1
|
Zhang R, Liu Y, Ding P, Huang J, Dierolf M, Kelly SD, Qiu X, Chen Y, Hussain MZ, Li W, Bunzen H, Achterhold K, Pfeiffer F, Sharp ID, Warnan J, Fischer RA. Engineering a Cu-Pd Paddle-Wheel Metal-Organic Framework for Selective CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202414600. [PMID: 39448374 DOI: 10.1002/anie.202414600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Optimizing the binding energy between the intermediate and the active site is a key factor for tuning catalytic product selectivity and activity in the electrochemical carbon dioxide reduction reaction. Copper active sites are known to reduce CO2 to hydrocarbons and oxygenates, but suffer from poor product selectivity due to the moderate binding energies of several of the reaction intermediates. Here, we report an ion exchange strategy to construct Cu-Pd paddle wheel dimers within Cu-based metal-organic frameworks (MOFs), [Cu3-xPdx(BTC)2] (BTC=benzentricarboxylate), without altering the overall MOF structural properties. Compared to the pristine Cu MOF ([Cu3(BTC)2], HKUST-1), the Cu-Pd MOF shifts CO2 electroreduction products from diverse chemical species to selective CO generation. In situ X-ray absorption fine structure analysis of the catalyst oxidation state and local geometry, combined with theoretical calculations, reveal that the incorporation of Pd within the Cu-Pd paddle wheel node structure of the MOF promotes adsorption of the key intermediate COOH* at the Cu site. This permits CO-selective catalytic mechanisms and thus advances our understanding of the interplay between structure and activity toward electrochemical CO2 reduction using molecular catalysts.
Collapse
Affiliation(s)
- Ruirui Zhang
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Yan Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Pan Ding
- Walter Schottky Institute and TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany
| | - Juanjuan Huang
- X-ray Science Division and Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Shelly D Kelly
- X-ray Science Division and Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Xinqi Qiu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Yishuo Chen
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Weijin Li
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Hana Bunzen
- Chair of Solid State and Materials Chemistry and Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ian D Sharp
- Walter Schottky Institute and TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Str.1, 85748, Garching, Germany
| |
Collapse
|
2
|
Li H, Dai S, Wu Y, Dong Q, Chen J, Chen HT, Hu A, Chou J, Chen T. Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO 2 Supported Pd Nanocrystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207109. [PMID: 36752398 PMCID: PMC10104651 DOI: 10.1002/advs.202207109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates the intercalation of single-atom Ni (NiSA ) substantially reduces the reaction activity of Ni oxide supported Pd nanoparticle (NiO2 /Pd) in the oxygen reduction reaction (ORR). The results indicate the transition states kinetically consolidate the adsorption energy for the chemisorbed O and OH species on the ORR activity. Notably, the NiO2 /Ni1 /Pd performs the optimum ORR behavior with the lowest barrier of 0.49 eV and moderate second-step barrier of 0.30 eV consequently confirming its utmost ORR performance. Through the stepwise cross-level demonstrations, a structure-Eads -ΔE correspondence for the proposed NiO2 /Nin /Pd systems is established. Most importantly, such a correspondence reveals that the electronic structure of heterogeneous catalysts can be significantly differed by the segregation of atomic clusters in different dimensions and locations. Besides, the doping-depth effect exploration of the NiSA in the NiO2 /Pd structure intrinsically elucidates that the Ni atom doping in the subsurface induces the most fruitful NiSA /PdML synergy combining the electronic and strain effects to optimize the ORR, whereas this desired synergy diminishes at high Pd coverages. Overall, the results not only rationalize the variation in the redox properties but most importantly provides a precision evaluation of the process window for optimizing the configuration and composition of bimetallic catalysts in practical experiments.
Collapse
Affiliation(s)
- Haolin Li
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Sheng Dai
- School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200234China
| | - Yawei Wu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Qi Dong
- Department of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Jianjun Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Hsin‐Yi Tiffany Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Alice Hu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Jyh‐Pin Chou
- Department of PhysicsNational Changhua University of EducationChanghua50007Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Hierarchical Green‐Energy Materials (Hi‐GEM) Research CentreNational Cheng Kung UniversityTainan70101Taiwan
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei10617Taiwan
| |
Collapse
|
3
|
A Novel MOF-Derived Strategy to Construct Cu-doped CeO2 Supported PdCu Alloy Electrocatalysts for Hydrogen Evolution Reaction. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Bampos G, Tsatsos S, Kyriakou G, Bebelis S. Pd-based bimetallic electrocatalysts for hydrogen oxidation reaction in acidic medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Xu Y, Shi K, Ren T, Yu H, Deng K, Wang X, Wang Z, Wang H, Wang L. Electronic Metal-Support Interaction Triggering Interfacial Charge Polarization over CuPd/N-Doped-C Nanohybrids Drives Selectively Electrocatalytic Conversion of Nitrate to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203335. [PMID: 36114155 DOI: 10.1002/smll.202203335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Selective electrocatalytic nitrate-to-ammonia conversion holds significant potential in treatment of nitrate wastewater and simultaneously produces high-value-added ammonia. However, today's development of nitrate-to-ammonia technology remains hindered by the lack of electrocatalysts with high activity and selectivity. In this work, metal-organic framework-derived CuPd bimetallic nanoparticles/nitrogen-doped carbon (CuPd/CN) hybrid nanoarrays for efficient ammonia electrosynthesis from nitrate are designed and synthesized. Systematic characterization reveals that the electronic metal-support interaction between the CuPd nanoparticles and N-doped nanocarbon matrix could trigger interfacial charge polarization over the CuPd/CN composite and make Cu sites electron deficient, which is conducive to the adsorption of nitrate ions. Moreover, the Pd atom sites separate by Cu atoms and could catalyze the dissociation of H2 O molecules to form adsorbed H species, which evolves into hydrogen radicals and behaves as the dominant reactive species in accelerating nitrate-to-ammonia electrocatalysis. These advantages endow the CuPd/CN nanoarrays with high faradaic efficiency (96.16%), selectivity (92.08%) as well as excellent catalytic stability for electroreduction of nitrate to ammonia.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Keke Shi
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Liao W, Yu G, Zhao L, Zhu H, Chen W. Doping P atom with a lone pair: an effective strategy to realize high HER catalytic activity and avoid deactivation under wide H* coverage on 2D silicene and germanene by increasing the structural rigidity. NANOSCALE 2022; 14:10918-10928. [PMID: 35852067 DOI: 10.1039/d2nr02455a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In view of the weak aromatic characteristic resulting from the weak π-bonding ability (different from the analogous graphene), employing two-dimensional (2D) silicene and germanene monolayers could be one of the most promising ways to realize a new type of highly efficient and nonprecious catalyst for the hydrogen evolution reaction (HER). However, the HER activity of pristine silicene and germanene has to be improved, although both of them can exhibit a good change trend. Particularly, the hydrogen phenomenon can occur under moderate or high H* coverage on 2D silicene and germanene. To overcome these bottlenecks, in this study we identify the most effective strategy through doping P with a lone pair to significantly improve the HER catalytic activity under a high H* coverage, by screening a series of IIIA (i.e., B, Al, Ga, In and Tl) and VA (i.e., N, P, As, Sb and Bi) heteroatoms with different electronegativity under detailed DFT calculations. It is revealed that the doped P atoms and almost all the Si/Ge atoms can uniformly serve as highly active sites. Especially, in view of the existence of the lone pair, doping P effectively prevents hydrogenation (even under full H* coverage) by increasing the structural rigidity. Moreover, the P-doping concentration also plays a crucial role in obtaining high HER activity. The relevant mechanisms have been analyzed in detail. Clearly, all these fascinating findings are beneficial for realizing new HER electrocatalysts based on the excellent silicene or germanene nanomaterials, and even other Si/Ge-related materials in the near future.
Collapse
Affiliation(s)
- Wenying Liao
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Lusi Zhao
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Hu Zhu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Jia Y, Huang TH, Lin S, Guo L, Yu YM, Wang JH, Wang KW, Dai S. Stable Pd-Cu Hydride Catalyst for Efficient Hydrogen Evolution. NANO LETTERS 2022; 22:1391-1397. [PMID: 35080392 DOI: 10.1021/acs.nanolett.1c04840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pd has been regarded as one of the alternatives to Pt as a promising hydrogen evolution reaction (HER) catalyst. Strategies including Pd-metal alloys (Pd-M) and Pd hydrides (PdHx) have been proposed to boost HER performances. However, the stability issues, e.g., the dissolution in Pd-M and the hydrogen releasing in PdHx, restrict the industrial application of Pd-based HER catalysts. We here design and synthesize a stable Pd-Cu hydride (PdCu0.2H0.43) catalyst, combining the advantages of both Pd-M and PdHx structures and improving the HER durability simultaneously. The hydrogen intercalation is realized under atmospheric pressure (1.0 atm) following our synthetic approach that imparts high stability to the Pd-Cu hydride structure. The obtained PdCu0.2H0.43 catalyst exhibits a small overpotential of 28 mV at 10 mA/cm2, a low Tafel slope of 23 mV/dec, and excellent HER durability due to its appropriate hydrogen adsorption free energy and alleviated metal dissolution rate.
Collapse
Affiliation(s)
- Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tzu-Hsi Huang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Shuan Lin
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Lisheng Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yu-Min Yu
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
9
|
Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Li H, Wang KW, Hu A, Chou JP, Chen TY. Tri-atomic Pt clusters induce effective pathways in a Co core-Pd shell nanocatalyst surface for a high-performance oxygen reduction reaction. Phys Chem Chem Phys 2021; 23:18012-18025. [PMID: 34612275 DOI: 10.1039/d1cp01989a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crux of the hot topic concerning the widespread replacement of fuel cells (FCs) with traditional petrochemical energy is to balance improving the oxygen reduction reaction (ORR) and reducing the cost. The present study employs density functional theory (DFT) to investigate the effect of Pt ensemble size regulation from a single atom to full coverage on the physio-chemical properties, oxygen adsorption energies and overall ORR efficiency of bimetallic nanocatalysts (NCs) with a Cocore-Pdshell structure. Our results reveal that the electronegativity difference and lattice strain between neighboring heteroatoms are enhanced to trigger a synergetic effect in local domains, with the Pt cluster size reduced from nanometers to subnanometers. They induce a directed and tunable charge relocation mechanism from deep Co to topmost Pt to optimize the adsorption energies of O2/O* and achieve excellent ORR kinetics performance with minimum Pt usage but maximum Pt atom utilization (i.e., Pt1 to Pt3) compared with benchmark Pt(111). Such a dependency between the cluster size and corresponding ORR performance for the established Co@Pd-Ptn system can be applied to accurately guide the experimental synthesis of ordered heterogeneous catalysts (e.g., other core@shell-clusters structures) toward low Pt, high efficiency and green economy.
Collapse
Affiliation(s)
- Haolin Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
11
|
Walter C, Menezes PW, Driess M. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chem Sci 2021; 12:8603-8631. [PMID: 34257861 PMCID: PMC8246119 DOI: 10.1039/d1sc01901e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Intermetallic compounds exhibit attractive electronic, physical, and chemical properties, especially in terms of a high density of active sites and enhanced conductivity, making them an ideal class of materials for electrocatalytic applications. Nevertheless, widespread use of intermetallics for such applications is often limited by the complex energy-intensive processes yielding larger particles with decreased surface areas. In this regard, alternative synthetic strategies are now being explored to realize intermetallics with distinct crystal structures, morphology, and chemical composition to achieve high performance and as robust electrode materials. In this perspective, we focus on the recent advances and progress of intermetallics for the reaction of electrochemical water-splitting. We first introduce fundamental principles and the evaluation parameters of water-splitting. Then, we emphasize the various synthetic methodologies adapted for intermetallics and subsequently, discuss their catalytic activities for water-splitting. In particular, importance has been paid to the chemical stability and the structural transformation of the intermetallics as well as their active structure determination under operating water-splitting conditions. Finally, we describe the challenges and future opportunities to develop novel high-performance and stable intermetallic compounds that can hold the key to more green and sustainable economy and rise beyond the horizon of water-splitting application.
Collapse
Affiliation(s)
- Carsten Walter
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| | - Prashanth W Menezes
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| | - Matthias Driess
- Derpartment of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 Berlin 10623 Germany
| |
Collapse
|
12
|
Electrochemical preparation of porous ZnCuNi by electrodeposition in ethaline deep eutectic solvent followed by anodic or cathodic dealloying in alkaline aqueous solutions for higher nitrate reduction activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Jana R, Datta A, Malik S. Tuning intermediate adsorption in structurally ordered substituted PdCu 3 intermetallic nanoparticles for enhanced ethanol oxidation reaction. Chem Commun (Camb) 2021; 57:4508-4511. [PMID: 33955976 DOI: 10.1039/d0cc08075f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Co and Ni-substituted structurally ordered intermetallic PdCu3 nanoparticles (NPs) synthesized at low temperature exhibit remarkable enhancement of the ethanol electrooxidation (EOR) activity with improved durability. The first-principle calculations suggest that prompted generation of OH and CH3CO radicals in close proximity and shifting of the d-band center towards the Fermi level boost the EOR efficiency.
Collapse
Affiliation(s)
- Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | | | | |
Collapse
|
14
|
Gholinejad M, Khosravi F, Afrasi M, Sansano JM, Nájera C. Applications of bimetallic PdCu catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02339f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic PdCu nanoparticles can be applied as catalysts in a wide range of chemical and electrochemical reactions.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)
| | - Faezeh Khosravi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Mahmoud Afrasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - José M. Sansano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| |
Collapse
|
15
|
Wu X, He G, Ding Y. Dealloyed Nanoporous Materials for Rechargeable Post-Lithium Batteries. CHEMSUSCHEM 2020; 13:3376-3390. [PMID: 32391967 DOI: 10.1002/cssc.202001069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Nanoporous materials (NPMs) made by dealloying have been well recognized as multifunctional electrodes for lithium-ion batteries (LIBs). In recent years, there are ever-increasing demands on grid-scale energy storage devices composed by earth-abundant elements such as Na, K, Mg, Al, and Zn. Compared to LIBs, these electrochemical cells face critical challenges such as slow kinetics of redox reactions and structural instability owing to large ion size and/or multiple-electron process. Much interest has been focused on NPMs to address these issues with great success. This Minireview discusses the recent research progresses on these novel electrode materials in the emerging post-lithium batteries, including the rational-design of NPMs, structure-performance correlation in each battery system, and insights into future development of this rapidly growing field.
Collapse
Affiliation(s)
- Xuan Wu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, P. R. China
| | - Guang He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
16
|
Wang F, Yu H, Feng T, Zhao D, Piao J, Lei J. Surface Roughed and Pt-Rich Bimetallic Electrocatalysts for Hydrogen Evolution Reaction. Front Chem 2020; 8:422. [PMID: 32582628 PMCID: PMC7287206 DOI: 10.3389/fchem.2020.00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Platinum-based alloys with low cost transition metals have been considered as promising electrocatalysts in the field of sustainable energy conversion and storage. Herein, chloroplatinic acid, cobalt chloride, and carbon nanotubes are used as platinum, cobalt precursors, and carriers, respectively, to prepare rich Pt dealloying PtCo nanoparticles (SD-PtCo/CNT) via co-liquid phase reduction and chemical dealloying methods. The characterization and test results confirm that PtCo alloy nanoparticles are evenly dispersed on carbon nanotubes, further dealloying and resulting in the partial dissolving of cobalt, simultaneously generating a rich Pt layer and roughly active surface. Benefiting from the unique structure, the SD-PtCo/CNT catalyst displays obviously enhanced HER activity in both acidic and alkaline conditions. In 1.0 M KOH, SD-PtCo/CNT exhibits a low overpotential of 78 mV at 10 mA/cm2 and a small tafel slope (38.28 mV/dec). In 0.5 M H2SO4, SD-PtCo/CNT still shows the superior performance compared with un-dealloying PtCo/CNT, with an overpotential of 17 mV at 10 mA/cm2 and corresponding tafel slope of 21.35 mV/dec. The high HER activity of SD-PtCo/CNT can be attributed to the formation of a platinum rich layer and the uniformly dispersed PtCo nanoparticles supported on superior conductive carbon nanotubes, suggesting its great potential for hydrogen generation via water splitting.
Collapse
Affiliation(s)
- Fang Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing, China
| | - Haifeng Yu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| | - Ting Feng
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| | - Dan Zhao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jianfei Lei
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Sun ZJ, Sartin MM, Chen W, He F, Cai J, Ye XX, Lu JL, Chen YX. Electrochemical CO2 reduction on Pd-modified Cu foil. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1904081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhi-juan Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Matthew M. Sartin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xu-xu Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun-ling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-xia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Wu D, Zhang W, Lin A, Cheng D. Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9600-9608. [PMID: 32027803 DOI: 10.1021/acsami.9b20076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing highly active and durable electrocatalysts with low levels of Pt content toward some crucial reactions including oxygen reduction reaction, hydrogen evolution reaction, and methanol oxidation reaction in an acidic electrolyte environment are desirable but still an open challenge for clean and efficient energy conversion. Herein, we present a facile route to synthesize low Pt-content ternary PtNiCu nanostructures with hollow interior and accessible surfaces (H-PtNiCu-AAT NPs) as enhanced multifunctional electrocatalysts. The galvanic replacement reaction and atomic diffusion between in situ preformed CuNi nanocrystals and Pt species should be responsible for the formation of hollow PtNiCu NPs. Continuous activation by acid picking and annealing treatments were performed to leach out the excessive Cu and Ni on the surfaces and to enrich Pt-content on the surface. H-PtNiCu-AAT NPs exhibit excellent activity and durability toward HER, ORR, and MOR due to the rational integration of multiple structural advantages. Strikingly, the mass activity and specific activity of H-PtNiCu-AAT NPs (0.977 A mgPt-1 and 1.458 mA cm-2) is 7.1 and 6.9 times higher than that of commercial Pt/C (0.138 A mgPt-1 and 0.212 mA cm-2) toward ORR at 0.9 V (vs RHE), respectively. This present work provides an efficient strategy for the design of low Pt-content trimetallic electrocatalysts with excellent activity and durability.
Collapse
Affiliation(s)
- Dengfeng Wu
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Wei Zhang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Aijun Lin
- Department of Environmental Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
19
|
Bao J, Liu W, Zhou Y, Li T, Wang Y, Liang S, Xue Y, Guo C, Zhang Y, Hu Y. Interface Nanoengineering of PdNi-S/C Nanowires by Sulfite-Induced for Enhancing Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2243-2251. [PMID: 31851479 DOI: 10.1021/acsami.9b14598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interfacial structural design of materials in nanoscale is a promising approach to regulate the physicochemical properties of materials and further optimize material properties for a variety of potential applications. Herein, PdNi-S/C nanowires with inductive sulfite has been successfully crafted through hydrothermal synthesis and applied as a superior hydrogen evolution reaction (HER) catalyst. Based on the autocatalytic mechanism, PdNi alloy nanoparticles were synthesized by controlling reduction kinetics with the presence of formic acid. Meanwhile, the sulfite is selected as an effective inductive agent to form PdNi-S/C nanowires with amorphous interfaces. The morphology, composition, and electronic structure of the synthesized PdNi-S/C were studied in detail. The PdNi-S/C manifests excellent HER performance in alkaline solution with an overpotentials of 67 mV at current density of 10 mA cm-2, a Tafel slope of 69.4 mV dec-1, and significantly long-term durability. The improvement of HER performance of the PdNi-S/C is attributed to the one-dimensional nanowire structure, abundant sulfur vacancies and defects, and the synergistic effect between PdNi-S nanowires with the graphite carbon. Furthermore, this present work offers a novel method for structure adjustment of materials to effectively control their property and catalytic performance.
Collapse
Affiliation(s)
- Jiehua Bao
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
- Southeast University-Red Sun Research Center for Intelligent Industry, Red Sun Group , Nanjing 211300 , P. R. China
- Nanjing Guoxing Biotechnology Research Institute Co. LTD , Nanjing 211300 , P. R. China
| | - Wenqi Liu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
- Southeast University-Red Sun Research Center for Intelligent Industry, Red Sun Group , Nanjing 211300 , P. R. China
- Nanjing Guoxing Biotechnology Research Institute Co. LTD , Nanjing 211300 , P. R. China
| | - Tongfei Li
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Yanyun Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
- Southeast University-Red Sun Research Center for Intelligent Industry, Red Sun Group , Nanjing 211300 , P. R. China
- Nanjing Guoxing Biotechnology Research Institute Co. LTD , Nanjing 211300 , P. R. China
| | - Shuang Liang
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yi Xue
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
- Southeast University-Red Sun Research Center for Intelligent Industry, Red Sun Group , Nanjing 211300 , P. R. China
- Nanjing Guoxing Biotechnology Research Institute Co. LTD , Nanjing 211300 , P. R. China
| | - Chang Guo
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
- Southeast University-Red Sun Research Center for Intelligent Industry, Red Sun Group , Nanjing 211300 , P. R. China
- Nanjing Guoxing Biotechnology Research Institute Co. LTD , Nanjing 211300 , P. R. China
| | - Yiwei Zhang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Yingjie Hu
- Key Laboratory of Advanced Functional Materials of Nanjing , Nanjing Xiaozhuang University , Nanjing 211171 , P. R. China
| |
Collapse
|
20
|
Podjaski F, Weber D, Zhang S, Diehl L, Eger R, Duppel V, Alarcón-Lladó E, Richter G, Haase F, Fontcuberta i Morral A, Scheu C, Lotsch BV. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat Catal 2019. [DOI: 10.1038/s41929-019-0400-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Goud D, Cherevotan A, Maligal-Ganesh R, Ray B, Ramarao SD, Raj J, Peter SC. Unraveling the Role of Site Isolation and Support for Semihydrogenation of Phenylacetylene. Chem Asian J 2019; 14:4819-4827. [PMID: 31713285 DOI: 10.1002/asia.201901401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/03/2019] [Indexed: 11/06/2022]
Abstract
Intermetallic compounds (IMCs) composed of transition metals and post-transition metals function as superior heterogeneous catalysts in comparison to their monometallic and bimetallic alloy counterparts. Rendering IMCs in their nanomaterial iterations further enhances their efficiency. Herein, we demonstrate the role of PdIn as well-dispersed intermetallic nanoparticles (IMNPs) for the semihydrogenation of phenylacetylene selectively to styrene at ambient conditions. Higher selectivity of PdIn was explained with the help DOS calculations. We have explored the role of a few well-known silica-based supports such as SBA-15 and MCM-41, providing insight into how they affect catalysis. As an additional support we have explored previously reported JNC-1, a mesoporous carbon material obtained via a templated strategy using SBA-15. PdIn supported on SBA-15 and JNC-1 displayed the best dispersion, while also exhibiting the most catalytic activity due to the unique nature of the porous structure.
Collapse
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Arjun Cherevotan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Raghu Maligal-Ganesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Bitan Ray
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - S D Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Jithu Raj
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
22
|
Jiang R, Cui Z, Xu W, Zhu S, Liang Y, Li Z, Wu S, Chang C, Inoue A. Highly efficient amorphous np-PdFePC catalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135082] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev 2019; 120:851-918. [DOI: 10.1021/acs.chemrev.9b00248] [Citation(s) in RCA: 881] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Zhu
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Liangsheng Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Pengxiang Zhao
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
24
|
Marakatti VS, Sarma SC, Sarkar S, Krajčí M, Gaigneaux EM, Peter SC. Synthetically Tuned Pd-Based Intermetallic Compounds and their Structural Influence on the O 2 Dissociation in Benzylamine Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37602-37616. [PMID: 31545585 DOI: 10.1021/acsami.9b11318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermetallic compounds (IMCs) have diverse electronic and geometrical properties to offer. However, the synthesis of intermetallic nanoparticles is not always easy; developing new methodologies that are conventional for many systems can be challenging, especially when incorporating highly electropositive metals to reduce to IMCs using solution synthesis methodologies. In this study, we report a comprehensive approach to access nanocrystalline PdxMy (M = Cu, Zn, Ga, Ge, Sn, Pb, Cd, In) intermetallic (IM) via the coreduction method employing sodium borohydride as the reductant. A combination of diffraction, spectroscopic, and microscopic techniques were performed to characterize the formed nanoparticles in terms of their phase composition, purity, particle size distribution, and surface oxidation properties of metals, respectively. IMCs of Pd with the elements such as Cu, Zn, Ga, and Ge exhibited higher catalytic activity that with elements such as In, Sn, Pb, and Cd. The DFT studies on these compounds revealed that the adsorption of benzylamine at the Pd site and the dissociative adsorption of O2 on the IM surface play a significant effect on catalytic activity. Among them, PdCu IM exhibited an excellent conversion of benzylamine (94.0%), with 92.2% of dibenzylimine selectivity compared to other IMCs. Moreover, PdCu exhibited decent recyclability and activity for the oxidation of different substituted primary amines.
Collapse
Affiliation(s)
- Vijaykumar S Marakatti
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) , Université Catholique de Louvain (UCLouvain) , Louvain-la-Neuve 1348 , Belgium
| | | | | | - M Krajčí
- Institute of Physics , Slovak Academy of Sciences , Bratislava SK-84511 , Slovakia
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) , Université Catholique de Louvain (UCLouvain) , Louvain-la-Neuve 1348 , Belgium
| | | |
Collapse
|
25
|
Brandiele R, Zerbetto M, Dalconi MC, Rizzi GA, Isse AA, Durante C, Gennaro A. Mesoporous Carbon with Different Density of Thiophenic-Like Functional Groups and Their Effect on Oxygen Reduction. CHEMSUSCHEM 2019; 12:4229-4239. [PMID: 31309717 DOI: 10.1002/cssc.201901568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The metal-support interactions between sulfur-doped carbon supports (SMCs) and Pt nanoparticles (NPs) were investigated, aiming at verifying how sulfur functional groups can improve the electrocatalytic performance of Pt NPs towards the oxygen reduction reaction (ORR). SMCs were synthetized, tailoring the density of sulfur functional groups, and Pt NPs were deposited by thermal reduction of Pt(acac)2 . The extent of the metal-support interaction was proved by X-ray photoelectron spectroscopy (XPS) analysis, which revealed a strong electronic interaction, proportional to the density of sulfur defects, whereas XRD spectra provided evidence of higher strain in Pt NPs loaded on SMC. DFT simulations confirmed that the metal-support interaction was strongest in the presence of a high density of sulfur defects. The combination of microstrain and electronic effects resulted in a high catalytic activity of supported Pt NPs towards ORR, with linear correlations of the half-wave potential E1/2 or the kinetic current jk with the sulfur content in the support. Furthermore, a mass activity value (550 A g-1 ) well above the United States Department of Energy target of 440 A g-1 at 0.9 V (vs. reversible hydrogen electrode, RHE), was determined.
Collapse
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Maria Chiara Dalconi
- Department of Geoscience, University of Padova, via Gradenigo 6, 35131, Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
26
|
Hosseini SR, Ghasemi S, Ghasemi SA. Fabrication and Performance Evaluation of Pd‐Cu Nanoparticles for Hydrogen Evolution Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sayed Reza Hosseini
- Nanochemistry Research LaboratoryFaculty of Chemistry, University of Mazandaran, Postal Code 47416-95447 Babolsar Iran
| | - Shahram Ghasemi
- Nanochemistry Research LaboratoryFaculty of Chemistry, University of Mazandaran, Postal Code 47416-95447 Babolsar Iran
| | - Seyedeh Arefeh Ghasemi
- Nanochemistry Research LaboratoryFaculty of Chemistry, University of Mazandaran, Postal Code 47416-95447 Babolsar Iran
| |
Collapse
|
27
|
Rao CNR, Chhetri M. Borocarbonitrides as Metal-Free Catalysts for the Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803668. [PMID: 30375670 DOI: 10.1002/adma.201803668] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen generation by water splitting is clearly a predominant and essential strategy to tackle the problems related to renewable energy. In this context, the discovery of proper catalysts for electrochemical and photochemical water splitting assumes great importance. There is also a serious intent to eliminate platinum and other noble metal catalysts. To replace Pt by a non-metallic catalyst with desirable characteristics is a challenge. Borocarbonitrides, (Bx Cy Nz ) which constitutes a new class of 2D material, offer great promise as non-metallic catalysts because of the easy tunability of bandgap, surface area, and other electronic properties with variation in composition. Recently, Bx Cy Nz composites with excellent electrochemical and photochemical hydrogen generation activities have been found, especially noteworthy being the observation that Bx Cy Nz with a carbon-rich composition or its nanocomposites with MoS2 come close to Pt in electrocatalytic properties, showing equally good photochemical activity.
Collapse
Affiliation(s)
- Chintamani Nagesa Ramachandra Rao
- New Chemistry Unit, International Centre for Materials Science, Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Manjeet Chhetri
- New Chemistry Unit, International Centre for Materials Science, Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
28
|
Wang Y, Liu Z, Liu H, Suen NT, Yu X, Feng L. Electrochemical Hydrogen Evolution Reaction Efficiently Catalyzed by Ru 2 P Nanoparticles. CHEMSUSCHEM 2018; 11:2724-2729. [PMID: 29888872 DOI: 10.1002/cssc.201801103] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Developing alternatives to Pt catalysts is a prerequisite to cost-effectively produce hydrogen. Herein, we demonstrate Ru2 P nanoparticles (without any doping and modifications) as a highly efficient Pt-like catalyst for the hydrogen evolution reaction (HER) in different pH electrolytes. On transferring the hexagonal close-packed crystal structure of Ru to the orthorhombic structure of Ru2 P, a greatly improved catalytic activity and stability toward HER is found owing to Ru-P coordination. The electronic state change originates from the P-Ru bonding structures, which accounts for the HER activity improvement compared with Ru nanoparticles. Specifically, Ru2 P nanoparticles can drive 10 mA cm-2 at a very low overpotential of 55 mV, only 8 mV more than Pt/C in an acidic solution; and an extremely low overpotential of approximately 50 mV is needed in alkaline solution, about 20 mV less than the Pt/C catalyst. The Volmer-Tafel mechanism is indicated on Ru2 P nanoparticles with the typical Tafel slope of 30 mV dec-1 of Pt metal indicating a Pt-like catalytic ability. Ru2 P is more active in the Ru-P family as H atoms prefer to adsorb on Ru atoms rather than on the P element according to theoretical calculations. Considering the low price of Ru (20 % of Pt), anti-corrosion ability in the electrolyte, and the safe and reliable fabrication approach, the powder Ru2 P nanoparticles make an excellent HER catalyst with great promise for large-scale water electrolysis applications.
Collapse
Affiliation(s)
- Yuan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Nian-Tzu Suen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
29
|
Saquib M, Halder A. Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sarkar S, Peter SC. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00042e] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrochemical hydrogen evolution reaction (HER) is a well-studied reaction which involves the reduction of protons for hydrogen production. Pd-based compounds are expected to have activity on par with or better than the expensive state-of-the-art Pt and can be considered as the future materials for the HER.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| |
Collapse
|
31
|
Zhang C, Xie Z, He X, Liang P, Zeng Q, Zhang Z. Fabrication and characterization of nanoporous Cu–Sn intermetallicsviadealloying of ternary Mg–Cu–Sn alloys. CrystEngComm 2018. [DOI: 10.1039/c8ce01328d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dealloying of Mg–Cu–Sn alloys leads to the formation of nanoporous Cu–Sn intermetallics.
Collapse
Affiliation(s)
- Chi Zhang
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Zhuohong Xie
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Xin He
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Ping Liang
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Qingguang Zeng
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Zhonghua Zhang
- School of Applied Physics and Materials
- Wuyi University
- Jiangmen 529020
- P.R. China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)
| |
Collapse
|
32
|
Shit SC, Singuru R, Pollastri S, Joseph B, Rao BS, Lingaiah N, Mondal J. Cu–Pd bimetallic nanoalloy anchored on a N-rich porous organic polymer for high-performance hydrodeoxygenation of biomass-derived vanillin. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00325d] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A N-rich porous organic polymer-anchored bimetallic Cu–Pd nanoalloy exhibited superior catalytic activity with improved stability for biomass-derived selective hydrodeoxygenation of vanillin.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - Ramana Singuru
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | | | - Boby Joseph
- Elettra-Sincrotrone Trieste
- Basovizza 34149
- Italy
| | - Bolla Srinivasa Rao
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - Nakka Lingaiah
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - John Mondal
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR-Indian Institute of Chemical Technology
| |
Collapse
|
33
|
Sarma SC, Peter SC. Understanding small-molecule electro-oxidation on palladium based compounds – a feature on experimental and theoretical approaches. Dalton Trans 2018; 47:7864-7869. [DOI: 10.1039/c8dt00443a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electrochemical oxidation of small molecules such as ethanol, methanol and formic acid on Pd based compounds has a great impact on green energy production in fuel cells.
Collapse
Affiliation(s)
- Saurav Ch. Sarma
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| |
Collapse
|
34
|
Zhang X, Wu D, Cheng D. Component-dependent electrocatalytic activity of PdCu bimetallic nanoparticles for hydrogen evolution reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Marakatti VS, Sarma SC, Joseph B, Banerjee D, Peter SC. Synthetically Tuned Atomic Ordering in PdCu Nanoparticles with Enhanced Catalytic Activity toward Solvent-Free Benzylamine Oxidation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3602-3615. [PMID: 28067036 DOI: 10.1021/acsami.6b12253] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthesis of ordered compounds with nano size is of particular interest for tuning the surface properties with enhanced activity and selectivity toward various important industrial catalytic processes. In this work, we synthesized ordered PdCu nanoparticles as highly efficient catalyst for the solvent-free aerobic oxidation of benzylamine. The PdxCu1-x catalysts with different chemical compositions (x = 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) were prepared by polyol method using NaBH4 as a reducing agent and were well-characterized by X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) energy-dispersive analysis of X-rays, and X-ray absorption fine structure. The effect of different metal concentrations of Pd and Cu on the formation of PdxCu1-x nanoparticles was investigated. The XRD and TEM confirmed the formation of ordered PdCu intermetallic phase with body-centered cubic (BCC) structure for the synthetic composition of Pd/Cu = 1:1. For compositions x = 0, 0.25, 0.75, and 1, PdxCu1-x alloy with face-centered cubic (FCC) structure was observed, whereas mixed phase of BCC and FCC was observed for x = 0.4 and 0.6. The use of strong reducing agent (NaBH4) was essential to synthesize PdCu ordered phase compared to weak reducing agents such as oleylamine and ascorbic acid. The PdCu nanocatalyst with ordered structure (BCC) showed excellent catalytic activity compared to PdxCu1-x alloy nanoparticles with FCC structure. The atomic ordering in the PdCu intermetallic was the driving force for the enhancement in the catalytic activity with high benzylamine conversion of 94.0% and dibenzylimine selectivity of 92.2% compared to its monometallic and alloy counterparts. Moreover, ordered PdCu alloy showed good recyclability and activity toward the oxidation of different amines.
Collapse
Affiliation(s)
- Vijaykumar S Marakatti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Saurav Ch Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Boby Joseph
- Elettra Sincrotrone Trieste SCpA , SS14 Km 163.5, Trieste, Basovizza 34149, Italy
| | - Dipanjan Banerjee
- Dutch-Belgian Beamline, The European Synchrotron Radiation Facility , CS 40220, 38043 Grenoble, France
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| |
Collapse
|
36
|
Jiang Y, Yan Y, Han Y, Zhang H, Yang D. Core–shell and alloy integrating PdAu bimetallic nanoplates on reduced graphene oxide for efficient and stable hydrogen evolution catalysts. RSC Adv 2017. [DOI: 10.1039/c7ra08517f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PdAu nanoplates with different core–shell structures on rGO were generated by manipulating the competition between galvanic replacement and chemical reduction with the alloy and core–shell integrating nanoplates exhibiting superior HER properties.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Silicon Materials
- School of Materials Science & Engineering
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials
- School of Materials Science & Engineering
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Yu Han
- State Key Laboratory of Silicon Materials
- School of Materials Science & Engineering
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials
- School of Materials Science & Engineering
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials
- School of Materials Science & Engineering
- Zhejiang University
- Hangzhou
- People's Republic of China
| |
Collapse
|