1
|
Krishnamoorthy S, Vasudevan S, Muruganantham B, Muthusami S. Epinephrine augments the phosphorylation of EGFR and promote the DNA synthesis and migration of cervical cancer cells. 3 Biotech 2025; 15:125. [PMID: 40242059 PMCID: PMC11996747 DOI: 10.1007/s13205-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Though a correlation exists between carcinogenesis and epinephrine signaling, the ability of epinephrine in regulating epidermal growth factor (EGF) actions remains largely unknown and necessitates investigation in cervical cancer (CC) cells. The present study aims to understand the role of epinephrine, a stress-induced cytokine on EGF actions in human papilloma virus (HPV)-positive SiHa, ME180 and HPV-negative C33A cells. De-identified database and molecular docking were used to identify the relationship between beta-adrenergic receptor 2 (ADRB2) and EGF receptor (EGFR). Cell viability, mitochondrial labeling, reactive oxygen species (ROS) production, evaluation of ADRB2 and superoxide dismutase-2 (SOD-2) mRNA abundance, SOD-1/2 enzymatic activities, migration assay, gelatin zymography and protein expression analysis of epithelial-mesenchymal transition (EMT) markers were performed to validate the regulatory role of epinephrine and EGF. A significant up-regulation of ADRB2 in HPV-16-positive individuals and binding between epinephrine and EGFR is noted computationally. A reduced survival in high ADRB2 along with the significant reduction in CC survival in Asian population is also observed. Epinephrine augmented the phosphorylation of EGFR and EGF-induced cell viability, ROS production and DNA synthesis. A positive correlation between SOD-2 and ADRB2 was corroborated with the increased ADRB2 and SOD-2 mRNA transcripts. An increase in MMP-2 activity and EMT markers by EGF and epinephrine potentiated the CC cells toward enhanced migration. This study also opens up several new avenues and warrants substantial in vivo studies to support this contention for the inclusion of beta-blockers as adjuvant for EGFR-driven cancers.
Collapse
Affiliation(s)
- Sneha Krishnamoorthy
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Saraswathi Vasudevan
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Bharathi Muruganantham
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Sridhar Muthusami
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| |
Collapse
|
2
|
Hao Y, Zhang W, Sun M, Lan K, Yang N, Yang S, Chen X. TRPC1 downregulation enhances catecholamine secretion in adrenal chromaffin cells under metabolic syndrome conditions. Biochem Biophys Res Commun 2025; 755:151566. [PMID: 40043610 DOI: 10.1016/j.bbrc.2025.151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Increased catecholamine (CA) secretion from the adrenal medulla has been observed in patients with Metabolic Syndrome (MetS) and in animal models. Neuroendocrine adrenal medulla chromaffin cells (AMCCs) release catecholamines in response to Ca2+ influx through calcium channels. This study investigates the role of TRPC channels in mediating calcium influx in AMCCs under MetS conditions. NGF-induced PC12 cells were cultured in a MetS-mimicking (MMetS) medium, and CA secretion, as well as TRPC1 and TRPC5 expression, were assessed. The role of TRPC1 was further explored using siRNA-mediated knockdown in PC12 cells. Additionally, wild-type (WT) and TRPC1 knockout (TRPC1-/-) mice on a high-fat diet (HFD) were used to evaluate in vivo CA secretion and TRPC channel expression. Intracellular [Ca2+] levels in isolated chromaffin cells from mice were measured using live-cell imaging. CA secretion was significantly increased in PC12 cells cultured in the MMetS medium, which was accompanied by downregulation of TRPC1 and upregulation of TRPC5. TRPC1 knockdown via siRNA further increased TRPC5 mRNA levels and CA secretion in MMetS-treated PC12 cells. In MetS mice, TRPC1 deletion led to enhanced CA secretion, elevated body weight, cholesterol levels, and blood pressure compared to WT mice. TRPC1 deletion also potentiated TRPC-mediated calcium influx in chromaffin cells and further upregulated TRPC5 expression under MetS conditions. These findings suggest that TRPC1 downregulation enhances intracellular calcium signaling and CA secretion by reducing its inhibitory effect on TRPC5, providing insights for potential therapeutic strategies in MetS-related pathophysiology.
Collapse
Affiliation(s)
- Ying Hao
- College of Sports, Northwest Normal University, Lanzhou, 730070, China
| | - Weiheng Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengying Sun
- College of Sports, Northwest Normal University, Lanzhou, 730070, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Lan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ningning Yang
- College of Sports, Northwest Normal University, Lanzhou, 730070, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
3
|
Huang Y, Zhou X, Liu J, Cao Y, Fu W, Yang J. Emerging neuroimmune mechanisms in cancer neuroscience. Cancer Lett 2025; 612:217492. [PMID: 39848532 DOI: 10.1016/j.canlet.2025.217492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has become increasingly recognized that neural signals can profoundly influence the prognosis of various cancer types. In the past years, we have witnessed "cancer neuroscience," which primarily focuses on the complex crosstalk between tumors and neural signals, emerging as a new, multidisciplinary direction of biomedical science. This review aims to summarize the current knowledge of this research frontier, with an emphasis on the neuroimmune mechanisms enacted through the reciprocal interactions between tumors and the central or peripheral nervous system. In addition, we wish to highlight several key questions of cancer neuroscience and its neuroimmune action that warrant future research and translational efforts, including novel strategies for manipulating neural signals for antitumor immunotherapies, as well as managing cancer-related neurological or psychiatric complications.
Collapse
Affiliation(s)
- Yingying Huang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xin Zhou
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Liu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ying Cao
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Wei Fu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Jing Yang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
4
|
Whim MD. Mouse Adrenal Macrophages Are Associated with Pre- and Postsynaptic Neuronal Elements and Respond to Multiple Neuromodulators. eNeuro 2025; 12:ENEURO.0153-24.2025. [PMID: 39900506 PMCID: PMC11856350 DOI: 10.1523/eneuro.0153-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The adrenal medulla is packed with chromaffin cells, modified postganglionic sympathetic neurons that secrete the catecholamines, epinephrine and norepinephrine, during the fight-or-flight response. Sometimes overlooked is a population of immune cells that also resides within the gland but whose distribution and function are not clear. Here I examine the location of CD45+ hematopoietic cells in the mouse adrenal medulla and show the majority are F4/80+/Lyz2+ macrophages. These cells are present from early postnatal development and widely distributed. Anatomically they are associated with chromaffin cells, found aligned alongside synapsin-IR neuronal varicosities and juxtaposed to CD31-IR blood vessels. Using Lyz2cre-GCaMP6f mice to quantify calcium signaling in macrophages revealed these cells respond directly and indirectly to a wide variety of neuromodulators, including pre- and postganglionic transmitters and systemic hormones. Purinergic agonists, histamine, acetylcholine, and bradykinin rapidly and reversibly increased intracellular calcium. These results are consistent with a substantial resident population of innate immune cells in the adrenal medulla. Their close association with chromaffin cells and the preganglionic input suggests they may regulate sympatho-adrenal activity and thus the strength of the fight-or-flight response.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
5
|
Singh A, Shim P, Naeem S, Rahman S, Lutfy K. Pituitary adenylyl cyclase-activating polypeptide modulates the stress response: the involvement of different brain areas and microglia. Front Psychiatry 2025; 15:1495598. [PMID: 39931196 PMCID: PMC11807976 DOI: 10.3389/fpsyt.2024.1495598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025] Open
Abstract
Stress is necessary for survival. However, chronic unnecessary stress exposure leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus, understanding the mechanisms involved in the initiation and maintenance of the stress response is essential since it may reveal the underpinning pathophysiology of these disorders and may aid in the development of medication to treat stress-mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and other brain areas as well as in the adrenal gland. Previous research has shown that this peptide/receptor system serves as a modulator of the stress response. In addition to modulating the stress response, this system may also be connected to its emerging role as neuroprotective against hypoxia, ischemia, and neurodegeneration. This article aims to review the literature regarding the role of PACAP and its receptors in the stress response, the involvement of different brain regions and microglia in PACAP-mediated modulation of the stress response, and the long-term adaptation to stress recognizable clinically as survival with resilience while manifested in anxiety, depression and other neurobehavioral disorders.
Collapse
Affiliation(s)
- Anika Singh
- College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Paul Shim
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
6
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
7
|
Bell NA, Chen X, Giovannucci DR, Anantharam A. Cellular mechanisms underlying pituitary adenylate cyclase activating polypeptide-stimulated secretion in the adrenal medulla. Biochem Soc Trans 2024; 52:2373-2383. [PMID: 39656194 PMCID: PMC11668280 DOI: 10.1042/bst20231326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides. Hormone secretion occurs when neurotransmitters, delivered by sympathetic nerves, bind to, and activate receptors on adrenomedullary chromaffin cells. In this context, two neurotransmitters of particular importance are acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). PACAP, discovered initially as a secretagogue in the hypothalamus, is now appreciated to provoke a strong secretory response from chromaffin cells in vitro and in situ. However, the cellular mechanisms underlying PACAP-stimulated secretion are still poorly understood. In the sections below, we will summarize what is known about the actions of PACAP in the adrenal medulla, discuss recent advances that pertain to the PACAP signaling pathway, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| |
Collapse
|
8
|
Chen X, Bell NA, Coffman BL, Giovannucci DR, Anantharam A. Roles for PKC signaling in chromaffin cell exocytosis. Biophys J 2024:S0006-3495(24)04066-9. [PMID: 39639770 DOI: 10.1016/j.bpj.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Chromaffin cells of the adrenal medulla have an important role in the sympathetic stress response. They secrete catecholamines and other hormones into the bloodstream upon stimulation by the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP causes a long-lasting and robust secretory response from chromaffin cells. However, the cellular mechanisms by which PACAP causes secretion remain unclear. Our previous work showed that the secretory response to PACAP relies on signaling through phospholipase C epsilon (PLCε). The objective of this study was to clarify the role of signaling events downstream of PLCε. Here, it is demonstrated that a brief exposure of chromaffin cells to PACAP caused diacylglycerol (DAG) production-a process that was dependent on PLCε activity. DAG then activated protein kinase C (PKC), prompting its redistribution to the plasma membrane. PKC activation was important for the increases in cytosolic Ca2+ and exocytosis that were evoked by PACAP. Indeed, pharmacological inhibition of PKC with NPC 15437, a competitive inhibitor of DAG binding, significantly disrupted the secretory response. NPC 15437 application also eliminated PACAP-stimulated effects on the readily releasable pool size, the Ca2+ sensitivity of granule fusion, and the voltage dependence of Ca2+ channel activation. Quantitative PCR revealed PKCβ, PKCε, and PKCμ to be highly expressed in the mouse chromaffin cell. Genetic knockdown of PKCβ and PKCε disrupted PACAP-evoked secretion, while knockdown of PKCμ had no measurable effect. This study highlights important roles for PKC signaling in a highly regulated pathway for exocytosis that is stimulated by PACAP.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, Ohio
| | - Nicole A Bell
- Department of Neurosciences, University of Toledo, Toledo, Ohio
| | | | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, Ohio.
| |
Collapse
|
9
|
Bröker-Lai J, Rego Terol J, Richter C, Mathar I, Wirth A, Kopf S, Moreno-Pérez A, Büttner M, Tan LL, Makke M, Poschet G, Hermann J, Tsvilovskyy V, Haberkorn U, Wartenberg P, Susperreguy S, Berlin M, Ottenheijm R, Philippaert K, Wu M, Wiedemann T, Herzig S, Belkacemi A, Levinson RT, Agarwal N, Camacho Londoño JE, Klebl B, Dinkel K, Zufall F, Nussbaumer P, Boehm U, Hell R, Nawroth P, Birnbaumer L, Leinders-Zufall T, Kuner R, Zorn M, Bruns D, Schwarz Y, Freichel M. TRPC5 controls the adrenaline-mediated counter regulation of hypoglycemia. EMBO J 2024; 43:5813-5836. [PMID: 39375537 PMCID: PMC11612138 DOI: 10.1038/s44318-024-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Hypoglycemia triggers autonomic and endocrine counter-regulatory responses to restore glucose homeostasis, a response that is impaired in patients with diabetes and its long-term complication hypoglycemia-associated autonomic failure (HAAF). We show that insulin-evoked hypoglycemia is severely aggravated in mice lacking the cation channel proteins TRPC1, TRPC4, TRPC5, and TRPC6, which cannot be explained by alterations in glucagon or glucocorticoid action. By using various TRPC compound knockout mouse lines, we pinpointed the failure in sympathetic counter-regulation to the lack of the TRPC5 channel subtype in adrenal chromaffin cells, which prevents proper adrenaline rise in blood plasma. Using electrophysiological analyses, we delineate a previously unknown signaling pathway in which stimulation of PAC1 or muscarinic receptors activates TRPC5 channels in a phospholipase-C-dependent manner to induce sustained adrenaline secretion as a crucial step in the sympathetic counter response to insulin-induced hypoglycemia. By comparing metabolites in the plasma, we identified reduced taurine levels after hypoglycemia induction as a commonality in TRPC5-deficient mice and HAAF patients.
Collapse
Affiliation(s)
- Jenny Bröker-Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - José Rego Terol
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Christin Richter
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Stefan Kopf
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Ana Moreno-Pérez
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Mazen Makke
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Julia Hermann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Uwe Haberkorn
- Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sebastian Susperreguy
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Moya Wu
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Anouar Belkacemi
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebecca T Levinson
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Juan E Camacho Londoño
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | | | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | | | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Peter Nawroth
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD e.V), München-Neuherberg, Germany
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Markus Zorn
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Yvonne Schwarz
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Carbone E. TRPC5: a new entry to the chromaffin cell's palette of ion channels that control adrenal response to hypoglycemia. EMBO J 2024; 43:5784-5787. [PMID: 39487352 PMCID: PMC11612156 DOI: 10.1038/s44318-024-00286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
A new study implicates TRPC5 channels in adrenaline secretion during hypoglycemia.
Collapse
Affiliation(s)
- Emilio Carbone
- Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy.
| |
Collapse
|
11
|
Xu C, Wang N, Ma T, Pei S, Wang M, Yu J, Zhangsun D, Zhu X, Luo S. The α3β4 nAChR tissue distribution identified by fluorescent α-conotoxin [D11A]LvIA. Int J Biol Macromol 2024; 281:136220. [PMID: 39362420 DOI: 10.1016/j.ijbiomac.2024.136220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
α3β4, a vital subtype of neuronal nicotinic acetylcholine receptors (nAChRs), is widely distributed in the brain, ganglia, and adrenal glands, associated with addiction and neurological diseases. However, the lack of specific imaging tools for α3β4 nAChRs has hindered the investigation of their tissue distribution and functions. [D11A]LvIA, a peptide derived from marine cone snails, demonstrates high affinity and potency for α3β4 nAChRs, making it a valuable pharmacological tool for studying this receptor subtype. In this study, three fluorescent conjugates of [D11A]LvIA were synthesized using 6-TAMRA-SE (R), Cy3-NHS-ester (Cy3), and BODIPY-FL NHS ester (BDP) dyes. The electrophysiological activities were assessed in Xenopus laevis oocytes by two-electrodes voltage clamp (TEVC). [D11A]LvIA-Cy3 and [D11A]LvIA-BDP show improved selectivity and affinity, with IC50 values of 512.70 nM and 343.50 nM, respectively, and [D11A]LvIA-Cy3 exhibits better stability in cerebrospinal fluid (CSF). Utilizing [D11A]LvIA-Cy3, we successfully visualized the distribution of α3β4 nAChRs in rat trigeminal ganglia, retina, adrenal glands, and various brain regions. This novel fluorescent peptide provides a significant pharmacological tool for the exploration and visualization in-situ distribution of α3β4 nAChRs in different tissues and also assists in clarifying the function.
Collapse
Affiliation(s)
- Chenxing Xu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Tao Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Meiting Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Lymperopoulos A, Stoicovy RA. RGS Proteins in Sympathetic Nervous System Regulation: Focus on Adrenal RGS4. FRONT BIOSCI-LANDMRK 2024; 29:355. [PMID: 39473413 DOI: 10.31083/j.fbl2910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
The sympathetic nervous system (SNS) consists largely of two different types of components: neurons that release the neurotransmitter norepinephrine (NE, noradrenaline) to modulate homeostasis of the innevrvated effector organ or tissue and adrenal chromaffin cells, which synthesize and secrete the hormone epinephrine (Epi, adrenaline) and some NE into the blood circulation to act at distant organs and tissues that are not directly innervated by the SNS. Like almost every physiological process in the human body, G protein-coupled receptors (GPCRs) tightly modulate both NE release from sympathetic neuronal terminals and catecholamine (CA) secretion from the adrenal medulla. Regulator of G protein Signaling (RGS) proteins, acting as guanosine triphosphatase (GTPase)-activating proteins (GAPs) for the Gα subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins), play a central role in silencing G protein signaling from a plethora of GPCRs. Certain RGS proteins and, in particular, RGS4, have been implicated in regulation of SNS activity and of adrenal chromaffin cell CA secretion. More specifically, recent studies have implicated RGS4 in regulation of NE release from cardiac sympathetic neurons by means of terminating free fatty acid receptor (FFAR)-3 calcium signaling and in regulation of NE and Epi secretion from the adrenal medulla by means of terminating cholinergic calcium signaling in adrenal chromaffin cells. Thus, in this review, we provide an overview of the current literature on the involvement of RGS proteins, with a particular focus on RGS4, in these two processes, i.e., NE release from sympathetic nerve terminals & CA secretion from adrenal chromaffin cells. We also highlight the therapeutic potential of RGS4 pharmacological manipulation for diseases characterized by sympathetic dysfunction or SNS hyperactivity, such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
13
|
Geisler SM, Ottaviani MM, Jacobo-Piqueras N, Theiner T, Mastrolia V, Guarina L, Ebner K, Obermair GJ, Carbone E, Tuluc P. Deletion of the α 2δ-1 calcium channel subunit increases excitability of mouse chromaffin cells. J Physiol 2024; 602:3793-3814. [PMID: 39004870 DOI: 10.1113/jp285681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
High voltage-gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi-subunit protein complexes formed by the pore-forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ-1 isoform. Here we show that α2δ-1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ-1-/- MCCs compared to wild-type (WT), demonstrating that α2δ-1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ-1-/- MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half-maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ-1-/- MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain-of-function phenotype was caused by reduced functional activation of Ca2+-dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ-1-/- MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ-1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability. KEY POINTS: Deletion of the α2δ-1 high voltage-gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability. MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx. Deletion of α2δ-1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli. The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ-1 loss-of-function mutations.
Collapse
Affiliation(s)
- Stefanie M Geisler
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Matteo M Ottaviani
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Noelia Jacobo-Piqueras
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Vincenzo Mastrolia
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Tarling JA, Kumar R, Ward LJ, Boot C, Wassif WS. Phaeochromocytoma and paraganglioma. J Clin Pathol 2024; 77:507-516. [PMID: 38453430 DOI: 10.1136/jcp-2023-209234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Phaeochromocytomas and paragangliomas are rare catecholamine-producing neuroendocrine tumours which can potentially cause catastrophic crises with high morbidity and mortality. This best practice article considers the causes and presentation of such tumours, screening and diagnostic tests, management of these patients and consideration of family members at risk.
Collapse
Affiliation(s)
- Julie Ann Tarling
- Clinical Biochemistry, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Rajeev Kumar
- Diabetes and Endocrinology, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Louise J Ward
- Clinical Biochemistry, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Christopher Boot
- Blood Sciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - W S Wassif
- Clinical Biochemistry, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| |
Collapse
|
15
|
Suh JI, da Roza DL, Cadamuro FM, Malbouisson LMS, Sanches TR, Andrade L. Catecholamine concentration as a predictor of mortality in emergency surgical patients. Int J Emerg Med 2024; 17:95. [PMID: 39026158 PMCID: PMC11264696 DOI: 10.1186/s12245-024-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Trauma and emergency surgery are major causes of morbidity and mortality. The objective of this study was to determine whether serum levels of epinephrine and norepinephrine are associated with aging and mortality. METHODS This was a prospective observational cohort study conducted in a surgical critical care unit. We included 90 patients who were admitted for postoperative care, because of major trauma, or both. We collected demographic and clinical variables, as well as serum levels of epinephrine and norepinephrine. RESULTS For patients in the > 60-year age group, the use of vasoactive drugs was found to be associated with an undetectable epinephrine level (OR [95% CI] = 6.36 [1.12, 36.08]), p = 0.05). For the patients with undetectable epinephrine levels, the in-hospital mortality was higher among those with a norepinephrine level ≥ 2006.5 pg/mL (OR [95% CI] = 4.00 [1.27, 12.58]), p = 0.03). CONCLUSIONS There is an association between age and mortality. Undetectable serum epinephrine, which is more common in older patients, could contribute to poor outcomes. The use of epinephrine might improve the clinical prognosis in older surgical patients with shock.
Collapse
Affiliation(s)
- João Isuk Suh
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daiane Leite da Roza
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Filipe Matheus Cadamuro
- Trauma Intensive Care Unit, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Trauma Intensive Care Unit, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita Rojas Sanches
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lúcia Andrade
- Nephrology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º andar, sala 3310, São Paulo, SP, CEP 01246-903, Brazil.
| |
Collapse
|
16
|
Chen X, Bell NA, Coffman BL, Rabino AA, Garcia-Mata R, Kammermeier PJ, Yule DI, Axelrod D, Smrcka AV, Giovannucci DR, Anantharam A. A PACAP-activated network for secretion requires coordination of Ca 2+ influx and Ca 2+ mobilization. Mol Biol Cell 2024; 35:ar92. [PMID: 38758660 PMCID: PMC11244167 DOI: 10.1091/mbc.e24-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | | | | | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | | | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| |
Collapse
|
17
|
Carretero VJ, Liccardi N, Tejedor MA, de Pascual R, Campano JH, Hernández-Guijo JM. Lead exerts a depression of neurotransmitter release through a blockade of voltage dependent calcium channels in chromaffin cells. Toxicology 2024; 505:153809. [PMID: 38648961 DOI: 10.1016/j.tox.2024.153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The present work, using chromaffin cells of bovine adrenal medullae (BCCs), aims to describe what type of ionic current alterations induced by lead (Pb2+) underlies its effects reported on synaptic transmission. We observed that the acute application of Pb2+ lead to a drastic depression of neurotransmitters release in a concentration-dependent manner when the cells were stimulated with both K+ or acetylcholine, with an IC50 of 119,57 μM and of 5,19 μM, respectively. This effect was fully recovered after washout. Pb2+ also blocked calcium channels of BCCs in a time- and concentration-dependent manner with an IC50 of 6,87 μM. This blockade was partially reversed upon washout. This compound inhibited the calcium current at all test potentials and shows a shift of the I-V curve to more negative values of about 8 mV. The sodium current was not blocked by acute application of high Pb2+ concentrations. Voltage-dependent potassium current was also shortly affected by high Pb2+. Nevertheless, the calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 24,49 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to Ca2+-activated K+-channels (BK) instead a direct linking to these channels. Under current-clamp conditions, BCCs exhibit a resting potential of -52.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of K+ channels. In spite of the effect on ionic channels exerted by Pb2+, we found that Pb2+ didn't alter cellular excitability, no modification of the membrane potential, and no effect on action potential firing. Taken together, these results point to a neurotoxic action evoked by Pb2+ that is associated with changes in neurotransmitter release by blocking the ionic currents responsible for the calcium influx.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Maria Arribas Tejedor
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ricardo de Pascual
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jorge Hernández Campano
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain; Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, Madrid 28029, Spain.
| |
Collapse
|
18
|
Fadl S, Saleh AMM, Abou-Elmagd A, Abdel-Maksoud FM. Prehatching development of the adrenal gland in Japanese quail (Coturnix japonica): Histological, immunohistochemical, and electron microscopic studies. Microsc Res Tech 2024; 87:727-739. [PMID: 37990954 DOI: 10.1002/jemt.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
The adrenal glands play a key role in maintaining the physiological balance of birds and helping them to survive environmental changes. The objective of the present work was to give a detailed investigation of the histological, ultrastructural, and immunohistochemical findings of the adrenal gland in Japanese quail during the prehatching phase. The current study was performed on 45 healthy Japanese quail embryos at different prehatching periods. Our results showed the primordium of the quail's adrenocortical tissue appeared at 3 days of incubation as a thickening of the splanchnic mesoderm. The prospective chromaffin cells appeared at 5 days as clusters of cells migrated from the neural crest cells along the dorsal aorta toward the interrenal tissue. TH immunoreactivity was observed in the neural crest cells during their migration toward the adrenal primordium. Furthermore, these TH immunopositive cells were intermingled with the developing interrenal cell cords that developed from the coelomic epithelium. NSE immunostaining was detected within the cytoplasm of interrenal cells, chromaffin cells, and ganglion cells. Sox10 is expressed in chromaffin and ganglion cells with different staining intensities. On the 13th day of prehatching, both interrenal and chromaffin cells were β-catenin immunonegative, but on the 17th day, both cells were immunopositively. Our findings show that during prenatal life, the adrenal gland undergoes significant morphological changes. Together, the present data suggest that studying the prenatal development of the adrenal gland in birds is important for advancing our understanding of this critical organ and its functions. RESEARCH HIGHLIGHTS: The present study aimed to give a detailed study of the histological, ultrastructural, and immunohistochemical investigations of the adrenal gland in Japanese quail during the prehatching period. The interrenal primordium was observed on the third embryonic day, on the fifth ED the primordium of the chromaffin tissue appeared as row of migrating neural crest cell. At the ultrastructural level, the interrenal cells take steroid-secreting cells characters, they have varying amounts of lipid droplets and abundant mitochondria at 15th ED contained moderate number of lysosomes and mitochondria.
Collapse
Affiliation(s)
- Saher Fadl
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelmohaimen M M Saleh
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abou-Elmagd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
19
|
Gil A, González-Vélez V, Gutiérrez LM, Villanueva J. The Role of Nicotinic Receptors on Ca 2+ Signaling in Bovine Chromaffin Cells. Curr Issues Mol Biol 2024; 46:808-820. [PMID: 38248354 PMCID: PMC10814139 DOI: 10.3390/cimb46010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells' membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. In this work, we discuss how the participation of nicotinic receptors and the localization of active zones in the borders of the cytoskeleton can generate local calcium signals leading to secretion. We use a computational model of a cytoskeleton cage to simulate Ca2+ levels in response to voltage and acetylcholine pulses. We find that nicotinic receptors are able to enhance the differences between local and average calcium values, as well as the heterogeneous distributions around the active zones, producing a non-linear, highly localized Ca2+ entry that, although consisting of a few ions, is able to improve secretion responses in chromaffin cells. Our findings emphasize the intricate interplay among nicotinic receptors, the cytoskeleton, and active zones within chromaffin cells as an example of Ca2+-dependent neurosecretion in mammals.
Collapse
Affiliation(s)
- Amparo Gil
- Departamento de Matemática Aplicada y CC de la Computación, Universidad de Cantabria, 39005 Santander, Spain;
| | - Virginia González-Vélez
- Departamento Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Mexico City 02128, Mexico
| | - Luis Miguel Gutiérrez
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández. Ctra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - José Villanueva
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández. Ctra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| |
Collapse
|
20
|
Tuluc P, Carbone E. Excitation-secretion coupling in chromaffin cells of the adrenal gland: Where does calcium come from? Pflugers Arch 2024; 476:3-4. [PMID: 37843577 PMCID: PMC10758364 DOI: 10.1007/s00424-023-02867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, IT-10125, Turin, Italy.
| |
Collapse
|
21
|
Chen X, Coffman BL, Brindley RL, Galpin JD, Ahern CA, Currie KPM, Smrcka AV, Axelrod D, Anantharam A. Phospholipase C-ε defines a PACAP-stimulated pathway for secretion in the chromaffin cell. J Neuroendocrinol 2023; 35:e13255. [PMID: 36970756 PMCID: PMC10790106 DOI: 10.1111/jne.13255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Adrenomedullary chromaffin cells respond to splanchnic (sympathetic) nerve stimulation by releasing stress hormones into the circulation. The signal for hormone secretion is encoded in the neurotransmitters - especially acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP) - that are released into the splanchnic-chromaffin cell synapse. However, functional differences in the effects of ACh and PACAP on the chromaffin cell secretory response are not well defined. Here, selective agonists of PACAP receptors or nicotinic and muscarinic acetylcholine receptors were applied to chromaffin cells. The major differences in the effects of these agents were not on exocytosis, per se, but rather on the steps upstream of exocytosis. In almost every respect, the properties of individual fusion events triggered by PACAP and cholinergic agonists were similar. On the other hand, the properties of the Ca2+ transients evoked by PACAP differed in several ways from those evoked by muscarinic and nicotinic receptor stimulation. A defining feature of the PACAP-stimulated secretory pathway was its dependence on signaling through exchange protein directly activated by cAMP (Epac) and PLCε. However, the absence of PLCε did not disrupt Ca2+ transients evoked by cholinergic agonists. Accordingly, inhibition of Epac activity did not disrupt secretion triggered by acetylcholine or specific agonists of muscarinic and nicotinic receptors. Thus, PACAP and acetylcholine stimulate chromaffin cell secretion via separate and independent pathways. This feature of stimulus-secretion coupling may be important for sustaining hormone release from the adrenal medulla under conditions associated with the sympathetic stress response.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, Ohio, 43606, USA
| | - Breanna L. Coffman
- Department of Neurosciences, University of Toledo, Toledo, Ohio, 43606, USA
| | - Rebecca L. Brindley
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, 08103, USA
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, 52246, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, 52246, USA
| | - Kevin P. M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, 08103, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, Ohio, 43606, USA
| |
Collapse
|
22
|
Abdel-Maksoud FM, Fadl S, Abou-Elmagd A, Saleh AMM. Post-hatching developmental changes in the adrenal gland of the Japanese quail (Coturnix coturnix japonica): Histological, immunohistochemical, and electron microscopic studies. Microsc Res Tech 2023; 86:1461-1474. [PMID: 37204121 DOI: 10.1002/jemt.24348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
The adrenal glands are paired abdominal endocrine organs vital to the bird's health. The present research aimed to provide a comprehensive examination of the histological, ultrastructural, and immunohistochemical investigations of the adrenal gland in Japanese quail during the post hatching period. The current study was performed on 21 healthy Japanese quail chicks at different post hatching periods. Our results showed the adrenal gland is surrounded by a connective tissue capsule, which consists of dense collagen fibers containing large blood vessels, chromaffin cells, autonomic ganglia, fibroblasts, and migrating Schwann cells. The zonation of the adrenal gland is composed of a subcapsular layer, a peripheral zone, and a central zone, which gets more pronounced with age. At the ultrastructural level, the interrenal cells take the steroid-secreting cells characters; they have varying amounts of lipid droplets and abundant mitochondria. Adrenal medullary chromaffin cells showed positive immunoreactivity to the NSE. With increasing age, the chromaffin tissue's Sox10 immunoreactivity increased. β-catenin is expressed within the plasmalemma and the cytoplasm of the interrenal and chromaffin cells and its reactivity increased with age, especially in the chromaffin cells. Our results indicate the adrenal gland undergoes significant morphological changes during the postnatal life. Overall, the postnatal period is an important time for the development and maturation of the adrenal glands.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Saher Fadl
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abou-Elmagd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelmohaimen M M Saleh
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
23
|
Ortner NJ, Sah A, Paradiso E, Shin J, Stojanovic S, Hammer N, Haritonova M, Hofer NT, Marcantoni A, Guarina L, Tuluc P, Theiner T, Pitterl F, Ebner K, Oberacher H, Carbone E, Stefanova N, Ferraguti F, Singewald N, Roeper J, Striessnig J. The human channel gating-modifying A749G CACNA1D (Cav1.3) variant induces a neurodevelopmental syndrome-like phenotype in mice. JCI Insight 2023; 8:e162100. [PMID: 37698939 PMCID: PMC10619503 DOI: 10.1172/jci.insight.162100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.
Collapse
Affiliation(s)
- Nadine J. Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Shin
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | | | - Niklas Hammer
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Maria Haritonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T. Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrea Marcantoni
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics and
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Emilio Carbone
- Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University, Frankfurt, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
25
|
Gligorijevic N, Kaljevic M, Radovanovic N, Jovanovic F, Joksimovic B, Singh S, Dumic I. Adrenal Abscesses: A Systematic Review of the Literature. J Clin Med 2023; 12:4601. [PMID: 37510716 PMCID: PMC10380332 DOI: 10.3390/jcm12144601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Objective: To summarize the existing knowledge about adrenal gland abscesses, including etiology, clinical presentation, common laboratory and imaging findings, management and overall morbidity and mortality. Design: Systematic literature review. Methods: We performed a search in the PubMed database using search terms: 'abscess and adrenal glands', 'adrenalitis', 'infection and adrenal gland', 'adrenal abscess', 'adrenal infection' and 'infectious adrenalitis'. Articles from 2017 to 2022 were included. We found total of 116 articles, and after applying exclusion criteria, data from 73 articles was included in the final statistical analysis. Results: Of 84 patients included in this review, 68 were male (81%), with a mean age of 55 years (range: 29 to 85 years). Weight loss was the most frequent symptom reported in 58.3% patients, followed by fever in 49%. Mean duration of symptoms was 4.5 months. The most common laboratory findings were low cortisol (51.9%), elevated ACTH (43.2%), hyponatremia (88.2%) and anemia (83.3%). Adrenal cultures were positive in 86.4% cases, with Histoplasma capsulatum (37.3%) being the leading causative agent. Blood cultures were positive in 30% of patients. The majority of the adrenal infections occurred through secondary dissemination from other infectious foci and abscesses were more commonly bilateral (70%). A total of 46.4% of patients developed long-term adrenal insufficiency requiring treatment. Abscess drainage was performed in 7 patients (8.3%) and adrenalectomy was performed in 18 (21.4%) patients. The survival rate was 92.9%. Multivariate analysis showed that the only independent risk factor for mortality was thrombocytopenia (p = 0.048). Conclusion: Our review shows that adrenal abscesses are usually caused by fungal pathogens, and among these, Histoplasma capsulatum is the most common. The adrenal glands are usually involved in a bilateral fashion and become infected through dissemination from other primary sources of infection. Long-term adrenal insufficiency develops in 46% of patients, which is more common than what is observed in non-infectious etiology of adrenal gland disorders. Mortality is about 7%, and the presence of thrombocytopenia is associated with worse prognosis. Further prospective studies are needed to better characterize optimal testing and treatment duration in patients with this relatively rare but challenging disorder.
Collapse
Affiliation(s)
- Nikola Gligorijevic
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marija Kaljevic
- Department of Hospital Medicine, Saint Francis Hospital and Medical Center, Hartford, CT 06105, USA
- Division of Internal Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Natasa Radovanovic
- Department of Endocrinology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Filip Jovanovic
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS 39402, USA
| | - Bojan Joksimovic
- Department of Pathological Physiology, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
| | - Sandra Singh
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Igor Dumic
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
26
|
González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, Villalón CM. Serotonergic Modulation of Neurovascular Transmission: A Focus on Prejunctional 5-HT Receptors/Mechanisms. Biomedicines 2023; 11:1864. [PMID: 37509503 PMCID: PMC10377335 DOI: 10.3390/biomedicines11071864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
5-Hydroxytryptamine (5-HT), or serotonin, plays a crucial role as a neuromodulator and/or neurotransmitter of several nervous system functions. Its actions are complex, and depend on multiple factors, including the type of effector or receptor activated. Briefly, 5-HT can activate: (i) metabotropic (G-protein-coupled) receptors to promote inhibition (5-HT1, 5-HT5) or activation (5-HT4, 5-HT6, 5-HT7) of adenylate cyclase, as well as activation (5-HT2) of phospholipase C; and (ii) ionotropic receptor (5-HT3), a ligand-gated Na+/K+ channel. Regarding blood pressure regulation (and beyond the intricacy of central 5-HT effects), this monoamine also exerts direct postjunctional (on vascular smooth muscle and endothelium) or indirect prejunctional (on autonomic and sensory perivascular nerves) effects. At the prejunctional level, 5-HT can facilitate or preclude the release of autonomic (e.g., noradrenaline and acetylcholine) or sensory (e.g., calcitonin gene-related peptide) neurotransmitters facilitating hypertensive or hypotensive effects. Hence, we cannot formulate a specific impact of 5-HT on blood pressure level, since an increase or decrease in neurotransmitter release would be favoured, depending on the type of prejunctional receptor involved. This review summarizes and discusses the current knowledge on the prejunctional mechanisms involved in blood pressure regulation by 5-HT and its impact on some vascular-related diseases.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Mexico City 20100, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Calzada de los Tenorios 235, Colonia Granjas-Coapa, Delegación Tlalpan, Mexico City 14330, Mexico
| |
Collapse
|
27
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
28
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Fernández A, Martínez-Ramírez C, Gómez A, de Diego AMG, Gandía L, Casarejos MJ, García AG. Mitochondrial dysfunction in chromaffin cells from the R6/1 mouse model of Huntington's disease: Impact on exocytosis and calcium current regulation. Neurobiol Dis 2023; 179:106046. [PMID: 36806818 DOI: 10.1016/j.nbd.2023.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023] Open
Abstract
From a pathogenic perspective, Huntington's disease (HD) is being considered as a synaptopathy. As such, alterations in brain neurotransmitter release occur. As the activity of the sympathoadrenal axis is centrally controlled, deficits in the exocytotic release of catecholamine release may also occur. In fact, in chromaffin cells (CCs) of the adrenal medulla of the R6/1 model of HD, decrease of secretion and altered kinetics of the exocytotic fusion pore have been reported. Those alterations could be linked to mitochondrial deficits occurring in peripheral CCs, similar to those described in brain mitochondria. Here we have inquired about alterations in mitochondrial structure and function and their impact on exocytosis and calcium channel currents (ICa). We have monitored various parameters linked to those events, in wild type (WT) and the R6/1 mouse model of HD at a pre-disease stage (2 months age, 2 m), and when motor deficits are present (7 months age, 7 m). In isolated CCs from 7 m and in the adrenal medulla of R6/1 mice, we found the following alterations (with respect 7 m WT mice): (i) augmented fragmented mitochondria and oxidative stress with increased oxidized glutathione; (ii) decreased basal and maximal respiration; (iii) diminution of ATP cell levels; (iv) mitochondrial depolarization; (v) drastic decrease of catecholamine release with poorer potentiation by protonophore FCCP; (vi) decreased ICa inhibition by FCCP; and (vii) lesser potentiation by BayK8644 of ICa and smaller prolongation of current deactivation. Of note was the fact several of these alterations were already manifested in CCs from 2 m R6/1 mice at pre-disease stages. Based on those results, a plausible hypothesis can be raised in the sense that altered mitochondrial function seems to be an early primary event in HD pathogenesis. This is in line with an increasing number of mitochondrial, metabolic, and inflammatory alterations being recently reported in various HD peripheral tissues.
Collapse
Affiliation(s)
- Ana Fernández
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - Ana Gómez
- Servicio de Neurobiología, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain
| | - María José Casarejos
- Servicio de Neurobiología, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Fundación Teófilo Hernando, Parque científico de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
30
|
Baraibar AM, de Pascual R, Carretero VJ, Liccardi N, Juárez NH, Hernández-Guijo JM. Aluminum alters excitability by inhibiting calcium, sodium, and potassium currents in bovine chromaffin cells. J Neurochem 2023; 165:162-176. [PMID: 36800503 DOI: 10.1111/jnc.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Aluminum (Al3+ ) has long been related to neurotoxicity and neurological diseases. This study aims to describe the specific actions of this metal on cellular excitability and neurotransmitter release in primary culture of bovine chromaffin cells. Using voltage-clamp and current-clamp recordings with the whole-cell configuration of the patch clamp technique, online measurement of catecholamine release, and measurements of [Ca2+ ]c with Fluo-4-AM, we have observed that Al3+ reduced intracellular calcium concentrations around 25% and decreased catecholamine secretion in a dose-dependent manner, with an IC50 of 89.1 μM. Al3+ blocked calcium currents in a time- and concentration-dependent manner with an IC50 of 560 μM. This blockade was irreversible since it did not recover after washout. Moreover, Al3+ produced a bigger blockade on N-, P-, and Q-type calcium channels subtypes (69.5%) than on L-type channels subtypes (50.5%). Sodium currents were also inhibited by Al3+ in a time- and concentration-dependent manner, 24.3% blockade at the closest concentration to the IC50 (399 μM). This inhibition was reversible. Voltage-dependent potassium currents were low affected by Al3+ . Nonetheless, calcium/voltage-dependent potassium currents were inhibited in a concentration-dependent manner, with an IC50 of 447 μM. This inhibition was related to the depression of calcium influx through voltage-dependent calcium channels subtypes coupled to BK channels. In summary, the blockade of these ionic conductance altered cellular excitability that reduced the action potentials firing and so, the neurotransmitter release and the synaptic transmission. These findings prove that aluminum has neurotoxic properties because it alters neuronal excitability by inhibiting the sodium currents responsible for the generation and propagation of impulse nerve, the potassium current responsible for the termination of action potentials, and the calcium current responsible for the neurotransmitters release.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Baracaldo, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Madrid, Spain
| | | | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
31
|
Morales A, Mohan R, Chen X, Coffman BL, Bendahmane M, Watch L, West JL, Bakshi S, Traynor JR, Giovannucci DR, Kammermeier PJ, Axelrod D, Currie KP, Smrcka AV, Anantharam A. PACAP and acetylcholine cause distinct Ca2+ signals and secretory responses in chromaffin cells. J Gen Physiol 2023; 155:e202213180. [PMID: 36538657 PMCID: PMC9770323 DOI: 10.1085/jgp.202213180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.
Collapse
Affiliation(s)
- Alina Morales
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ramkumar Mohan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | | - Lester Watch
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua L. West
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Shreeya Bakshi
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin P.M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
32
|
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
33
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
34
|
Marcantoni A, Chiantia G, Tomagra G, Hidisoglu E, Franchino C, Carabelli V, Carbone E. Two firing modes and well-resolved Na +, K +, and Ca 2+ currents at the cell-microelectrode junction of spontaneously active rat chromaffin cell on MEAs. Pflugers Arch 2023; 475:181-202. [PMID: 36260174 PMCID: PMC9849155 DOI: 10.1007/s00424-022-02761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 μM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.
Collapse
Affiliation(s)
- Andrea Marcantoni
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Giuseppe Chiantia
- grid.7605.40000 0001 2336 6580Department of Neuroscience, University of Torino, 10125 Turin, Italy
| | - Giulia Tomagra
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Enis Hidisoglu
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Claudio Franchino
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Valentina Carabelli
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilio Carbone
- grid.7605.40000 0001 2336 6580Department of Drug Science, Laboratory of Cell Physiology and Molecular Neuroscience, N.I.S. Centre, University of Torino, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
35
|
Tomagra G, Franchino C, Carbone E, Marcantoni A, Pasquarelli A, Picollo F, Carabelli V. Methodologies for Detecting Quantal Exocytosis in Adrenal Chromaffin Cells Through Diamond-Based MEAs. Methods Mol Biol 2023; 2565:213-221. [PMID: 36205897 DOI: 10.1007/978-1-0716-2671-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diamond-based multiarray sensors are suitable to detect in real-time exocytosis and action potentials from cultured, spontaneously firing chromaffin cells, primary hippocampal neurons, and midbrain dopaminergic neurons. Here, we focus on how amperometric measurements of catecholamine release are performed on micrographitic diamond multiarrays (μG-D-MEAs) with high temporal and spatial resolution by 16 electrodes simultaneously.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug Science and Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.
| | - Claudio Franchino
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | | | - Federico Picollo
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| |
Collapse
|
36
|
de Pascual R, Muñoz-Montero A, Gandía L. Real Time Recording of Perifused Chromaffin Cells. Methods Mol Biol 2023; 2565:105-112. [PMID: 36205890 DOI: 10.1007/978-1-0716-2671-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amperometry is an electrochemical method based on the oxidation or reduction of molecules. Many secretion products, including catecholamines, contain in their molecule chemical groups with the ability to yield (oxidize) or capture (reduce) electrons upon its exposure to an electrical field. In order to measure the secretion of catecholamines, they are oxidized at +650 mV with a carbon electrode, releasing every molecule of catecholamine that is oxidized two electrons (e-) that are recorded as an electrical current. Amperometry is an easy-to-use and noninvasive technique for cells (unlike patch-clamp techniques for measuring membrane capacitance) and has been widely used to monitor online catecholamine release from perifused bovine chromaffin cell populations.
Collapse
Affiliation(s)
- Ricardo de Pascual
- Instituto Fundación Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Muñoz-Montero
- Instituto Fundación Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
37
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
38
|
Alterations of the Sympathoadrenal Axis Related to the Development of Alzheimer’s Disease in the 3xTg Mouse Model. BIOLOGY 2022; 11:biology11040511. [PMID: 35453710 PMCID: PMC9027376 DOI: 10.3390/biology11040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Alzheimer’s disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to alterations in the regulatory mechanism of the sympathetic nervous system. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg (an AD mouse model) mice to characterize potential alterations in the regulation of the responses to stress mediated by the secretion of catecholamines. We compared these regulatory mechanisms in mice at two different ages: in 2-month-old mice, where no AD symptoms were observed, and in mice over 12 months of age, when AD-related cognitive impairment related was fully established. We found that the modulation of neurotransmitter release was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched wild-type (WT) mice. This enhanced modulation leads to an increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients. Abstract Alzheimer’s disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to a noradrenergic overactivation. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg AD model mice to characterize potential alterations in the autocrine-paracrine modulation of voltage-dependent calcium channels (VDCCs), which in turn serve to regulate the release of catecholamines. We used mice at the presymptomatic stage (2 months) and mice over 12 months of age, when AD-related cognitive impairment was fully established. We found that the modulation of inward currents through VDCCs induced by extracellular ATP was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched WT mice. This enhanced modulation leads to increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients.
Collapse
|
39
|
Lopez Ruiz JR, Ernst SA, Holz RW, Stuenkel EL. Basal and Stress-Induced Network Activity in the Adrenal Medulla In Vivo. Front Endocrinol (Lausanne) 2022; 13:875865. [PMID: 35795145 PMCID: PMC9250985 DOI: 10.3389/fendo.2022.875865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The adrenal medulla plays a critical role in mammalian homeostasis and the stress response. It is populated by clustered chromaffin cells that secrete epinephrine or norepinephrine along with peptides into the bloodstream affecting distant target organs. Despite been heavily studied, the central control of adrenal medulla and in-situ spatiotemporal responsiveness remains poorly understood. For this work, we continuously monitored the electrical activity of individual adrenomedullary chromaffin cells in the living anesthetized rat using multielectrode arrays. We measured the chromaffin cell activity under basal and physiological stress conditions and characterized the functional micro-architecture of the adrenal medulla. Under basal conditions, chromaffin cells fired action potentials with frequencies between ~0.2 and 4 Hz. Activity was almost completely driven by sympathetic inputs coming through the splanchnic nerve. Chromaffin cells were organized into independent local networks in which cells fired in a specific order, with latencies from hundreds of microseconds to a few milliseconds. Electrical stimulation of the splanchnic nerve evoked almost exactly the same spatiotemporal firing patterns that occurred spontaneously. Hypoglycemic stress, induced by insulin administration resulted in increased activity of a subset of the chromaffin cells. In contrast, respiratory arrest induced by lethal anesthesia resulted in an increase in the activity of virtually all chromaffin cells before cessation of all activity. These results suggest a stressor-specific activation of adrenomedullary chromaffin cell networks and revealed a surprisingly complex electrical organization that likely reflects the dynamic nature of the adrenal medulla's neuroendocrine output during basal conditions and during different types of physiological stress.
Collapse
Affiliation(s)
- Jose R Lopez Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen A Ernst
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edward L Stuenkel
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
40
|
de Pascual R, Calzaferri F, Gonzalo PC, Serrano-Nieto R, de los Ríos C, García AG, Gandía L. Novel Purine Derivative ITH15004 Facilitates Exocytosis through a Mitochondrial Calcium-Mediated Mechanism. Int J Mol Sci 2021; 23:440. [PMID: 35008868 PMCID: PMC8745631 DOI: 10.3390/ijms23010440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.
Collapse
Affiliation(s)
- Ricardo de Pascual
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
| | - Francesco Calzaferri
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Institut des Biomolécules Max Mousseron (IBMM—UMR5247, CNRS), 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Paula C. Gonzalo
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
| | - Rubén Serrano-Nieto
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
| | - Cristóbal de los Ríos
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Campus de Alcorcon, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Antonio G. García
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Fundación Teófilo Hernando, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain; (R.d.P.); (F.C.); (P.C.G.); (R.S.-N.); (C.d.l.R.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
| |
Collapse
|
41
|
Baraibar AM, de Pascual R, Rodriguez Angulo HO, Mijares A, Hernández-Guijo JM. Pro-arrhythmogenic effects of Trypanosoma cruzi conditioned medium proteins in a model of bovine chromaffin cells. Parasitology 2021; 148:1612-1623. [PMID: 34384512 PMCID: PMC11010060 DOI: 10.1017/s003118202100130x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
Asymptomatic sudden death is the principal cause of mortality in Chagas disease. There is little information about molecular mechanisms involved in the pathophysiology of malignant arrhythmias in Chagasic patients. Previous studies have involved Trypanosoma cruzi secretion proteins in the genesis of arrhythmias ex vivo, but the molecular mechanisms involved are still unresolved. Thus, the aim was to determine the effect of these secreted proteins on the cellular excitability throughout to test its effects on catecholamine secretion, sodium-, calcium-, and potassium-conductance and action potential (AP) firing. Conditioned medium was obtained from the co-culture of T. cruzi and Vero cells (African green monkey kidney cells) and ultra-filtered for concentrating immunogenic high molecular weight parasite proteins. Chromaffin cells were assessed with the parasite and Vero cells control medium. Parasite-secreted proteins induce catecholamine secretion in a dose-dependent manner. Additionally, T. cruzi conditioned medium induced depression of both calcium conductance and calcium and voltage-dependent potassium current. Interestingly, this fact was related to the abolishment of the hyperpolarization phase of the AP produced by the parasite medium. Taken together, these results suggest that T. cruzi proteins may be involved in the genesis of pro-arrhythmic conditions that could influence the appearance of malignant arrhythmias in Chagasic patients.
Collapse
Affiliation(s)
- A. M. Baraibar
- Department of Neuroscience, University of Minnesota, 4-158 Jackson Hall, 321 Church St s.e., Minneapolis, MN55455, USA
| | - R. de Pascual
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- Institute ‘Teófilo Hernando’, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
| | - H. O. Rodriguez Angulo
- Laboratorio de Fisiología de Parásitos, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - A. Mijares
- Laboratorio de Fisiología de Parásitos, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J. M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- Institute ‘Teófilo Hernando’, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- IRYCIS, School of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
| |
Collapse
|
42
|
Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs. Pflugers Arch 2021; 473:1775-1793. [PMID: 34510285 DOI: 10.1007/s00424-021-02614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats' adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.
Collapse
|
43
|
Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 2021; 36:109609. [PMID: 34433018 DOI: 10.1016/j.celrep.2021.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 diabetes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla. Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucleotide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the activation of tyrosine hydroxylase. Short incubation (20 min) increases the quantum size of exocytotic events by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the fine control of exocytosis.
Collapse
|
44
|
Bechmann N, Berger I, Bornstein SR, Steenblock C. Adrenal medulla development and medullary-cortical interactions. Mol Cell Endocrinol 2021; 528:111258. [PMID: 33798635 DOI: 10.1016/j.mce.2021.111258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
The mammalian adrenal gland is composed of two distinct tissue types in a bidirectional connection, the catecholamine-producing medulla derived from the neural crest and the mesoderm-derived cortex producing steroids. The medulla mainly consists of chromaffin cells derived from multipotent nerve-associated descendants of Schwann cell precursors. Already during adrenal organogenesis, close interactions between cortex and medulla are necessary for proper differentiation and morphogenesis of the gland. Moreover, communication between the cortex and the medulla ensures a regular function of the adult adrenal. In tumor development, interfaces between the two parts are also common. Here, we summarize the development of the mammalian adrenal medulla and the current understanding of the cortical-medullary interactions under development and in health and disease.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
45
|
Carbone E. Fast inactivation of Nav1.3 channels by FGF14 proteins: An unconventional way to regulate the slow firing of adrenal chromaffin cells. J Gen Physiol 2021; 153:211934. [PMID: 33792614 PMCID: PMC8020463 DOI: 10.1085/jgp.202112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using Nav1.3 and FGF14 KO mice, Martinez-Espinosa et al. provide new findings on how intracellular FGF14 proteins interfere with the endogenous fast inactivation gating and regulate the “long-term inactivation” of Nav1.3 channels that sets Nav channel availability and spike adaptation during sustained stimulation in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Emilio Carbone
- Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|
46
|
Martinez-Espinosa PL, Neely A, Ding J, Lingle CJ. Fast inactivation of Nav current in rat adrenal chromaffin cells involves two independent inactivation pathways. J Gen Physiol 2021; 153:211834. [PMID: 33647101 PMCID: PMC7927663 DOI: 10.1085/jgp.202012784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Voltage-dependent sodium (Nav) current in adrenal chromaffin cells (CCs) is rapidly inactivating and tetrodotoxin (TTX)–sensitive. The fractional availability of CC Nav current has been implicated in regulation of action potential (AP) frequency and the occurrence of slow-wave burst firing. Here, through recordings of Nav current in rat CCs, primarily in adrenal medullary slices, we describe unique inactivation properties of CC Nav inactivation that help define AP firing rates in CCs. The key feature of CC Nav current is that recovery from inactivation, even following brief (5 ms) inactivation steps, exhibits two exponential components of similar amplitude. Various paired pulse protocols show that entry into the fast and slower recovery processes result from largely independent competing inactivation pathways, each of which occurs with similar onset times at depolarizing potentials. Over voltages from −120 to −80 mV, faster recovery varies from ∼3 to 30 ms, while slower recovery varies from ∼50 to 400 ms. With strong depolarization (above −10 mV), the relative entry into slow or fast recovery pathways is similar and independent of voltage. Trains of short depolarizations favor recovery from fast recovery pathways and result in cumulative increases in the slow recovery fraction. Dual-pathway fast inactivation, by promoting use-dependent accumulation in slow recovery pathways, dynamically regulates Nav availability. Consistent with this finding, repetitive AP clamp waveforms at 1–10 Hz frequencies reduce Nav availability 80–90%, depending on holding potential. These results indicate that there are two distinct pathways of fast inactivation, one leading to conventional fast recovery and the other to slower recovery, which together are well-suited to mediate use-dependent changes in Nav availability.
Collapse
Affiliation(s)
| | - Alan Neely
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiuping Ding
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
47
|
Martínez-Ramírez C, Gil-Gómez I, G de Diego AM, García AG. Acute reversible SERCA blockade facilitates or blocks exocytosis, respectively in mouse or bovine chromaffin cells. Pflugers Arch 2021; 473:273-286. [PMID: 33108514 DOI: 10.1007/s00424-020-02483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
Abstract
Pre-blockade of the sarco-endoplasmic reticulum (ER) calcium ATPase (SERCA) with irreversible thapsigargin depresses exocytosis in adrenal bovine chromaffin cells (BCCs). Distinct expression of voltage-dependent Ca2+-channel subtypes and of the Ca2+-induced Ca2+ release (CICR) mechanism in BCCs versus mouse chromaffin cells (MCCs) has been described. We present a parallel study on the effects of the acute SERCA blockade with reversible cyclopizonic acid (CPA), to repeated pulsing with acetylcholine (ACh) at short (15 s) and long intervals (60 s) at 37 °C, allowing the monitoring of the initial size of a ready-release vesicle pool (RRP) and its depletion and recovery in subsequent stimuli. We found (i) strong depression of exocytosis upon ACh pulsing at 15-s intervals and slower depression at 60-s intervals in both cell types; (ii) facilitation of exocytosis upon acute SERCA inhibition, with back to depression upon CPA washout in MCCs; (iii) blockade of exocytosis upon acute SERCA inhibition and pronounced rebound of exocytosis upon CPA washout in BCCs; (iv) basal [Ca2+]c elevation upon stimulation with ACh at short intervals (but not at long intervals) in both cell types; and (v) augmentation of basal [Ca2+]c and inhibition of peak [Ca2+]c amplitude upon CPA treatment in both cell types, with milder effects upon stimulation at 60-s intervals. These results are compatible with the view that while in MCCs the uptake of Ca2+ via SERCA contributes to the mitigation of physiological ACh triggered secretion, in BCCs the uptake of Ca2+ into the ER facilitates such responses likely potentiating a Ca2+-induced Ca2+ release mechanism. These drastic differences in the regulation of ACh-triggered secretion at 37 °C may help to understand different patterns of the regulation of exocytosis by the circulation of Ca2+ at a functional ER Ca2+ store.
Collapse
Affiliation(s)
- Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
| | - Irene Gil-Gómez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain.
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- DNS Neuroscience, Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- DNS Neuroscience, Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Milman A, Ventéo S, Bossu JL, Fontanaud P, Monteil A, Lory P, Guérineau NC. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ. J Physiol 2021; 599:1855-1883. [PMID: 33450050 PMCID: PMC7986707 DOI: 10.1113/jp281044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa > gK > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
Collapse
Affiliation(s)
- Alexandre Milman
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | | | - Jean-Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx "Ion Channel Science and Therapeutics", Montpellier, France
| |
Collapse
|
49
|
Skórka-Majewicz M, Goschorska M, Żwierełło W, Baranowska-Bosiacka I, Styburski D, Kapczuk P, Gutowska I. Effect of fluoride on endocrine tissues and their secretory functions -- review. CHEMOSPHERE 2020; 260:127565. [PMID: 32758781 DOI: 10.1016/j.chemosphere.2020.127565] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of fluoride on endocrine tissues has not been sufficiently explored to date. The current body of knowledge suggest significant effects of that mineral on reducing sex hormone levels, which may consequently impair fertility and disrupt puberty. The majority of studies confirm that sodium fluoride increases TSH levels and decreases the concentrations of T3 and T4 produced by the thyroid. Moreover, a correlation was observed between NaF and increased secretion of PTH by the parathyroid glands, without a significant impact on body calcium levels. Probably, fluoride may exert adverse effects on insulin levels, impairing pancreatic function and resulting in abnormal glucose tolerance. Observations also include decreased levels of cortisol secreted by the adrenal glands. In light of the few existing studies, the mechanism of fluoride toxicity on the endocrine system has been described.
Collapse
Affiliation(s)
- Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Daniel Styburski
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland.
| |
Collapse
|
50
|
Arribas-Blázquez M, Olivos-Oré LA, Barahona MV, Wojnicz A, De Pascual R, Sánchez de la Muela M, García AG, Artalejo AR. The Adrenal Medulla Modulates Mechanical Allodynia in a Rat Model of Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21218325. [PMID: 33171955 PMCID: PMC7664230 DOI: 10.3390/ijms21218325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023] Open
Abstract
We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - Luis Alcides Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - María Victoria Barahona
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - Aneta Wojnicz
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Ricardo De Pascual
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Mercedes Sánchez de la Muela
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, 20040 Madrid, Spain;
| | - Antonio G. García
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Antonio R. Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-943-851
| |
Collapse
|