illinois 60627
| |
Collapse
|
13
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
14
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
16
|
Lu Y, Cui Y, Cao L, Dong Z, Cheng L, Wu W, Wang C, Liu X, Liu Y, Zhang B, Li D, Zhao B, Wang H, Li K, Ma L, Shi W, Li W, Ma Y, Du Z, Zhang J, Xiong H, Luo N, Liu Y, Hou X, Han J, Sun H, Cai T, Peng Q, Feng L, Wang J, Paxinos G, Yang Z, Fan L, Jiang T. Macaque Brainnetome Atlas: A multifaceted brain map with parcellation, connection, and histology. Sci Bull (Beijing) 2024; 69:2241-2259. [PMID: 38580551 DOI: 10.1016/j.scib.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.
Collapse
Affiliation(s)
- Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Wen Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Xinyi Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youtong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bokai Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Zongchang Du
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxiao Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglu Han
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Hongji Sun
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Cai
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Qiang Peng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney NSW 2031, Australia
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| |
Collapse
|
17
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Huang Q, Elangovan N, Zhang M, Van de Winckel A, Konczak J. Robot-aided assessment and associated brain lesions of impaired ankle proprioception in chronic stroke. J Neuroeng Rehabil 2024; 21:109. [PMID: 38915064 PMCID: PMC11194987 DOI: 10.1186/s12984-024-01396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Impaired ankle proprioception strongly predicts balance dysfunction in chronic stroke. However, only sparse data on ankle position sense and no systematic data on ankle motion sense dysfunction in stroke are available. Moreover, the lesion sites underlying impaired ankle proprioception have not been comprehensively delineated. Using robotic technology, this study quantified ankle proprioceptive deficits post-stroke and determined the associated brain lesions. METHODS Twelve adults with chronic stroke and 13 neurotypical adults participated. A robot passively plantarflexed a participant's ankle to two distinct positions or at two distinct velocities. Participants subsequently indicated which of the two movements was further/faster. Based on the stimulus-response data, psychometric just-noticeable-difference (JND) thresholds and intervals of uncertainty (IU) were derived as measures on proprioceptive bias and precision. To determine group differences, Welch's t-test and the Wilcoxon-Mann-Whitney test were performed for the JND threshold and IU, respectively. Voxel-based lesion subtraction analysis identified the brain lesions associated with observed proprioceptive deficits in adults with stroke. RESULTS 83% of adults with stroke exhibited abnormalities in either position or motion sense, or both. JND and IU measures were significantly elevated compared to the control group (Position sense: + 77% in JND, + 148% in IU; Motion sense: +153% in JND, + 78% in IU). Adults with stroke with both impaired ankle position and motion sense had lesions in the parietal, frontal, and temporoparietal regions. CONCLUSIONS This is the first study to document the magnitude and frequency of ankle position and motion sense impairment in adults with chronic stroke. Proprioceptive dysfunction was characterized by elevated JND thresholds and increased uncertainty in perceiving ankle position/motion. Furthermore, the associated cortical lesions for impairment in both proprioceptive senses were largely overlapping.
Collapse
Affiliation(s)
- Qiyin Huang
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| | - Naveen Elangovan
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| | - Mingming Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ann Van de Winckel
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
19
|
Ten Brink AF, Heiner I, Dijkerman HC, Strauch C. Pupil dilation reveals the intensity of touch. Psychophysiology 2024; 61:e14538. [PMID: 38362931 DOI: 10.1111/psyp.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Touch is important for many aspects of our daily activities. One of the most important tactile characteristics is its perceived intensity. However, quantifying the intensity of perceived tactile stimulation is not always possible using overt responses. Here, we show that pupil responses can objectively index the intensity of tactile stimulation in the absence of overt participant responses. In Experiment 1 (n = 32), we stimulated three reportedly differentially sensitive body locations (finger, forearm, and calf) with a single tap of a tactor while tracking pupil responses. Tactile stimulation resulted in greater pupil dilation than a baseline without stimulation. Furthermore, pupils dilated more for the more sensitive location (finger) than for the less sensitive location (forearm and calf). In Experiment 2 (n = 20) we extended these findings by manipulating the intensity of the stimulation with three different intensities, here a short vibration, always at the little finger. Again, pupils dilated more when being stimulated at higher intensities as compared to lower intensities. In summary, pupils dilated more for more sensitive parts of the body at constant stimulation intensity and for more intense stimulation at constant location. Taken together, the results show that the intensity of perceived tactile stimulation can be objectively measured with pupil responses - and that such responses are a versatile marker for touch research. Our findings may pave the way for previously impossible objective tests of tactile sensitivity, for example in minimally conscious state patients.
Collapse
Affiliation(s)
- Antonia F Ten Brink
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Iris Heiner
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - H Chris Dijkerman
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Rabut C, Norman SL, Griggs WS, Russin JJ, Jann K, Christopoulos V, Liu C, Andersen RA, Shapiro MG. Functional ultrasound imaging of human brain activity through an acoustically transparent cranial window. Sci Transl Med 2024; 16:eadj3143. [PMID: 38809965 DOI: 10.1126/scitranslmed.adj3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Visualization of human brain activity is crucial for understanding normal and aberrant brain function. Currently available neural activity recording methods are highly invasive, have low sensitivity, and cannot be conducted outside of an operating room. Functional ultrasound imaging (fUSI) is an emerging technique that offers sensitive, large-scale, high-resolution neural imaging; however, fUSI cannot be performed through the adult human skull. Here, we used a polymeric skull replacement material to create an acoustic window compatible with fUSI to monitor adult human brain activity in a single individual. Using an in vitro cerebrovascular phantom to mimic brain vasculature and an in vivo rodent cranial defect model, first, we evaluated the fUSI signal intensity and signal-to-noise ratio through polymethyl methacrylate (PMMA) cranial implants of different thicknesses or a titanium mesh implant. We found that rat brain neural activity could be recorded with high sensitivity through a PMMA implant using a dedicated fUSI pulse sequence. We then designed a custom ultrasound-transparent cranial window implant for an adult patient undergoing reconstructive skull surgery after traumatic brain injury. We showed that fUSI could record brain activity in an awake human outside of the operating room. In a video game "connect the dots" task, we demonstrated mapping and decoding of task-modulated cortical activity in this individual. In a guitar-strumming task, we mapped additional task-specific cortical responses. Our proof-of-principle study shows that fUSI can be used as a high-resolution (200 μm) functional imaging modality for measuring adult human brain activity through an acoustically transparent cranial window.
Collapse
Affiliation(s)
- Claire Rabut
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sumner L Norman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Whitney S Griggs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan J Russin
- USC Neurorestoration Center and the Departments of Neurosurgery and Neurology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kay Jann
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Charles Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- USC Neurorestoration Center and the Departments of Neurosurgery and Neurology, University of Southern California, Los Angeles, CA 90033, USA
- Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- T&C Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Yildiz A, Yildiz R, Burak M, Zorlular R, Akkaya KU, Elbasan B. An investigation of sensory processing skills in toddlers with joint hypermobility. Early Hum Dev 2024; 192:105997. [PMID: 38614033 DOI: 10.1016/j.earlhumdev.2024.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Children with Generalized Joint Hypermobility (GJH) may have a motor developmental delay in the early period and subluxation, fatigue, autonomic dysfunction, and pain arising from ligaments and other soft tissues in advanced ages. Additionally, there is a loss of proprioceptive sensation in children and adults with GJH. AIMS This study aimed to evaluate sensory processing skills in toddlers with GJH. STUDY DESIGN A cross-sectional study. SUBJECTS Fifty-eight children aged between 12 and 14 months were included in the study. These children were divided into two groups: with and without GJH (31 with GJH and 27 without GJH). OUTCOME MEASURES The sensory processing skills of the children in the study were evaluated with the Test of Sensory Functions in Infants (TSFI). RESULTS The scores in the subtests of TSFI in response to tactile deep pressure, adaptive motor functions, visual-tactile integration, and response to vestibular stimuli were higher in favor of children without GJH (p < 0.05). The total TSFI score was higher in the group without GJH (p < 0.05). CONCLUSIONS Sensory processing problems were found in toddlers with GJH. Sensory motor development should be evaluated in children with GJH, and an appropriate early intervention program should be planned.
Collapse
Affiliation(s)
- Ayse Yildiz
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey.
| | - Ramazan Yildiz
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Burak
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Fırat University, Elazig, Turkey
| | - Rabia Zorlular
- Department of Physical Therapy and Rehabilitation, Bor Faculty of Health Sciences, Nigde Omer Halis Demir University, Niğde, Turkey
| | - Kamile Uzun Akkaya
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Bulent Elbasan
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
22
|
Alouit A, Gavaret M, Ramdani C, Lindberg PG, Dupin L. Cortical activations associated with spatial remapping of finger touch using EEG. Cereb Cortex 2024; 34:bhae161. [PMID: 38642106 DOI: 10.1093/cercor/bhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.
Collapse
Affiliation(s)
- Anaëlle Alouit
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Service de neurophysiologie clinique, 1 Rue Cabanis, F-75014 Paris, France
| | - Céline Ramdani
- Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Lucile Dupin
- Université Paris Cité, INCC UMR 8002, CNRS, 45 Rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|
23
|
Marin Vargas A, Bisi A, Chiappa AS, Versteeg C, Miller LE, Mathis A. Task-driven neural network models predict neural dynamics of proprioception. Cell 2024; 187:1745-1761.e19. [PMID: 38518772 DOI: 10.1016/j.cell.2024.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.
Collapse
Affiliation(s)
- Alessandro Marin Vargas
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Axel Bisi
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alberto S Chiappa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chris Versteeg
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA; Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Lee E Miller
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA; Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Alexander Mathis
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Delhaye BP, Schiltz F, Crevecoeur F, Thonnard JL, Lefèvre P. Fast grip force adaptation to friction relies on localized fingerpad strains. SCIENCE ADVANCES 2024; 10:eadh9344. [PMID: 38232162 DOI: 10.1126/sciadv.adh9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions. We observed that, following an unbeknown change in plate across trials, participants adapted their grip force to friction. After switching from high to low friction, we found a significant increase in strain inside the contact arising ~100 ms before the modulation of grip force, suggesting that differences in strain patterns before lift-off are used by the nervous system to quickly adjust the force to the frictional properties of manipulated objects.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félicien Schiltz
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
Donati E, Valle G. Neuromorphic hardware for somatosensory neuroprostheses. Nat Commun 2024; 15:556. [PMID: 38228580 PMCID: PMC10791662 DOI: 10.1038/s41467-024-44723-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies.
Collapse
Affiliation(s)
- Elisa Donati
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Bornstein B, Watkins B, Passini FS, Blecher R, Assaraf E, Sui XM, Brumfeld V, Tsoory M, Kröger S, Zelzer E. The mechanosensitive ion channel ASIC2 mediates both proprioceptive sensing and spinal alignment. Exp Physiol 2024; 109:135-147. [PMID: 36951012 PMCID: PMC10988735 DOI: 10.1113/ep090776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Fabian S. Passini
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ronen Blecher
- Orthopedic DepartmentAssuta Ashdod University Hospital, Ashdod, Israel, affiliated to Ben Gurion University of the NegevBeer ShebaIsrael
| | - Eran Assaraf
- Department of Orthopedic SurgeryShamir Medical Center, Assaf HaRofeh Campus, Zeffifin, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Xiao Meng Sui
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Michael Tsoory
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Elazar Zelzer
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
27
|
Bhat GM, Bashir S, Jan SS, Banoo S, Khan JA. Bovine Meissner-like corpuscle and evolutionary ecology of mammalian somatosensory acuity. Anat Histol Embryol 2024; 53:e12969. [PMID: 37724616 DOI: 10.1111/ahe.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The mammalian snout has Meissner's corpuscles (MCs), which transmit epicritic sensations as the animal explores its surroundings. To comprehend the somatosensory acuity in mammals, we examined the structural organization and density of bovine Meissner-like corpuscles (BMLCs) at various ages and compared the changes with other mammalian MCs. The skin from the snout of cows or oxen (2-11 years old) was obtained and processed through routine histological technique. Five-μm thick sections were prepared, silver stained according to the Bielschowsky technique as modified by Winkelman and Schmidt (Mayo Clinic Proceedings, 1957, 217), and observed under a compound light microscope quantitatively and qualitatively. The glabrous skin of the cow snout consisted of two types of BMLCs: One was a cylindrical or elongated structure found in the dermal papillae. The other type was spherical and developed in the superficial layers of the epidermis. BMLCs consisted of both coarse and fine nerve fibres. In the young, the corpuscle comprised thin nerve fibres with indistinct cell outlines. In adults, nerve fibres in the corpuscles were closely packed, and networks, varicosities and end bulbs were well developed. With advancing age, the MCs attenuated into a disorganized mass of nerve fibres. The bovine snout is a highly evolved somatosensory organ due to its rich nerve supply and functionally resembles the anthropoid fingertip. Somatosensory acuity will be lower in the glabrous bovine skin than in primate glabrous skin of the fingertip, as the nerve terminals within the BMLCs are less elaborate in content and structural complexity.
Collapse
Affiliation(s)
- Ghulam M Bhat
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Samina Bashir
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shah S Jan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shamima Banoo
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| | - Javeed A Khan
- Department of Anatomy, Government Medical College Srinagar, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
28
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
29
|
Bresee CS, Cooke DF, Goldring AB, Baldwin MKL, Pineda CR, Krubitzer LA. Reversible deactivation of motor cortex reveals that areas in parietal cortex are differentially dependent on motor cortex for the generation of movement. J Neurophysiol 2024; 131:106-123. [PMID: 38092416 PMCID: PMC11286310 DOI: 10.1152/jn.00086.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Primates are characterized by specializations for manual manipulation, including expansion of posterior parietal cortex (PPC) and, in Catarrhines, evolution of a dexterous hand and opposable thumb. Previous studies examined functional interactions between motor cortex and PPC in New World monkeys and galagos, by inactivating M1 and evoking movements from PPC. These studies found that portions of PPC depend on M1 to generate movements. We now add a species that more closely resembles humans in hand morphology and PPC: macaques. Inactivating portions of M1 resulted in all evoked movements being reduced (28%) or completely abolished (72%) at the PPC sites tested (in areas 5L, PF, and PFG). Anterior parietal area 2 was similarly affected (26% reduced and 74% abolished) and area 1 was the least affected (12% no effect, 54% reduced, and 34% abolished). Unlike previous studies in New World monkeys and galagos, interactions between both nonanalogous (heterotopic) and analogous (homotopic) M1 and parietal movement domains were commonly found in most areas. These experiments demonstrate that there may be two parallel networks involved in motor control: a posterior parietal network dependent on M1 and a network that includes area 1 that is relatively independent of M1. Furthermore, it appears that the relative size and number of cortical fields in parietal cortex in different species correlates with homotopic and heterotopic effect prevalence. These functional differences in macaques could contribute to more numerous and varied muscle synergies across major muscle groups, supporting the expansion of the primate manual behavioral repertoire observed in Old World monkeys.NEW & NOTEWORTHY Motor cortex and anterior and posterior parietal cortex form a sensorimotor integration network. We tested the extent to which parietal areas could initiate movements independent of M1. Our findings support the contention that, although areas 2, 5L, PF, and PFG are highly dependent on M1 to produce movement, area 1 may constitute a parallel corticospinal pathway that can function somewhat independently of M1. A similar functional architecture may underlie dexterous tool use in humans.
Collapse
Affiliation(s)
- Chris S Bresee
- Center for Neuroscience, University of California, Davis, California, United States
| | - Dylan F Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Institute for Neuroscience & Neurotechnology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adam B Goldring
- Center for Neuroscience, University of California, Davis, California, United States
- Department of Neurology, University of California Davis, California, United States
| | - Mary K L Baldwin
- Center for Neuroscience, University of California, Davis, California, United States
- Department of Neurology, University of California Davis, California, United States
| | - Carlos R Pineda
- Center for Neuroscience, University of California, Davis, California, United States
- Department of Neurology, University of California Davis, California, United States
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, California, United States
- Department of Neurology, University of California Davis, California, United States
| |
Collapse
|
30
|
Yu D, Zeng X, Aljuboori ZS, Dennison R, Wu L, Anderson JA, Teng YD. T12-L3 Nerve Transfer-Induced Locomotor Recovery in Rats with Thoracolumbar Contusion: Essential Roles of Sensory Input Rerouting and Central Neuroplasticity. Cells 2023; 12:2804. [PMID: 38132124 PMCID: PMC10741684 DOI: 10.3390/cells12242804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Locomotor recovery after spinal cord injury (SCI) remains an unmet challenge. Nerve transfer (NT), the connection of a functional/expendable peripheral nerve to a paralyzed nerve root, has long been clinically applied, aiming to restore motor control. However, outcomes have been inconsistent, suggesting that NT-induced neurological reinstatement may require activation of mechanisms beyond motor axon reinnervation (our hypothesis). We previously reported that to enhance rat locomotion following T13-L1 hemisection, T12-L3 NT must be performed within timeframes optimal for sensory nerve regrowth. Here, T12-L3 NT was performed for adult female rats with subacute (7-9 days) or chronic (8 weeks) mild (SCImi: 10 g × 12.5 mm) or moderate (SCImo: 10 g × 25 mm) T13-L1 thoracolumbar contusion. For chronic injuries, T11-12 implantation of adult hMSCs (1-week before NT), post-NT intramuscular delivery of FGF2, and environmentally enriched/enlarged (EEE) housing were provided. NT, not control procedures, qualitatively improved locomotion in both SCImi groups and animals with subacute SCImo. However, delayed NT did not produce neurological scale upgrading conversion for SCImo rats. Ablation of the T12 ventral/motor or dorsal/sensory root determined that the T12-L3 sensory input played a key role in hindlimb reanimation. Pharmacological, electrophysiological, and trans-synaptic tracing assays revealed that NT strengthened integrity of the propriospinal network, serotonergic neuromodulation, and the neuromuscular junction. Besides key outcomes of thoracolumbar contusion modeling, the data provides the first evidence that mixed NT-induced locomotor efficacy may rely pivotally on sensory rerouting and pro-repair neuroplasticity to reactivate neurocircuits/central pattern generators. The finding describes a novel neurobiology mechanism underlying NT, which can be targeted for development of innovative neurotization therapies.
Collapse
Affiliation(s)
- Dou Yu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Zaid S. Aljuboori
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Liquan Wu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Jamie A. Anderson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
- Neurotrauma Recovery Research, Spaulding Rehabilitation Hospital Network, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
31
|
Schnittjer AJ, Kim H, Lepley AS, Onate JA, Criss CR, Simon JE, Grooms DR. Organization of sensorimotor activity in anterior cruciate ligament reconstructed individuals: an fMRI conjunction analysis. Front Hum Neurosci 2023; 17:1263292. [PMID: 38077185 PMCID: PMC10704895 DOI: 10.3389/fnhum.2023.1263292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Anterior cruciate ligament reconstruction (ACLR) is characterized by persistent involved limb functional deficits that persist for years despite rehabilitation. Previous research provides evidence of both peripheral and central nervous system adaptations following ACLR. However, no study has compared functional organization of the brain for involved limb motor control relative to the uninvolved limb and healthy controls. The purpose of this study was to examine sensorimotor cortex and cerebellar functional activity overlap and non-overlap during a knee motor control task between groups (ACLR and control), and to determine cortical organization of involved and uninvolved limb movement between groups. Methods Eighteen participants with left knee ACLR and 18 control participants performed a knee flexion/extension motor control task during functional magnetic resonance imaging (fMRI). A conjunction analysis was conducted to determine the degree of overlap in brain activity for involved and uninvolved limb knee motor control between groups. Results The ACLR group had a statistically higher mean percent signal change in the sensorimotor cortex for the involved > uninvolved contrast compared to the control group. Brain activity between groups statistically overlapped in sensorimotor regions of the cortex and cerebellum for both group contrasts: involved > uninvolved and uninvolved > involved. Relative to the control group, the ACLR group uniquely activated superior parietal regions (precuneus, lateral occipital cortex) for involved limb motor control. Additionally, for involved limb motor control, the ACLR group displayed a medial and superior shift in peak voxel location in frontal regions; for parietal regions, the ACLR group had a more posterior and superior peak voxel location relative to the control group. Conclusion ACLR may result in unique activation of the sensorimotor cortex via a cortically driven sensory integration strategy to maintain involved limb motor control. The ACLR group's unique brain activity was independent of strength, self-reported knee function, and time from surgery.
Collapse
Affiliation(s)
- Amber J. Schnittjer
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - HoWon Kim
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - Adam S. Lepley
- School of Kinesiology, Exercise and Sports Science Initiative, University of Michigan, Ann Arbor, MI, United States
| | - James A. Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Cody R. Criss
- OhioHealth Riverside Methodist Hospital, Columbus, OH, United States
| | - Janet E. Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| |
Collapse
|
32
|
Kempfert DJ, Chaconas EJ, Daugherty ML, Clark NC. Test-retest reliability of quantitative sensory testing, active joint position sense, and functional hop testing in amateur adult athletes with unilateral anterior cruciate ligament reconstruction. Phys Ther Sport 2023; 64:63-73. [PMID: 37778110 DOI: 10.1016/j.ptsp.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES The somatosensory system fulfils a critical role in functional knee joint stability (FKJS) by providing afferent feedback necessary for neuromuscular control. Individuals with anterior cruciate ligament reconstruction (ACLr) have altered somatosensory function. Somatosensory characteristics are assessed by proprioception and quantitative sensory testing. The purpose of the study was to examine intra-rater and inter-rater reliability of methods used to assess somatosensory characteristics and FKJS in amateur adult athletes with unilateral ACLr. DESIGN Repeated measures. SETTING University. PARTICIPANTS 8 female, 4 male with unilateral autogenous ACLr. MAIN OUTCOME MEASURES Bilateral measurements at 5 lower extremity locations and the anterior forearm: light touch (LT), vibration sense (VS), pressure pain threshold (PPT); knee active joint position sense (AJPS); adapted crossover hop for distance (ACHD). Intraclass correlation coefficients (ICC) determined reliability, defined as: poor (<0.50), moderate (0.50-0.75), good (0.75-0.90). RESULTS ACLr-side intra-rater/inter-rater ICCs ranged: LT, -0.27-0.80/-0.01-0.84; VS, 0.12-0.90/0.25-0.90; PPT, 0.49-0.98/0.86-0.99; AJPS, 0.15-0.79/0.55-0.87; ACHD, 0.98/0.99. Uninjured-side intra-rater/inter-rater ICCs ranged: LT, 0.12-0.66/-0.09-0.64; VS, 0.35-0.89/0.05-0.81; PPT, 0.65-0.99/0.45-0.95; AJPS, 0.07-0.81/0.37-0.99; ACHD, 0.99/0.98. CONCLUSIONS Intra-rater and inter-rater reliability was poor to good for both limbs. Overall, PPT and the ACHD demonstrated the highest ICCs. Some somatosensory assessments can be employed with confidence, while others should be used with caution.
Collapse
Affiliation(s)
- David J Kempfert
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, St. Augustine, FL, 32086, United States.
| | - Eric J Chaconas
- Doctor of Science Physical Therapy Program, Bellin College, 3201 Eaton Rd, Green Bay, WI, 54311, United States.
| | - Matthew L Daugherty
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, St. Augustine, FL, 32086, United States.
| | - Nicholas C Clark
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, C04 3SQ, United Kingdom.
| |
Collapse
|
33
|
Saenen L, Verheyden G, Orban de Xivry JJ. The differential effect of age on upper limb sensory processing, proprioception, and motor function. J Neurophysiol 2023; 130:1183-1193. [PMID: 37703491 DOI: 10.1152/jn.00364.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Sensory processing consists in the integration and interpretation of somatosensory information. It builds upon proprioception but is a distinct function requiring complex processing by the brain over time. Currently little is known about the effect of aging on sensory processing ability or the influence of other covariates such as motor function, proprioception, or cognition. In this study, we measured upper limb passive and active sensory processing, motor function, proprioception, and cognition in 40 healthy younger adults and 54 older adults. We analyzed age differences across all measures and evaluated the influence of covariates on sensory processing through regression. Our results showed larger effect sizes for age differences in sensory processing (r = 0.38) compared with motor function (r = 0.18-0.22) and proprioception (r = 0.10-0.27) but smaller than for cognition (r = 0.56-0.63). Aside from age, we found no evidence that sensory processing performance was related to motor function or proprioception, but active sensory processing was related to cognition (β = 0.30-0.42). In conclusion, sensory processing showed an age-related decline, whereas some proprioceptive and motor abilities were preserved across age.NEW & NOTEWORTHY Sensory processing consists in the integration and interpretation of sensory information by the brain over time and can be affected by lesion while proprioception remains intact. We investigated how sensory processing can be used to reproduce and identify shapes. We showed that the effect of age on sensory processing is more pronounced than its effect on proprioception or motor function. Age and cognition are related to sensory processing, not proprioception or motor function.
Collapse
Affiliation(s)
- Leen Saenen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Li J, Wang W, Cheng J, Li H, Feng L, Ren Y, Liu L, Qian Q, Wang Y. Relationships between sensory integration and the core symptoms of attention-deficit/hyperactivity disorder: the mediating effect of executive function. Eur Child Adolesc Psychiatry 2023; 32:2235-2246. [PMID: 35999304 DOI: 10.1007/s00787-022-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by executive function deficits and functional alterations in sensory integration. The present study aimed to investigate the relationship between ADHD core symptoms, executive function, and sensory integration in children with ADHD. A total of 228 children with ADHD were recruited for our study. The Sensory Organization Test (SOT) and Child Sensory Integration Scale (CSIS) evaluated the sensory integration ability from lab-based and scaled-based perspectives, respectively. Three core components of executive functions (inhibition, working memory, and set-shifting) were assessed using both lab-based tests and the relevant factors from the behavior rating inventory of executive function (BRIEF). Partial correlation analysis was performed to explore the correlation of sensory integration with EF and ADHD core symptoms. Based on the observed significant correlation, bootstrap analyses were further conducted to explore the potential mediating effect of EF on the relationship between sensory integration and ADHD core symptoms. ADHD symptoms and EF were significantly correlated with CSIS scores; no factors were significantly correlated with SOT performance. In detail, the vestibular-balance score was negatively correlated with both inattention and hyperactivity/impulsivity symptoms, while the hyper-sensory and proprioception scores were negatively correlated with only inattention symptoms. For the scaled-based EF, vestibular-balance was negatively correlated with inhibition and working memory, and the hyper-sensory score was negatively correlated with shift factor. No correlation was found for the lab-based EF tests. The subsequent mediation analysis found that inhibition partially mediated the relationship between vestibular balance and hyperactivity/impulsivity symptoms. Working memory completely mediated the relationship between vestibular-balance, hyper-sensory, proprioception, and inattention symptoms. These results were well validated in an independent sample. Our present findings demonstrated that the functional alteration in basic sensory integration might be associated with impairments of executive functions and then lead to the behavioral expression of ADHD. The present findings might provide a new perspective to understand the occurrence of ADHD symptoms and potential precise intervention methods.
Collapse
Affiliation(s)
- Jing Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenchen Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lei Feng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuanchun Ren
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
35
|
AliAbbasi E, Aydingul V, Sezgin A, Er U, Turkuz S, Basdogan C. Tactile Perception of Coated Smooth Surfaces. IEEE TRANSACTIONS ON HAPTICS 2023; 16:586-593. [PMID: 37195854 DOI: 10.1109/toh.2023.3274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although surface coating is commonly utilized in many industries for improving the aesthetics and functionality of the end product, our tactile perception of coated surfaces has not been investigated in depth yet. In fact, there are only a few studies investigating the effect of coating material on our tactile perception of extremely smooth surfaces having roughness amplitudes in the order of a few nanometers. Moreover, the current literature needs more studies linking the physical measurements performed on these surfaces to our tactile perception in order to further understand the adhesive contact mechanism leading to our percept. In this study, we first perform 2AFC experiments with 8 participants to quantify their tactile discrimination ability of 5 smooth glass surfaces coated with 3 different materials. We then measure the coefficient of friction between human finger and those 5 surfaces via a custom-made tribometer and their surface energies via Sessile drop test performed with 4 different liquids. The results of our psychophysical experiments and the physical measurements show that coating material has a strong influence on our tactile perception and human finger is capable of detecting differences in surface chemistry due to, possibly, molecular interactions.
Collapse
|
36
|
Senadheera I, Larssen BC, Mak-Yuen YYK, Steinfort S, Carey LM, Alahakoon D. Profiling Somatosensory Impairment after Stroke: Characterizing Common "Fingerprints" of Impairment Using Unsupervised Machine Learning-Based Cluster Analysis of Quantitative Measures of the Upper Limb. Brain Sci 2023; 13:1253. [PMID: 37759854 PMCID: PMC10526214 DOI: 10.3390/brainsci13091253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Altered somatosensory function is common among stroke survivors, yet is often poorly characterized. Methods of profiling somatosensation that illustrate the variability in impairment within and across different modalities remain limited. We aimed to characterize post-stroke somatosensation profiles ("fingerprints") of the upper limb using an unsupervised machine learning cluster analysis to capture hidden relationships between measures of touch, proprioception, and haptic object recognition. Raw data were pooled from six studies where multiple quantitative measures of upper limb somatosensation were collected from stroke survivors (n = 207) using the Tactile Discrimination Test (TDT), Wrist Position Sense Test (WPST) and functional Tactile Object Recognition Test (fTORT) on the contralesional and ipsilesional upper limbs. The Growing Self Organizing Map (GSOM) unsupervised machine learning algorithm was used to generate a topology-preserving two-dimensional mapping of the pooled data and then separate it into clusters. Signature profiles of somatosensory impairment across two modalities (TDT and WPST; n = 203) and three modalities (TDT, WPST, and fTORT; n = 141) were characterized for both hands. Distinct impairment subgroups were identified. The influence of background and clinical variables was also modelled. The study provided evidence of the utility of unsupervised cluster analysis that can profile stroke survivor signatures of somatosensory impairment, which may inform improved diagnosis and characterization of impairment patterns.
Collapse
Affiliation(s)
- Isuru Senadheera
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
| | - Beverley C. Larssen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
- Department of Occupational Therapy, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Sarah Steinfort
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Damminda Alahakoon
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
37
|
Ryun S, Kim M, Kim JS, Chung CK. Cortical maps of somatosensory perception in human. Neuroimage 2023; 276:120197. [PMID: 37245558 DOI: 10.1016/j.neuroimage.2023.120197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.
Collapse
Affiliation(s)
- Seokyun Ryun
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Minkyu Kim
- Department of Cognitive Sciences, University of California Irvine, Irvine, USA
| | - June Sic Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
38
|
Wu YH, Santello M. Distinct sensorimotor mechanisms underlie the control of grasp and manipulation forces for dexterous manipulation. Sci Rep 2023; 13:12037. [PMID: 37491565 PMCID: PMC10368702 DOI: 10.1038/s41598-023-38870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Dexterous manipulation relies on the ability to simultaneously attain two goals: controlling object position and orientation (pose) and preventing object slip. Although object manipulation has been extensively studied, most previous work has focused only on the control of digit forces for slip prevention. Therefore, it remains underexplored how humans coordinate digit forces to prevent object slip and control object pose simultaneously. We developed a dexterous manipulation task requiring subjects to grasp and lift a sensorized object using different grasp configurations while preventing it from tilting. We decomposed digit forces into manipulation and grasp forces for pose control and slip prevention, respectively. By separating biomechanically-obligatory from non-obligatory effects of grasp configuration, we found that subjects prioritized grasp stability over efficiency in grasp force control. Furthermore, grasp force was controlled in an anticipatory fashion at object lift onset, whereas manipulation force was modulated following acquisition of somatosensory and visual feedback of object's dynamics throughout object lift. Mathematical modeling of feasible manipulation forces further confirmed that subjects could not accurately anticipate the required manipulation force prior to acquisition of sensory feedback. Our experimental approach and findings open new research avenues for investigating neural mechanisms underlying dexterous manipulation and biomedical applications.
Collapse
Affiliation(s)
- Yen-Hsun Wu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
39
|
Geelen JE, van der Helm FCT, Schouten AC, Mugge W. Sensory weighting of position and force feedback during pinching. Exp Brain Res 2023:10.1007/s00221-023-06654-1. [PMID: 37382669 PMCID: PMC10386968 DOI: 10.1007/s00221-023-06654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Human hands are complex biomechanical systems that allow for dexterous tasks with many degrees of freedom. Coordination of the fingers is essential for many activities of daily living and involves integrating sensory signals. During this sensory integration, the central nervous system deals with the uncertainty of sensory signals. When handling compliant objects, force and position are related. Interactions with stiff objects result in reduced position changes and increased force changes compared to compliant objects. Literature has shown sensory integration of force and position at the shoulder. Nevertheless, differences in sensory requirements between proximal and distal joints may lead to different proprioceptive representations, hence findings at proximal joints cannot be directly transferred to distal joints, such as the digits. Here, we investigate the sensory integration of force and position during pinching. A haptic manipulator rendered a virtual spring with adjustable stiffness between the index finger and the thumb. Participants had to blindly reproduce a force against the spring. In both visual reference trials and blind reproduction trials, the relation between pinch force and spring compression was constant. However, by covertly changing the spring characteristics in catch trials into an adjusted force-position relation, the participants' weighting of force and position could be revealed. In agreement with previous studies on the shoulder, participants relied more on force sense in trials with higher stiffness. This study demonstrated stiffness-dependent sensory integration of force and position feedback during pinching.
Collapse
Affiliation(s)
- Jinne E Geelen
- BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
| | - Frans C T van der Helm
- BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Alfred C Schouten
- BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Winfred Mugge
- BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
40
|
Rabut C, Norman SL, Griggs WS, Russin JJ, Jann K, Christopoulos V, Liu C, Andersen RA, Shapiro MG. A window to the brain: ultrasound imaging of human neural activity through a permanent acoustic window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544094. [PMID: 37398368 PMCID: PMC10312699 DOI: 10.1101/2023.06.14.544094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Recording human brain activity is crucial for understanding normal and aberrant brain function. However, available recording methods are either highly invasive or have relatively low sensitivity. Functional ultrasound imaging (fUSI) is an emerging technique that offers sensitive, large-scale, high-resolution neural imaging. However, fUSI cannot be performed through adult human skull. Here, we use a polymeric skull replacement material to create an acoustic window allowing ultrasound to monitor brain activity in fully intact adult humans. We design the window through experiments in phantoms and rodents, then implement it in a participant undergoing reconstructive skull surgery. Subsequently, we demonstrate fully non-invasive mapping and decoding of cortical responses to finger movement, marking the first instance of high-resolution (200 μm) and large-scale (50 mmx38 mm) brain imaging through a permanent acoustic window.
Collapse
|
41
|
Abstract
Brain-machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships between sensory input and motor output, which the brain must learn to gain dexterous control. This review highlights the role of learning in BMIs to restore movement and sensation, and discusses how BMI design may influence neural plasticity and performance. The close integration of plasticity in sensory and motor function influences the design of both artificial pathways and will be an essential consideration for bidirectional devices that restore both sensory and motor function.
Collapse
Affiliation(s)
- Maria C Dadarlat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Ryan A Canfield
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Amy L Orsborn
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
42
|
Sandbrink KJ, Mamidanna P, Michaelis C, Bethge M, Mathis MW, Mathis A. Contrasting action and posture coding with hierarchical deep neural network models of proprioception. eLife 2023; 12:e81499. [PMID: 37254843 PMCID: PMC10361732 DOI: 10.7554/elife.81499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks' units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.
Collapse
Affiliation(s)
- Kai J Sandbrink
- The Rowland Institute at Harvard, Harvard UniversityCambridgeUnited States
| | - Pranav Mamidanna
- Tübingen AI Center, Eberhard Karls Universität Tübingen & Institute for Theoretical PhysicsTübingenGermany
| | - Claudio Michaelis
- Tübingen AI Center, Eberhard Karls Universität Tübingen & Institute for Theoretical PhysicsTübingenGermany
| | - Matthias Bethge
- Tübingen AI Center, Eberhard Karls Universität Tübingen & Institute for Theoretical PhysicsTübingenGermany
| | - Mackenzie Weygandt Mathis
- The Rowland Institute at Harvard, Harvard UniversityCambridgeUnited States
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneGenèveSwitzerland
| | - Alexander Mathis
- The Rowland Institute at Harvard, Harvard UniversityCambridgeUnited States
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneGenèveSwitzerland
| |
Collapse
|
43
|
Peters A, Brockhoff L, Bruchmann M, Dellert T, Moeck R, Schlossmacher I, Straube T. Visual perceptual load and processing of somatosensory stimuli in primary and secondary somatosensory cortices. Sci Rep 2023; 13:7005. [PMID: 37117254 PMCID: PMC10147921 DOI: 10.1038/s41598-023-34225-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
Load theory assumes that neural activation to distractors in early sensory cortices is modulated by the perceptual load of a main task, regardless of whether task and distractor share the same sensory modality or not. While several studies have investigated the question of load effects on distractor processing in early sensory areas, there is no functional magnetic resonance imaging (fMRI) study regarding load effects on somatosensory stimuli. Here, we used fMRI to investigate effects of visual perceptual load on neural responses to somatosensory stimuli applied to the wrist in a study with 44 participants. Perceptual load was manipulated by an established sustained visual detection task, which avoided simultaneous target and distractor presentations. Load was operationalized by detection difficulty of subtle or clear color changes of one of 12 rotating dots. While all somatosensory stimuli led to activation in somatosensory areas SI and SII, we found no statistically significant difference in brain activation to these stimuli under high compared to low sustained visual load. Moreover, exploratory Bayesian analyses supported the absence of differences. Thus, our findings suggest a resistance of somatosensory processing to at least some forms of visual perceptual load, possibly due to behavioural relevance of discrete somatosensory stimuli and separable attentional resources for the somatosensory and visual modality.
Collapse
Affiliation(s)
- Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany.
| | - Laura Brockhoff
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
| | - Insa Schlossmacher
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| |
Collapse
|
44
|
Rosenthal IA, Bashford L, Kellis S, Pejsa K, Lee B, Liu C, Andersen RA. S1 represents multisensory contexts and somatotopic locations within and outside the bounds of the cortical homunculus. Cell Rep 2023; 42:112312. [PMID: 37002922 PMCID: PMC10544688 DOI: 10.1016/j.celrep.2023.112312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Recent literature suggests that tactile events are represented in the primary somatosensory cortex (S1) beyond its long-established topography; in addition, the extent to which S1 is modulated by vision remains unclear. To better characterize S1, human electrophysiological data were recorded during touches to the forearm or finger. Conditions included visually observed physical touches, physical touches without vision, and visual touches without physical contact. Two major findings emerge from this dataset. First, vision strongly modulates S1 area 1, but only if there is a physical element to the touch, suggesting that passive touch observation is insufficient to elicit neural responses. Second, despite recording in a putative arm area of S1, neural activity represents both arm and finger stimuli during physical touches. Arm touches are encoded more strongly and specifically, supporting the idea that S1 encodes tactile events primarily through its topographic organization but also more generally, encompassing other areas of the body.
Collapse
Affiliation(s)
- Isabelle A Rosenthal
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Luke Bashford
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer Kellis
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Kelsie Pejsa
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
45
|
Alonso I, Scheer I, Palacio-Manzano M, Frézel-Jacob N, Philippides A, Prsa M. Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex. Nat Commun 2023; 14:1866. [PMID: 37045825 PMCID: PMC10097678 DOI: 10.1038/s41467-023-37575-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Conscious perception of limb movements depends on proprioceptive neural responses in the somatosensory cortex. In contrast to tactile sensations, proprioceptive cortical coding is barely studied in the mammalian brain and practically non-existent in rodent research. To understand the cortical representation of this important sensory modality we developed a passive forelimb displacement paradigm in behaving mice and also trained them to perceptually discriminate where their limb is moved in space. We delineated the rodent proprioceptive cortex with wide-field calcium imaging and optogenetic silencing experiments during behavior. Our results reveal that proprioception is represented in both sensory and motor cortical areas. In addition, behavioral measurements and responses of layer 2/3 neurons imaged with two-photon microscopy reveal that passive limb movements are both perceived and encoded in the mouse cortex as a spatial direction vector that interfaces the limb with the body's peripersonal space.
Collapse
Affiliation(s)
- Ignacio Alonso
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Irina Scheer
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Mélanie Palacio-Manzano
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Noémie Frézel-Jacob
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Antoine Philippides
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
46
|
Bensmaia SJ, Tyler DJ, Micera S. Restoration of sensory information via bionic hands. Nat Biomed Eng 2023; 7:443-455. [PMID: 33230305 PMCID: PMC10233657 DOI: 10.1038/s41551-020-00630-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.
Collapse
Affiliation(s)
- Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA.
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
47
|
Veverka T, Hok P, Trnečková M, Otruba P, Zapletalová J, Tüdös Z, Lotze M, Kaňovský P, Hluštík P. Interhemispheric parietal cortex connectivity reflects improvement in post-stroke spasticity due to treatment with botulinum toxin-A. J Neurol Sci 2023; 446:120588. [PMID: 36827809 DOI: 10.1016/j.jns.2023.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In post-stroke spasticity (PSS), effective treatment with botulinum neurotoxin (BoNT) is associated with transient decrease in activation of the ipsilesional superior parietal lobule (SPL) and intraparietal sulcus (IPS). We hypothesized that this would be reflected in changes in resting-state functional connectivity (rsFC) of the SPL/IPS. Our aim was therefore to assess rsFC of the ipsilesional SPL/IPS in chronic stroke patients with hemiparesis both with and without PSS and to explore the relationship between SPL/IPS rsFC and PSS severity. To this end, fourteen chronic stroke patients with upper limb weakness and PSS (the PSS group) and 8 patients with comparable weakness but no PSS (the control group) underwent clinical evaluation and 3 fMRI examinations, at baseline (W0) and 4 and 11 weeks after BoNT (W4 and W11, respectively). Seed-based rsFC of the atlas-based SPL and IPS was evaluated using a group×time interaction analysis and a correlation analysis with PSS severity (modified Ashworth scale), integrity of the ipsilesional somatosensory afferent pathway (evoked potential N20 latency), and age. In the PSS group, transient improvement in PSS was associated with increase in rsFC between the ipsilesional IPS and the contralesional SPL at W4. The interhemispheric connectivity was negatively correlated with PSS severity at baseline and with PSS improvement at W4. We propose adaptation of the internal forward model as the putative underlying mechanism and discuss its possible association with increased limb use, diminished spastic dystonia, or improved motor performance, as well as its potential contribution to the clinical effects of BoNT.
Collapse
Affiliation(s)
- Tomáš Veverka
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia; Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany.
| | - Markéta Trnečková
- Department of Computer Science, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12 779 00 Olomouc, Olomouc, Czechia
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Jana Zapletalová
- Department of Biophysics, Biometry and Statistics, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Zbyněk Tüdös
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475 Greifswald, Germany.
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czechia.
| |
Collapse
|
48
|
Martin AB, Cardenas MA, Andersen RK, Bowman AI, Hillier EA, Bensmaia S, Fuglevand AJ, Gothard KM. A context-dependent switch from sensing to feeling in the primate amygdala. Cell Rep 2023; 42:112056. [PMID: 36724071 PMCID: PMC10430631 DOI: 10.1016/j.celrep.2023.112056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The skin transmits affective signals that integrate into our social vocabulary. As the socio-affective aspects of touch are likely processed in the amygdala, we compare neural responses to social grooming and gentle airflow recorded from the amygdala and the primary somatosensory cortex of non-human primates. Neurons in the somatosensory cortex respond to both types of tactile stimuli. In the amygdala, however, neurons do not respond to individual grooming sweeps even though grooming elicits autonomic states indicative of positive affect. Instead, many show changes in baseline firing rates that persist throughout the grooming bout. Such baseline fluctuations are attributed to social context because the presence of the groomer alone can account for the observed changes in baseline activity. It appears, therefore, that during grooming, the amygdala stops responding to external inputs on a short timescale but remains responsive to social context (or the associated affective states) on longer time scales.
Collapse
Affiliation(s)
- Anne B Martin
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Michael A Cardenas
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Rose K Andersen
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Archer I Bowman
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Elizabeth A Hillier
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, the University of Chicago, Chicago, IL, USA
| | - Andrew J Fuglevand
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Katalin M Gothard
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
49
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
50
|
Goueytes D, Lassagne H, Shulz DE, Ego-Stengel V, Estebanez L. Learning in a closed-loop brain-machine interface with distributed optogenetic cortical feedback. J Neural Eng 2022; 19. [PMID: 36579369 DOI: 10.1088/1741-2552/acab87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.Distributed microstimulations at the cortical surface can efficiently deliver feedback to a subject during the manipulation of a prosthesis through a brain-machine interface (BMI). Such feedback can convey vast amounts of information to the prosthesis user and may be key to obtain an accurate control and embodiment of the prosthesis. However, so far little is known of the physiological constraints on the decoding of such patterns. Here, we aimed to test a rotary optogenetic feedback that was designed to encode efficiently the 360° movements of the robotic actuators used in prosthetics. We sought to assess its use by mice that controlled a prosthesis joint through a closed-loop BMI.Approach.We tested the ability of mice to optimize the trajectory of a virtual prosthesis joint in order to solve a rewarded reaching task. They could control the speed of the joint by modulating the activity of individual neurons in the primary motor cortex. During the task, the patterned optogenetic stimulation projected on the primary somatosensory cortex continuously delivered information to the mouse about the position of the joint.Main results.We showed that mice are able to exploit the continuous, rotating cortical feedback in the active behaving context of the task. Mice achieved better control than in the absence of feedback by detecting reward opportunities more often, and also by moving the joint faster towards the reward angular zone, and by maintaining it longer in the reward zone. Mice controlling acceleration rather than speed of the joint failed to improve motor control.Significance.These findings suggest that in the context of a closed-loop BMI, distributed cortical feedback with optimized shapes and topology can be exploited to control movement. Our study has direct applications on the closed-loop control of rotary joints that are frequently encountered in robotic prostheses.
Collapse
Affiliation(s)
- Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Henri Lassagne
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Valérie Ego-Stengel
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Luc Estebanez
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| |
Collapse
|