1
|
Moutsiou A, Olivati A, Cipriano LA, Sivo A, Collins SM, Ramasse QM, Kwon IS, Di Liberto G, Kanso M, Wojcieszak R, Pacchioni G, Petrozza A, Vilé G. Tracking Charge Dynamics in a Silver Single-Atom Catalyst During the Light-Driven Oxidation of Benzyl Alcohol to Benzaldehyde. ACS Catal 2025; 15:5601-5613. [PMID: 40207072 PMCID: PMC11976699 DOI: 10.1021/acscatal.4c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/11/2025]
Abstract
Understanding charge transfer in light-driven processes is crucial for optimizing the efficiency and performance of a photocatalyst, as charge transfer directly influences the separation and migration of photogenerated charge carriers and determines the overall reaction rate and product formation. However, achieving this understanding remains challenging in the context of single-atom photocatalysis. This study addresses this gap and investigates an Ag-based single-atom catalyst (Ag1@CN x ) in the photocatalytic oxidation of benzyl alcohol to benzaldehyde. Comprehensive characterization was conducted using a battery of diffractive, textural, spectroscopic, and microscopic methods, confirming the catalyst crystallinity, porosity, elemental composition, and atomic dispersion of silver atoms. This material displayed efficient performance in the selective oxidation of benzyl alcohol to benzaldehyde. Density functional theory calculations were used to rationalize the catalyst structure and elucidate the reaction mechanism, unveiling the role of the photogenerated holes in lowering the reaction energy barriers. Time-resolved transient spectroscopic studies were used to monitor the dynamics of photogenerated charges in the reaction, revealing the lifetimes and behaviors of excited states within the catalyst. Specifically, the introduction of silver atoms led to a significant enhancement in the excited state lifetime, which favors the hole-transfer in the presence of the benzyl alcohol. This indicated that the photoexcited carriers were effectively transferred to the reactant, thereby driving the oxidation process in the presence of oxygen. These mechanistic insights are pivotal in spectroscopically elucidating the reaction mechanism and can be practically applied to design single-atom photocatalysts more rationally, targeting materials that combine both rapid reductive quenching and efficient charge transfer to the metal.
Collapse
Affiliation(s)
- Areti Moutsiou
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Olivati
- Center
for Nanoscience and Technology, Italian
Institute of Technology, Via Giovanni Pascoli 70/3, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luis A. Cipriano
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandra Sivo
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Sean M. Collins
- Bragg
Centre for Materials Research, School of Chemical and Process Engineering
and School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, U.K.
- SuperSTEM
Laboratory, SciTech Daresbury
Campus, Keckwick Lane, WA4 4AD Daresbury, U.K.
| | - Quentin M. Ramasse
- SuperSTEM
Laboratory, SciTech Daresbury
Campus, Keckwick Lane, WA4 4AD Daresbury, U.K.
- School of
Chemical and Process Engineering and School of Physics, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, U.K.
| | - Ik Seon Kwon
- Department
of Energy Science & Engineering, Kunsan
National University, 558 Daehak-ro, 54150 Gunsan, Republic of Korea
| | - Giovanni Di Liberto
- Department
of Materials Science, University of Milan
Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Mohamad Kanso
- Centre
National de la Recherche Scientifique (CNRS) and Laboratoire Lorraine
de Chimie Moléculaire, L2CM UMR 7053, Université de
Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Robert Wojcieszak
- Centre
National de la Recherche Scientifique (CNRS) and Laboratoire Lorraine
de Chimie Moléculaire, L2CM UMR 7053, Université de
Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Gianfranco Pacchioni
- Department
of Materials Science, University of Milan
Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Annamaria Petrozza
- Center
for Nanoscience and Technology, Italian
Institute of Technology, Via Giovanni Pascoli 70/3, 20133 Milano, Italy
| | - Gianvito Vilé
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
2
|
Ichimura T, Kasai H, Oka K. Dihydrolevoglucosenone (Cyrene TM) as a Bio-derived Liquid Organic Hydrogen Carrier. Chempluschem 2025; 90:e202400639. [PMID: 39752108 DOI: 10.1002/cplu.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone produced from cellulose (a typical biomass) on an industrial scale, as a new renewable organic hydride. CyreneTM (hydrogen acceptor) is hydrogenated under ambient hydrogen pressure with a highly durable metal complex catalyst to produce 1,6-anhydro-3,4-dideoxy-β-D-threo-hexopyranose (Cyrene-OH, hydrogen adduct). Cyrene-OH stores hydrogen via chemical bonding under ambient conditions, and is dehydrogenated by heating in the presence of the same catalyst to release hydrogen gas and reproduce CyreneTM. This study reports the first attempt to apply compounds, which can be produced directly from biomass on an industrial scale, to organic hydrides, and promotes the development of earth-abundant biomass for sustainable hydrogen storage.
Collapse
Affiliation(s)
- Takumi Ichimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Kouki Oka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Carbon Recycling Energy Research Center Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Uzunlu Ince N, Pongrácz P, Kollár L, Szilágyi A, Takács A, Mika LT. Alkyl 4-Alkoxyvalerates: Characterization and Application in Pd-Catalyzed Aminocarbonylation of Iodo(hetero)arene Compounds. Chempluschem 2025; 90:e202400713. [PMID: 39714987 DOI: 10.1002/cplu.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance γ-valerolactone i. e. alkyl 4-alkoxyvalerates (alkyl: methyl, ethyl, and propyl) were characterized and tested as potential polar aprotic alternatives of fossil-based common N,N-dimethylformamide (DMF) in aminocarbonylation protocols. First, the temperature-dependent physicochemical properties of alkyl 4-alkoxyvalerates were determined. Based on their characteristics, methyl 4-methoxyvalerate (Me-4MeOV) was selected and introduced in the Pd-catalyzed aminocarbonylation of iodobenzene and morpholine as a model reaction, and an optimization study was carried out. Using the optimized conditions, several substituted iodobenzenes, as well as heteroaryl iodides, were successfully applied resulting in the target carboxamides selectively in short reaction time. Furthermore, the aminocarbonylation of iodobenzene in the presence of various amines was also accomplished extending the scope of the carboxamides produced in this alternative medium. Considering our observations, such as high conversions (up to 95 %) in short reaction time and selective amide formation, it has been justified that Me-4MeOV could be an appropriate alternative medium in aminocarbonylation protocols.
Collapse
Affiliation(s)
- Nuray Uzunlu Ince
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - Péter Pongrácz
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Material Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Attila Takács
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
4
|
Legelli M, Froning M, Wirtz M, Lamotte S. Finding the ideal solvent for the analysis of polar analytes using supercritical fluid chromatography. Anal Bioanal Chem 2025; 417:323-333. [PMID: 39576314 DOI: 10.1007/s00216-024-05647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025]
Abstract
The analysis of polar analytes with the help of hydrophilic interaction liquid chromatography (HILIC) using classic methods of high-performance liquid chromatography is not without its downsides. In these applications, acetonitrile is prevalent as main eluent and sample diluent. This results not only in slow diffusion processes during the separation, but also in often unstable sample solutions where polar analytes are concerned. Furthermore, there are ecological concerns. With the use of supercritical fluid chromatography (SFC) which uses supercritical carbon dioxide as eluent, and other green solvents as alternative for the sample preparation, the separation of polar analytes could be vastly improved with this technique. Fast diffusion within carbon dioxide led to shorter analysis times and higher plate numbers. Regarding sample diluents, small alcohols such as ethanol and 2-propanol, as well as acetone, yielded promising results while analytes showed higher solubility and stability within these solvents compared to acetonitrile. Other green solvents such as dihydrolevoglucosenone (Cyrene) and dimethyl carbonate were found to be unsuitable sample diluents for applications in SFC.
Collapse
Affiliation(s)
- Mo Legelli
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
- Department of Analytical and Material Science, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen Am Rhein, Germany
| | - Matti Froning
- Institute for Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149, Münster, Germany
- Department of Technology, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen Am Rhein, Germany
| | - Michaela Wirtz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, 53359, Rheinbach, Germany.
| | - Stefan Lamotte
- Department of Analytical and Material Science, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen Am Rhein, Germany
| |
Collapse
|
5
|
Milescu RA, McElroy CR, Taylor EJ, Eaton P, Williams PM, Phillips R, Farmer TJ, Clark JH. Sustainable nanomaterials: the role of Cyrene in optimising carbon nanotubes dispersion and filtration efficiency. Front Chem 2024; 12:1498279. [PMID: 39749220 PMCID: PMC11694148 DOI: 10.3389/fchem.2024.1498279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy. Their performancewas tested in wastewater and oil-water emulsion filtrations and antimicrobial activity. PESmembranes incorporating SWCNTs were prepared using phase inversion and analysed via SEM,optical microscopy, and contact angle. Membrane properties and water permeability were assessed,and bacterial challenge tests evaluated antimicrobial activity. Cyrene enabled the dispersion ofSWCNTs at higher concentrations (0.038 mg mL⁻1) compared to NMP (0.013 mg mL⁻1). Transmission Electron Microscopy (TEM) analysis revealed that Cyrene effectively debundles SWCNTs, yielding better dispersion. Buckypapers fabricated with Cyrene demonstrated dense, uniform networks with enhanced surface smoothness and promising filtration performance for wastewater treatment and oil-water separation. PES membranes made with Cyrene exhibited well-organised finger-like structures, interconnected pores, superior porosity, and higher water permeability than NMP-based membranes. Incorporating SWCNTs further improved membrane performance. However, bacterial challenge tests indicated no significant antimicrobial activity. The findings highlight Cyrene's potential as a sustainable alternative to traditional solvents, offering improved material properties and filtration performance. Despite these advantages, further studies are necessary to address solvent residuals and long-term safety considerations, ensuring its suitability for broader applications.
Collapse
Affiliation(s)
- Roxana A. Milescu
- Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom
| | - C. Rob McElroy
- Department of Chemistry, School of Natural Science, University of Lincoln, Lincoln, United Kingdom
| | - Edward J. Taylor
- Department of Biological and Life Sciences, School of Natural Science, University of Lincoln, Lincoln, United Kingdom
| | - Peter Eaton
- Department of Chemistry, School of Natural Science, University of Lincoln, Lincoln, United Kingdom
- The Bridge, University of Lincoln, Lincoln, United Kingdom
| | - Paul M. Williams
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University Bay Campus, Swansea, United Kingdom
| | | | - Thomas J. Farmer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, United Kingdom
| | - James H. Clark
- Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
6
|
James SD, Elgar CE, Chen D, Lewis MI, Ash ETL, Conway DS, Tuckley BJ, Phillips LE, Kolozsvári N, Tian X, Gill MR. Cyrene™ as a green alternative to N, N'-dimethylformamide (DMF) in the synthesis of MLCT-emissive ruthenium(II) polypyridyl complexes for biological applications. Dalton Trans 2024; 53:18506-18514. [PMID: 39494695 DOI: 10.1039/d4dt02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from triplet metal-to-ligand charge transfer (MLCT) states find a wide variety of uses ranging from luminophores to potential anti-cancer or anti-bacterial therapeutics. Herein we describe a greener, microwave-assisted synthetic pathway for the preparation of homoleptic [Ru(N^N)3]2+ and bis-heteroleptic [Ru(N^N)2(N'^N')]2+ type complexes. This employs the bio-renewable solvent Cyrene™, dihydrolevoglucosenone, as a green alternative to N,N'-dimethylformamide (DMF) in the synthesis of Ru(N^N)2Cl2 intermediate complexes, obtaining comparable yields for N^N = 2,2'-bipyridine, 1,10-phenanthroline and methylated derivatives. Employing these intermediates, a range of RPCs were prepared and we verify that the ubiquitous luminophore [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) can be prepared by this two-step green pathway where it is virtually indistinguishable from a commercial reference. Furthermore, the novel complexes [Ru(bpy)2(10,11-dmdppz)]2+ (10,11-dmdppz = 10,11-dimethyl-dipyridophenazine) and [Ru(5,5'-dmbpy)2(10,11-dmdppz)]2+ (5,5'-dmbpy = 5,5'-dimethyl-bpy) intercalate duplex DNA with high affinity (DNA binding constants, Kb = 5.7 × 107 and 1.0 × 107 M-1, respectively) and function as plasma membrane and nuclear DNA dyes for confocal and STED microscopies courtesy of their long-lived MLCT luminescence.
Collapse
Affiliation(s)
- Steffan D James
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Christopher E Elgar
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dandan Chen
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Matthew I Lewis
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Elias T L Ash
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Dominic S Conway
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Benjamin J Tuckley
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Leigh E Phillips
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Natália Kolozsvári
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Xiaohe Tian
- State Key Laboratory of Biotherapy, Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
7
|
Medgyesi Z, Mika LT. Characterization and Application of Cyrene as a Biomass-Based Solvent for Homogeneous Heck-Coupling Reaction. Chempluschem 2024; 89:e202400379. [PMID: 38980081 DOI: 10.1002/cplu.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Cyrene, a renewable, non-toxic substance having negligible vapor pressure, even at high temperatures, was proposed as a reaction medium for homogeneous Pd-catalyzed Heck-coupling reactions. It was first characterized by its temperature-dependent physicochemical properties, i. e., vapor pressure, density, surface tension, heat capacity, and viscosity, the key parameters of its reaction and process chemistry. Its refractive indices in the function of temperature were also determined. Hereafter, the effect of reaction parameters (Pd source, nature of the base, the water content of the reaction mixture, leaving group (-I, -Br, -Cl, and -OTf of aromatic substrates) on Pd-catalyzed Heck-coupling reaction was investigated using iodobenzene and styrene as model substrates. Subsequently, 4-substituted iodobenzene and styrene derivatives were applied to investigate the effect of electronic parameters on the reaction efficiency and functional group tolerance. To demonstrate the applicability of the system, thirteen stilbene derivatives were isolated with good to high yields and purity (>95 %) using 0.2 mol % of Pd, 1.5 eq. of Et3N as a base, in 1 mL of Cyrene for 2 h at 100 °C.
Collapse
Affiliation(s)
- Zoltán Medgyesi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
8
|
Muñoz-Jurado A, Jurado-Martos F, Agüera E, Túnez I, Escribano BM. Use of Cyrene™, as an alternative to dimethyl sulfoxide, as a diluent for Melatonin to determine its in vitro antimicrobial capacity. Arch Microbiol 2024; 206:427. [PMID: 39382703 PMCID: PMC11464623 DOI: 10.1007/s00203-024-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Melatonin (MLT) is a methoxyindole that has potent antioxidant actions, anti-inflammatory, and antiapoptotic capacity. However, its in vitro antibacterial capacity has been the least studied of its properties. Dimethylsulfoxide (DMSO) has been the most used solvent for these tests, but it shows an antimicrobial effect if it is not dissolved. Cyrene™ is a new solvent that has emerged as an alternative to DMSO. Therefore, this study aimed to determine the antimicrobial capacity of MLT by MIC assays, using Cyrene™ as a solvent. Likewise, the solubility of MLT in this solvent and whether it exerted any effect on bacterial growth at different percentages was also determined. Different dilutions of MLT in Cyrene™ with different concentrations, were prepared. No growth inhibition caused by MLT was observed. The growth inhibition observed was because of Cyrene™. The maximum amount of MLT that can be diluted in 100% Cyrene is 10 mg/mL, but this percentage of solvent shows a bactericidal effect. Therefore, it must be dissolved at 5% to avoid this effect, so only 4 mg/mL of MLT can be diluted in it. Therefore, if no other solvents are available, the in vitro antibacterial role of MLT cannot be adequately assessed.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, Cordoba, 14071, Spain.
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain.
| | | | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, 14004, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, 14004, Spain
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, Cordoba, 14071, Spain.
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, 14004, Spain.
| |
Collapse
|
9
|
Timilsina MP, Stanfield MK, Smith JA, Thickett SC. Synthesis and Characterization of Thiol-Ene Networks Derived from Levoglucosenone. Chempluschem 2024; 89:e202400383. [PMID: 39190021 DOI: 10.1002/cplu.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/03/2024] [Indexed: 08/28/2024]
Abstract
Levoglucosenone (LGO), a renewable compound obtained from cellulose biomass, has been utilized to prepare novel monomers bearing alkene functional groups. These monomer derivatives of LGO were subsequently cured via ultraviolet (UV)-initiated radical thiol-ene "click" chemistry with commercially available multifunctional thiols to obtain colourless, optically transparent cross-linked thermosets. The monomers prepared in this work are unique due to utilising the internal double bond of the LGO ring during polymerization as part of the cross-linked network. The thermal and mechanical properties along with the degradation of thermosets containing both ether and ester linkages within the LGO monomers were studied. These thermosets had tensile strengths of 1.3-3.3 MPa, glass transition temperatures between 23.2 and 27.2 °C, and good thermal stability of up to 300 °C.
Collapse
Affiliation(s)
- Mahesh Prasad Timilsina
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Melissa K Stanfield
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Stuart C Thickett
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
10
|
Gomez d’Ayala G, Marino T, de Almeida YMB, Costa ARDM, Bezerra da Silva L, Argurio P, Laurienzo P. Enhancing Sustainability in PLA Membrane Preparation through the Use of Biobased Solvents. Polymers (Basel) 2024; 16:2024. [PMID: 39065341 PMCID: PMC11280543 DOI: 10.3390/polym16142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
For the first time, ultrafiltration (UF) green membranes were prepared through a sustainable route by using PLA as a biopolymer and dihydrolevoclucosenone, whose trade name is Cyrene™ (Cyr), dimethyl isosorbide (DMI), and ethyl lactate (EL) as biobased solvents. The influence of physical-chemical properties of the solvent on the final membrane morphology and performance was evaluated. The variation of polymer concentration in the casting solution, as well as the presence of Pluronic® (Plu) as a pore former agent, were assessed as well. The obtained results highlighted that the final morphology of a membrane was strictly connected with the interplaying of thermodynamic factors as well as kinetic ones, primarily dope solution viscosity. The pore size of the resulting PLA membranes ranged from 0.02 to 0.09 μm. Membrane thickness and porosity varied in the range of 0.090-0.133 mm of 75-87%, respectively, and DMI led to the most porous membranes. The addition of Plu to the casting solution showed a beneficial effect on the membrane contact angle, allowing the formation of hydrophilic membranes (contact angle < 90°), and promoted the increase of pore size as well as the reduction of membrane crystallinity. PLA membranes were tested for pure water permeability (10-390 L/m2 h bar).
Collapse
Affiliation(s)
- Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| | - Tiziana Marino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| | | | | | - Larissa Bezerra da Silva
- Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Pietro Argurio
- Department of Environmental Engineering, DIAm, University of Calabria, Via Pietro Bucci CUBO 44/A, 87036 Rende, CS, Italy;
| | - Paola Laurienzo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| |
Collapse
|
11
|
Haensch VG, Hertweck C. Photosensitizers Enable the Formation of Biphenyls with UV-LEDs and Sunlight. Chemistry 2024; 30:e202400605. [PMID: 38421111 DOI: 10.1002/chem.202400605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
The regioselective synthesis of biphenyls, which are economically important pharmaceuticals, agrochemicals, and liquid crystals, is a challenging task. Current methods rely on metal-dependent cross-coupling reactions, which unfortunately require the use of harmful halogenated aryls and heavy metal catalysts that are toxic and difficult to remove from the final products. Recently, we have circumvented these problems by developing a metal-free and broadly applicable photochemical method for biphenyl synthesis using UV-C light, called photosplicing. Here we present an improved method using photosensitizers in combination with UV-B, UV-A light, or sunlight. Using a high-precision flow reactor with deep-UV LEDs, we investigated the ability of commonly available organic photosensitizers to enhance the photosplicing reaction and identified a number of suitable photosensitizers with the required triplet energy. This method allows for easy batch synthesis of biaryls in borosilicate glassware and paves the way for their large-scale production without the need for flow reactors.
Collapse
Affiliation(s)
- Veit G Haensch
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
- Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
12
|
Villar L, Schlapp-Hackl I, Sánchez PB, Hummel M. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste. Biomacromolecules 2024; 25:1942-1949. [PMID: 38385297 PMCID: PMC10934812 DOI: 10.1021/acs.biomac.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Even small amounts of elastane in cotton-elastane blended textiles can prevent fiber-to-fiber recycling strategies in textile recycling. Herein, the selective separation of elastane from cotton blends was addressed by the aminolytic degradation of the synthetic component. Polar aprotic solvents were tested as elastane solvents, but side reactions impeded aminolysis with some of them. Aminolysis of elastane succeeded under mild conditions using dimethyl sulfoxide in combination with diethylenetriamine and 1,5-diazabicyclo[4.3.0]non-5-ene as a cleaving agent and catalyst, respectively. The analysis of the nitrogen content in the recovered cellulose fraction demonstrated that 2 h of reaction at 80 °C reduced the elastane content to values lower than 0.08%. The characterization of the recovered cellulose showed that the applied conditions did not affect the macromolecular properties of cellulose and maintained a cellulose I crystal structure. Degraded elastane products were recovered through precipitation with water. Finally, the cellulosic component was turned into new fibers by dry-jet wet spinning with excellent tensile properties.
Collapse
Affiliation(s)
- Lorena Villar
- Department
of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - Inge Schlapp-Hackl
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Pablo B. Sánchez
- Department
of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
13
|
Bourgery C, Mendoza DJ, Garnier G, Mouterde LMM, Allais F. Immobilization of Adenosine Derivatives onto Cellulose Nanocrystals via Click Chemistry for Biocatalysis Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11315-11323. [PMID: 38394235 DOI: 10.1021/acsami.3c19025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Adenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and S-adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost. To overcome this limitation, we developed a greener synthesis of adenosine derivatives and efficiently selectively grafted them onto organic nanoparticles. In this study, cellulose nanocrystals were used as a model combined with click chemistry via a copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC). The grafted adenosine triphosphate derivative fully retains its biocatalytic capability, enabling heterobiocatalysis for modern biochemical processes.
Collapse
Affiliation(s)
- Célestin Bourgery
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Martinho LA, Rosalba TPF, Sousa GG, Gatto CC, Politi JRS, Andrade CKZ. Cyrene: a very reactive bio-based chiral ketone in diastereoselective Passerini reactions. Mol Divers 2024; 28:111-123. [PMID: 36787083 DOI: 10.1007/s11030-023-10618-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Cyrene, a green bioderived solvent from waste cellulose, was applied to the synthesis of novel α-acyloxyamide derivatives through a Passerini-3CR with carboxylic acids and isocyanides with good yields and diastereoselectivities under mild conditions. Cyrene showed exceptionally high reactivity and the degree of diastereoselection was dependent mostly on the isocyanide. DFT calculations as well as the experimental findings indicated that both kinetic and thermodynamic effects might explain the results.
Collapse
Affiliation(s)
- Luan A Martinho
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, Brasília, DF, Brazil
| | - Thaissa P F Rosalba
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, Brasília, DF, Brazil
| | - Gustavo G Sousa
- Instituto de Química, Laboratório de Química Computacional (LQC), Universidade de Brasília, Brasília, DF, Brazil
| | - Claudia C Gatto
- Instituto de Química, Laboratório de Síntese Inorgânica e Cristalografia (LASIC), Universidade de Brasília, Brasília, DF, Brazil
| | - José Roberto S Politi
- Instituto de Química, Laboratório de Química Computacional (LQC), Universidade de Brasília, Brasília, DF, Brazil
| | - Carlos Kleber Z Andrade
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
15
|
Puschnig J, Jevric M, Sumby CJ, Greatrex BW. Intermolecular Enamine Mizoroki-Heck Reactions on a Bio-Derived Scaffold. J Org Chem 2024. [PMID: 38190610 DOI: 10.1021/acs.joc.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The intramolecular enamine-Mizoroki-Heck reaction allows for the construction of nitrogen-containing heterocycles, although the related intermolecular version is less known. The reactions of enamines derived from Cyrene were investigated under Mizoroki-Heck conditions. An optimization study was used to identify that 1.5 mol % Pd(dba)2 with PCy3 in xylene at reflux temperature gave the highest yield with electron-rich aryl iodides. Arylation occurred predominantly at the C-N center of the enamine, while the diastereoselectivity was dependent on the nitrogen substitution in the enamine.
Collapse
Affiliation(s)
- Johannes Puschnig
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| | - Martyn Jevric
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005, Australia
| | - Ben W Greatrex
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
16
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
17
|
Ramos-Villaseñor JM, Sotelo-Gil J, Rodil SE, Frontana-Uribe BA. Dihydrolevoglucosenone (Cyrene™), a new possibility of an environmentally compatible solvent in synthetic organic electrochemistry. Faraday Discuss 2023; 247:182-194. [PMID: 37551421 DOI: 10.1039/d3fd00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Dihydrolevoglucosenone (DLG or Cyrene™) solvent is a green dipolar solvent produced from cellulose waste. Different studies have demonstrated that it can successfully replace dipolar solvents, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA) and N-methylpyrrolidinone (NMP), in a variety of chemical reactions. In this paper, the first application of DLG in organic electrosynthesis is described, with results of its use in the electrochemical reduction of benzophenone derivatives (ca. E = -1.75 V vs. Ag/AgCl), as a greener alternative to other dipolar solvents with environmental concerns. Conductivity measurements show that the solvent presents conductivity and viscosity limitations that can be overcome by using EtOH as a cosolvent. The DLG/EtOH mixture resulted in a convenient solvent to carry out galvanostatic electroreductions of starting materials that exhibit high potential value. Furthermore, the reaction pathway (1e- or 2e-) was found to be dependent on the supporting electrolyte used; TBABF4 favored 2e- reduction to the corresponding alcohol (52-85%), whereas LiClO4 promoted C-C pinacolic coupling (47-70%).
Collapse
Affiliation(s)
- Jose Manuel Ramos-Villaseñor
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Jessica Sotelo-Gil
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
| | - Sandra E Rodil
- Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| | - Bernardo Antonio Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UNAEM-UNAM, Toluca, 50200, Estado de México, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior. Ciudad Universitaria, Coyoacán, 04510 CDMX, Mexico
| |
Collapse
|
18
|
El Deeb S, Abdelsamad K, Parr MK. Greener and Whiter Analytical Chemistry Using Cyrene as a More Sustainable and Eco-Friendlier Mobile Phase Constituent in Chromatography. Pharmaceuticals (Basel) 2023; 16:1488. [PMID: 37895959 PMCID: PMC10609853 DOI: 10.3390/ph16101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cyrene (dihydrolevoglucosenone) was evaluated for the first time as a potential sustainable mobile phase solvent in reversed-phase chromatography. As a benign biodegradable solvent, Cyrene is an attractive replacement to classical non-green organic chromatographic solvents such as acetonitrile and a modifier, co-eluent to known green solvents such as ethanol. Compared to ethanol, Cyrene is less toxic, non-flammable, biobased, biodegradable, and a cheaper solvent. A fire safety spider chart was generated to compare the properties of Cyrene to ethanol and show its superiority as a greener solvent. Cyrene's behavior, advantages, and drawbacks in reversed-phase chromatography, including the cut-off value of 350 nm, elution power, selectivity, and effect on the column, were investigated using a model drug mixture of moxifloxacin and metronidazole. A monolithic C18 (100 × 4.6 mm) column was used as a stationary phase. Different ratios of Cyrene: ethanol with an aqueous portion of sodium acetate buffer mobile phases were tested. A mobile phase consisting of Cyrene: ethanol: 0.1 M sodium acetate buffer pH 4.25 (8:13:79, v/v/v) was selected as the most suitable mobile phase system for separating and simultaneously determining metronidazole and moxifloxacin. The greenness and whiteness of the method were evaluated using the qualitative green assessment tool AGREE and the white analytical chemistry assessment tool RGB12. Further potentials of Cyrene as a solvent or modifier in normal phase chromatography, liquid chromatography-mass spectrometry, and supercritical fluid chromatography are discussed.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | - Khalid Abdelsamad
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; (K.A.); (M.K.P.)
| |
Collapse
|
19
|
Webb DA, Alsudani Z, Xu G, Gao P, Arnold LA. Improved 2-pyridyl reductive homocoupling reaction using biorenewable solvent Cyrene™ (dihydrolevoglucosenone). RSC SUSTAINABILITY 2023; 1:1522-1529. [PMID: 38013944 PMCID: PMC10484179 DOI: 10.1039/d3su00005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/14/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of 5,5'-bis(trifluoromethyl)-2,2'-bipyridine using 2-bromo-5-(trifluoromethyl) pyridine was achieved at 50 °C using palladium acetate, tetrabutylammonium iodide (TBAI), potassium carbonate, and isopropanol in Cyrene™ (dihydrolevoglucosenone), a bio-renewable "green" solvent formed by a two-step process from cellulose. Improvements were achieved with 50% of γ-valerolactone (GVL) in Cyrene™ resulting in a 95% yield and 99% product purity without the use of column chromatography or recrystallization. At 80 °C, the reaction was completed within 1 h. Full conversion with 1 mol% instead of 15 mol% of palladium acetate was observed within 10 h. We showed that the formed 2,2'-bipyridine product significantly accelerated the reaction probably due to the stabilization of the catalytic species. The addition of TBAI was essential for the rapid homocoupling, however, 20 mol% of TBAI was sufficient to reach full conversion of 2-bromo-5-(trifluoromethyl) pyridine within 6 h at 80 °C. Another improvement was observed with the substitution of isopropanol by 1,4-butanediol achieving full conversion within 6 h. 2-Bromopyridines with electron withdrawing substituents in the 6, 5, 4 ring position reacted under these conditions. 2-Bromopyridines with an electron donating substituent reacted slower. Overall, we demonstrated that the 50% GVL in Cyrene™ blend is a superior "green" and less toxic alternative to dimethylformamide for the reductive homocoupling reaction. Using a quantitative scoring for twelve principles of green chemistry (DOZN™), we found significant improvements that were mediated by higher yield (atom economy), shorter heating time and lower reaction temperature (energy efficiency), safer solvent (hazardous chemical synthesis), and safer chemistry (accident prevention).
Collapse
Affiliation(s)
- Daniel A Webb
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee Milwaukee Wisconsin 53211 USA
| | - Zeid Alsudani
- Sigma-Aldrich Co. LLC 6000 N. Teutonia Ave. Milwaukee WI 53209 USA
| | - Guolin Xu
- Sigma-Aldrich Co. LLC 6000 N. Teutonia Ave. Milwaukee WI 53209 USA
| | - Peng Gao
- Sigma-Aldrich Co. LLC 6000 N. Teutonia Ave. Milwaukee WI 53209 USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee Milwaukee Wisconsin 53211 USA
| |
Collapse
|
20
|
Sheta SM, Hamouda MA, Ali OI, Kandil AT, Sheha RR, El-Sheikh SM. Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review. RSC Adv 2023; 13:25182-25208. [PMID: 37622006 PMCID: PMC10445089 DOI: 10.1039/d3ra04177h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The nuclear industry is rapidly developing and the effective management of nuclear waste and monitoring the nuclear fuel cycle are crucial. The presence of various radionuclides such as uranium (U), europium (Eu), technetium (Tc), iodine (I), thorium (Th), cesium (Cs), and strontium (Sr) in the environment is a major concern, and the development of materials with high adsorption capacity and selectivity is essential for their effective removal. Metal-organic frameworks (MOFs) have recently emerged as promising materials for removing radioactive elements from water resources due to their unique properties such as tunable pore size, high surface area, and chemical structure. This review provides an extensive analysis of the potential of MOFs as adsorbents for purifying various radionuclides rather than using different techniques such as precipitation, filtration, ion exchange, electrolysis, solvent extraction, and flotation. This review discusses various MOF fabrication methods, focusing on minimizing environmental impacts when using organic solvents and solvent-free methods, and covers the mechanism of MOF adsorption towards radionuclides, including macroscopic and microscopic views. It also examines the effectiveness of MOFs in removing radionuclides from wastewater, their behavior on exposure to high radiation, and their renewability and reusability. We conclude by emphasizing the need for further research to optimize the performance of MOFs and expand their use in real-world applications. Overall, this review provides valuable insights into the potential of MOFs as efficient and durable materials for removing radioactive elements from water resources, addressing a critical issue in the nuclear industry.
Collapse
Affiliation(s)
- Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre 33 El-Behouth St., Dokki Giza 12622 Egypt +201009697356
| | - Mohamed A Hamouda
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - A T Kandil
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - Reda R Sheha
- Nuclear Chem. Dept., Hot Lab Center, Egyptian Atomic Energy Authority P. O. 13759 Cairo Egypt +20-27142451 +201022316076
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute Cairo 11421 Egypt
| |
Collapse
|
21
|
Palliprath S, Poolakkalody NJ, Ramesh K, Mangalan SM, Kabekkodu SP, Santiago R, Manisseri C. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116571. [DOI: 10.1016/j.indcrop.2023.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
22
|
Thomson AL, Robinson AJ, Belgi A. Synthesis of Cystine-Stabilised Dicarba Conotoxin EpI: Ring-Closing Metathesis of Sidechain Deprotected, Sulfide-Rich Sequences. Mar Drugs 2023; 21:390. [PMID: 37504921 PMCID: PMC10381330 DOI: 10.3390/md21070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Recombinant peptide synthesis allows for large-scale production of peptides with therapeutic potential. However, access to dicarba peptidomimetics via sidechain-deprotected sequences becomes challenging with exposed Lewis basicity presented by amine and sulfur-containing residues. Presented here is a combination of strategies which can be used to deactivate coordinative residues and achieve high-yielding Ru-catalyzed ring-closing metathesis. The chemistry is exemplified using α-conotoxin EpI, a native bicyclic disulfide-containing sequence isolated from the marine conesnail Conus episcopatus. Replacement of the loop I disulfide with E/Z-dicarba bridges was achieved with high conversion via solution-phase ring-closing metathesis of the unprotected linear peptide after simple chemoselective oxidation and ion-exchange masking of problematic functionality. Metathesis was also attempted in green solvent choices to further improve the sustainability of dicarba peptide synthesis.
Collapse
Affiliation(s)
- Amy L Thomson
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Andrea J Robinson
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Minneci M, Misevicius M, Rozas I. Green Synthesis of Nitroaryl Thioureas: Towards an Improved Preparation of Guanidinium DNA Binders. Bioorg Med Chem Lett 2023; 90:129346. [PMID: 37217024 DOI: 10.1016/j.bmcl.2023.129346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
We present a general efficient green method for the preparation of nitro N,N'-diaryl thioureas via a one-pot method using cyrene as a solvent with almost quantitative yields. This confirmed the viability of cyrene as a green alternative to THF in the synthesis of thiourea derivatives. After screening different reducing conditions, the nitro N,N'-diaryl thioureas were selectively reduced using Zn dust in the presence of water and acid to the corresponding amino N,N'-diaryl thioureas. These were then used to test the installation of the Boc-protected guanidine group with N,N'-bis-Boc protected pyrazole-1-carboxamidine as a guanidylating reagent not requiring mercury(II) activation. Finally, the TFA salts obtained after Boc-deprotection of two sample compounds were tested for their affinity towards DNA showing no binding.
Collapse
Affiliation(s)
- Marco Minneci
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Matas Misevicius
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
24
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
25
|
Borova S, Luxenhofer R. Investigation of cationic ring-opening polymerization of 2-oxazolines in the "green" solvent dihydrolevoglucosenone. Beilstein J Org Chem 2023; 19:217-230. [PMID: 36895428 PMCID: PMC9989667 DOI: 10.3762/bjoc.19.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
For about the last ten years, poly(2-oxazoline)s have attracted significant attention as potential material for biomedical applications in, e.g., drug delivery systems, tissue engineering and more. Commonly, the synthesis of poly(2-oxazoline)s involves problematic organic solvents that are not ideal from a safety and sustainability point of view. In this study, we investigated the cationic ring-opening polymerization of 2-ethyl-2-oxazoline and 2-butyl-2-oxazoline using a variety of initiators in the recently commercialized "green" solvent dihydrolevoglucosenone (DLG). Detailed 1H NMR spectroscopic analysis was performed to understand the influence of the temperature and concentration on the polymerization process. Size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were performed to determine the molar mass of the resulting polymers. Our work shows clearly that the solvent is not inert under the conditions typically used for the cationic ring-opening polymerization, as evidenced by side products and limited control over the polymerization. However, we could establish that the use of the 2-ethyl-3-methyl-2-oxazolinium triflate salt as an initiator at 60 °C results in polymers with a relatively narrow molar mass distribution and a reasonable control over the polymerization process. Further work will be necessary to establish whether a living polymerization can be achieved by additional adjustments.
Collapse
Affiliation(s)
- Solomiia Borova
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilans-University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilans-University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| |
Collapse
|
26
|
Dekker T, Harteveld JW, Wágner G, de Vries MCM, Custers H, van de Stolpe AC, de Esch IJP, Wijtmans M. Green Drug Discovery: Novel Fragment Space from the Biomass-Derived Molecule Dihydrolevoglucosenone (Cyrene TM). Molecules 2023; 28:molecules28041777. [PMID: 36838763 PMCID: PMC9967789 DOI: 10.3390/molecules28041777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Biomass-derived molecules can provide a basis for sustainable drug discovery. However, their full exploration is hampered by the dominance of millions of old-fashioned screening compounds in classical high-throughput screening (HTS) libraries frequently utilized. We propose a fragment-based drug discovery (FBDD) approach as an efficient method to navigate biomass-derived drug space. Here, we perform a proof-of-concept study with dihydrolevoglucosenone (CyreneTM), a pyrolysis product of cellulose. Diverse synthetic routes afforded a 100-membered fragment library with a diversity in functional groups appended. The library overall performs well in terms of novelty, physicochemical properties, aqueous solubility, stability, and three-dimensionality. Our study suggests that Cyrene-based fragments are a valuable green addition to the drug discovery toolbox. Our findings can help in paving the way for new hit drug candidates that are based on renewable resources.
Collapse
|
27
|
Bellmann T, Thamm J, Beekmann U, Kralisch D, Fischer D. In situ Formation of Polymer Microparticles in Bacterial Nanocellulose Using Alternative and Sustainable Solvents to Incorporate Lipophilic Drugs. Pharmaceutics 2023; 15:pharmaceutics15020559. [PMID: 36839881 PMCID: PMC9958971 DOI: 10.3390/pharmaceutics15020559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bacterial nanocellulose has been widely investigated in drug delivery, but the incorporation of lipophilic drugs and controlling release kinetics still remain a challenge. The inclusion of polymer particles to encapsulate drugs could address both problems but is reported sparely. In the present study, a formulation approach based on in situ precipitation of poly(lactic-co-glycolic acid) within bacterial nanocellulose was developed using and comparing the conventional solvent N-methyl-2-pyrrolidone and the alternative solvents poly(ethylene glycol), CyreneTM and ethyl lactate. Using the best-performing solvents N-methyl-2-pyrrolidone and ethyl lactate, their fast diffusion during phase inversion led to the formation of homogenously distributed polymer microparticles with average diameters between 2.0 and 6.6 µm within the cellulose matrix. Despite polymer inclusion, the water absorption value of the material still remained at ~50% of the original value and the material was able to release 32 g/100 cm2 of the bound water. Mechanical characteristics were not impaired compared to the native material. The process was suitable for encapsulating the highly lipophilic drugs cannabidiol and 3-O-acetyl-11-keto-β-boswellic acid and enabled their sustained release with zero order kinetics over up to 10 days. Conclusively, controlled drug release for highly lipophilic compounds within bacterial nanocellulose could be achieved using sustainable solvents for preparation.
Collapse
Affiliation(s)
- Tom Bellmann
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Uwe Beekmann
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
| | - Dana Kralisch
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
- Evonik Industries AG, Rellinghauser Straße 1-11, 45128 Essen, Germany
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-29552
| |
Collapse
|
28
|
Citarella A, Amenta A, Passarella D, Micale N. Cyrene: A Green Solvent for the Synthesis of Bioactive Molecules and Functional Biomaterials. Int J Mol Sci 2022; 23:ijms232415960. [PMID: 36555601 PMCID: PMC9783252 DOI: 10.3390/ijms232415960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Arianna Amenta
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence:
| |
Collapse
|
29
|
Klepp J, Bousfield T, Cummins H, Legendre SVAM, Camp JE, Greatrex BW. Oxa-Michael-initiated cascade reactions of levoglucosenone. Beilstein J Org Chem 2022; 18:1457-1462. [PMID: 36300013 PMCID: PMC9577383 DOI: 10.3762/bjoc.18.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The reactions of aromatic aldehydes and levoglucosenone promoted by methoxide gives bridged α,β-unsaturated ketones, formed by a series of oxa-Michael-initiated cascade reactions in yields of up to 91% (14 examples). A complex series of equilibria operate during the reaction, and the formation of the bridged species is thermodynamically favored, except in the case of 5-methylfurfural and pyrrole-2-carboxaldehyde. This is the first report detailing this type of aldol/Michael cascade involving oxa-Michael initiation.
Collapse
Affiliation(s)
- Julian Klepp
- School of Rural Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Thomas Bousfield
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Hugh Cummins
- School of Rural Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Sarah V A-M Legendre
- School of Rural Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Jason E Camp
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Ben W Greatrex
- School of Rural Medicine, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
30
|
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022; 27:molecules27196701. [PMID: 36235236 PMCID: PMC9570574 DOI: 10.3390/molecules27196701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources. In the present revision, the recent application of these biobased solvents in the synthesis of optically active compounds employing different catalytic methodologies, including biocatalysis, organocatalysis and metal catalysis, will be analyzed to provide a novel tool for carrying out more ecofriendly organic processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | - Veronica Pillari
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Vittorio Pace
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Gonzalo de Gonzalo
- Department of Organic Chemistry, University of Seville, c/ Profesor García González 1, 41014 Seville, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| |
Collapse
|
31
|
|
32
|
Liu X, Pollard B, Banwell MG, Yu LJ, Coote ML, Gardiner MG, van Vugt-Lussenburg BMA, van der Burg B, Grasset FL, Campillo E, Sherwood J, Byrne FP, Farmer TJ. Simple and modestly scalable synthesis of. Aust J Chem 2022. [DOI: 10.1071/ch22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bio-derived platform molecule levoglucosenone (LGO, 1), which is the precursor to the green solvent Cyrene® (2), has been converted, at multi-gram scale, into its pseudo-enantiomer (iso-LGO, 2) and then reduced to iso-Cyrene (4). A less effective synthesis of this last compound from D-glucose is also described. Various physicochemical as well as certain toxicological properties of compound 4 are reported and compared to those established for the now commercially available Cyrene® (2). Such studies reveal that there are significant enough differences in the properties of the sustainably-derived Cyrene® (2) and isomer 4 (iso-Cyrene) to suggest they will exert complementary effects as solvents in a range of settings.
Collapse
|
33
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Francés-Poveda E, Fernández-Baeza J, Sánchez-Barba LF, Garcés A, Castro-Osma JA, Lara-Sánchez A. Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines. Polymers (Basel) 2022; 14:polym14132719. [PMID: 35808764 PMCID: PMC9269535 DOI: 10.3390/polym14132719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Nonisocyanate polyurethane materials with pending alcohol groups in the polymeric chain were synthesized by polyaddition reaction of bis(cyclic carbonates) onto diamines. For the platform molecule, 1,4-butanediol bis(glycidyl ether carbonate) (BGBC, 1) was used. The polyaddition reaction of 1 onto a wide range of diamines with different electronic and physical properties was explored. All PHUs were obtained quantitatively after 16 h at 80 °C temperature in MeCN as solvent. The low nucleophilicity of L-lysine has proven unable to ring-open the cyclic carbonate and, thus, no reaction occurred. The addition of DBU or TBD as the catalyst was tested and allows the obtention of the desired PHU. However, the presence of strong bases also led to the formation of polyurea fragments in the new PHU. The different poly(hydroxyurethane) materials were characterized using a wide range of spectroscopic techniques such as NMR, IR, MALDI-ToF, and using GPC studies. The thermal properties of the NIPUs were investigated by DSC and TGA analyses. Moreover, reactions employing different monomer ratios were performed, obtaining novel hydroxycarbamate compounds. Finally, sequential and one-pot experiments were also carried out to synthesize the PHUs polymers in one-step reaction.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.M.d.S.B.); (F.d.l.C.-M.); (E.F.-P.); (J.F.-B.)
| | - Felipe de la Cruz-Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.M.d.S.B.); (F.d.l.C.-M.); (E.F.-P.); (J.F.-B.)
| | - Enrique Francés-Poveda
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.M.d.S.B.); (F.d.l.C.-M.); (E.F.-P.); (J.F.-B.)
| | - Juan Fernández-Baeza
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.M.d.S.B.); (F.d.l.C.-M.); (E.F.-P.); (J.F.-B.)
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (L.F.S.-B.); (A.G.)
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (L.F.S.-B.); (A.G.)
| | - José A. Castro-Osma
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
- Correspondence: (J.A.C.-O.); (A.L.-S.)
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.M.d.S.B.); (F.d.l.C.-M.); (E.F.-P.); (J.F.-B.)
- Correspondence: (J.A.C.-O.); (A.L.-S.)
| |
Collapse
|
34
|
Dolzhenko AV. Synthesis of Heterocycles in Nonconventional Bio‐based Reaction Media. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Galaverna RS, Fernandes LP, Menezes da Silva VH, de Siervo A, Pastre JC. Humins‐Like Solid Support for Palladium Immobilization: Highly Efficient and Recyclable Catalyst for Cross‐Coupling Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Renan S. Galaverna
- State University of Campinas: Universidade Estadual de Campinas Chemistry BRAZIL
| | - Lucas P. Fernandes
- State University of Campinas: Universidade Estadual de Campinas Chemistry BRAZIL
| | | | - Abner de Siervo
- State University of Campinas: Universidade Estadual de Campinas Physics BRAZIL
| | - Julio Cezar Pastre
- University of Campinas Organic Chemistry Rua Monteiro Lobatos/n 13083-970 Campinas BRAZIL
| |
Collapse
|
36
|
Palà M, Woods SE, Hatton FL, Lligadas G. RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Palà
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| | - Sarah E. Woods
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Fiona L. Hatton
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| |
Collapse
|
37
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
38
|
Saragai S, Kudo S, Sperry J, Ashik UPM, Asano S, Hayashi JI. Catalytic deep eutectic solvent for levoglucosenone production by pyrolysis of cellulose. BIORESOURCE TECHNOLOGY 2022; 344:126323. [PMID: 34785333 DOI: 10.1016/j.biortech.2021.126323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
This work presents the selective production of the versatile bio-based platform levoglucosenone (LGO) using deep eutectic solvents (DESs) as catalysts during cellulose pyrolysis. Among 18 types of DESs examined, those containing p-toluenesulfonic acid as a hydrogen bond donor possessed the requisite thermal stability for use in the pyrolysis of cellulose. When those DESs were combined with cellulose, the pyrolysis temperature could be reduced which led to greater selectivity for LGO, the highest yield being 41.5% on a carbon basis. Because of their thermal stability, the DESs could be recovered from the pyrolysis residue and reused. The DESs recovery reached 97.9% in the pyrolysis at a low temperature with the LGO yield of 14.0%. Thus, DES-assisted cellulose pyrolysis is a promising methodology for LGO production.
Collapse
Affiliation(s)
- Shouya Saragai
- Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Kudo
- Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka 816-8580, Japan; Institute for Materials Chemistry and Engineering, Kasuga, Fukuoka 816-8580, Japan; Transdisciplinary Research and Education Center of Green Technology, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
| | - Jonathan Sperry
- Center for Green Chemical Science, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - U P M Ashik
- Institute for Materials Chemistry and Engineering, Kasuga, Fukuoka 816-8580, Japan
| | - Shusaku Asano
- Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka 816-8580, Japan; Institute for Materials Chemistry and Engineering, Kasuga, Fukuoka 816-8580, Japan
| | - Jun-Ichiro Hayashi
- Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka 816-8580, Japan; Institute for Materials Chemistry and Engineering, Kasuga, Fukuoka 816-8580, Japan; Transdisciplinary Research and Education Center of Green Technology, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
39
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
40
|
Winterton N. The green solvent: a critical perspective. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2021; 23:2499-2522. [PMID: 34608382 PMCID: PMC8482956 DOI: 10.1007/s10098-021-02188-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Solvents are important in most industrial and domestic applications. The impact of solvent losses and emissions drives efforts to minimise them or to avoid them completely. Since the 1990s, this has become a major focus of green chemistry, giving rise to the idea of the 'green' solvent. This concept has generated a substantial chemical literature and has led to the development of so-called neoteric solvents. A critical overview of published material establishes that few new materials have yet found widespread use as solvents. The search for less-impacting solvents is inefficient if carried out without due regard, even at the research stage, to the particular circumstances under which solvents are to be used on the industrial scale. Wider sustainability questions, particularly the use of non-fossil sources of organic carbon in solvent manufacture, are more important than intrinsic 'greenness'. While solvency is universal, a universal solvent, an alkahest, is an unattainable ideal. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10098-021-02188-8.
Collapse
Affiliation(s)
- Neil Winterton
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD UK
| |
Collapse
|
41
|
Chemical Modification of Glycosaminoglycan Polysaccharides. Molecules 2021; 26:molecules26175211. [PMID: 34500644 PMCID: PMC8434129 DOI: 10.3390/molecules26175211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.
Collapse
|
42
|
Milescu RA, Zhenova A, Vastano M, Gammons R, Lin S, Lau CH, Clark JH, McElroy CR, Pellis A. Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. CHEMSUSCHEM 2021; 14:3367-3381. [PMID: 34219405 PMCID: PMC8457101 DOI: 10.1002/cssc.202101125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
This study explores a binary solvent system composed of biobased Cyrene and its derivative Cygnet 0.0 for application in membrane technology and in biocatalytic synthesis of polyesters. Cygnet-Cyrene blends could represent viable replacements for toxic polar aprotic solvents. The use of a 50 wt % Cygnet-Cyrene mixture makes a practical difference in the production of flat sheet membranes by nonsolvent-induced phase separation. New polymeric membranes from cellulose acetate, polysulfone, and polyimide are manufactured by using Cyrene, Cygnet 0.0, and their blend. The resultant membranes have different morphology when the solvent/mixture and temperature of the casting solution change. Moreover, Cyrene, Cygnet 0.0, and Cygnet-Cyrene are also explored for substituting diphenyl ether for the biocatalytic synthesis of polyesters. The results indicate that Cygnet 0.0 is a very promising candidate for the enzymatic synthesis of high molecular weight polyesters.
Collapse
Affiliation(s)
- Roxana A. Milescu
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Anna Zhenova
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Green Rose, The CatalystBaird Lane, HeslingtonYorkYO10 5GAUnited Kingdom
| | - Marco Vastano
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Richard Gammons
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Shiliang Lin
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - Cher Hon Lau
- School of EngineeringThe University of EdinburghRobert Stevenson RoadEdinburghEH9 3JLUnited Kingdom
| | - James H. Clark
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Con R. McElroy
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
| | - Alessandro Pellis
- Department of ChemistryGreen Chemistry Centre of ExcellenceUniversity of York, HeslingtonYorkYO10 5DDUnited Kingdom
- Department of Agrobiotechnology, Institute of Environmental BiotechnologyUniversity of Natural Resources and Life SciencesKonrad Lorenz Strasse 203430Tulln an der DonauAustria
| |
Collapse
|
43
|
Russo F, Marino T, Galiano F, Gzara L, Gordano A, Organji H, Figoli A. Tamisolve ® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers (Basel) 2021; 13:polym13152579. [PMID: 34372182 PMCID: PMC8347625 DOI: 10.3390/polym13152579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023] Open
Abstract
Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility parameters, the gel transition temperature and the viscosity of the polymer-solvent system, confirmed the power of the solvent to solubilize PVDF polymer for membranes preparation. The role of polyvinylpyrrolidone (PVP) and/or poly(ethylene glycol) (PEG), as pore former agents in the dope solution, was studied along with different polymer concentrations (10 wt%, 15 wt% and 18 wt%). The produced membranes were then characterized in terms of morphology, thickness, porosity, contact angle, atomic force microscopy (AFM) and infrared spectroscopy (ATR-FTIR). Pore size measurements, pore size distribution and water permeability (PWP) tests placed the developed membranes in the ultrafiltration (UF) and microfiltration (MF) range. Finally, PVDF membrane performances were investigated in terms of rejection (%) and permeability recovery ratio (PRR) using methylene blue (MB) in water solution to assess their potential application in separation and purification processes.
Collapse
Affiliation(s)
- Francesca Russo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Tiziana Marino
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| | - Francesco Galiano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Amalia Gordano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Hussam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Alberto Figoli
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| |
Collapse
|
44
|
Yin X, Wei L, Pan X, Liu C, Jiang J, Wang K. The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. FRONTIERS IN PLANT SCIENCE 2021; 12:670061. [PMID: 34168668 PMCID: PMC8218942 DOI: 10.3389/fpls.2021.670061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 06/02/2023]
Abstract
Converting agriculture and forestry lignocellulosic residues into high value-added liquid fuels (ethanol, butanol, etc.), chemicals (levulinic acid, furfural, etc.), and materials (aerogel, bioresin, etc.) via a bio-refinery process is an important way to utilize biomass energy resources. However, because of the dense and complex supermolecular structure of lignocelluloses, it is difficult for enzymes and chemical reagents to efficiently depolymerize lignocelluloses. Strikingly, the compact structure of lignocelluloses could be effectively decomposed with a proper pretreatment technology, followed by efficient separation of cellulose, hemicellulose and lignin, which improves the conversion and utilization efficiency of lignocelluloses. Based on a review of traditional pretreatment methods, this study focuses on the discussion of pretreatment process with recyclable and non-toxic/low-toxic green solvents, such as polar aprotic solvents, ionic liquids, and deep eutectic solvents, and provides an outlook of the industrial application prospects of solvent pretreatment.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Linshan Wei
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Xueyuan Pan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Chao Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| |
Collapse
|
45
|
Tamargo RJI, Rubio PYM, Mohandoss S, Shim JJ, Lee YR. Cyrene™ as a Neoteric Bio-Based Solvent for Catalyst-Free Microwave-Assisted Construction of Diverse Bipyridine Analogues for Heavy-Metal Sensing. CHEMSUSCHEM 2021; 14:2133-2140. [PMID: 33780600 DOI: 10.1002/cssc.202100379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
An environment-friendly synthetic protocol was developed to access polyfunctionalized bipyridines from readily available amines, chromone-3-carboxaldehydes, and pyridinylacetonitriles under catalyst- and additive-free conditions using the bio-renewable neoteric solvent dihydrolevoglucosenone (Cyrene™). In this strategy, amines served as both a mild-base promoter and a substrate. In addition, water was the only by-product of this reaction. This multi-component protocol provided highly diverse 2,3-, 3,3-, and 3,4-bipyridines in good-to-excellent yields. Operational simplicity, short reaction time, excellent atom economy, and easily obtainable substrates are among the features of this microwave-assisted synthesis. Additionally, the compounds synthesized via this method have demonstrated the ability to detect heavy metals, specifically mercury(II), copper(II), and iron (III) ions.
Collapse
Affiliation(s)
- Ramuel John Inductivo Tamargo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Advanced Materials and Organic Synthesis Laboratory, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
46
|
Marshall JE, Zhenova A, Roberts S, Petchey T, Zhu P, Dancer CEJ, McElroy CR, Kendrick E, Goodship V. On the Solubility and Stability of Polyvinylidene Fluoride. Polymers (Basel) 2021; 13:1354. [PMID: 33919116 PMCID: PMC8122610 DOI: 10.3390/polym13091354] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
This literature review covers the solubility and processability of fluoropolymer polyvinylidine fluoride (PVDF). Fluoropolymers consist of a carbon backbone chain with multiple connected C-F bonds; they are typically nonreactive and nontoxic and have good thermal stability. Their processing, recycling and reuse are rapidly becoming more important to the circular economy as fluoropolymers find widespread application in diverse sectors including construction, automotive engineering and electronics. The partially fluorinated polymer PVDF is in strong demand in all of these areas; in addition to its desirable inertness, which is typical of most fluoropolymers, it also has a high dielectric constant and can be ferroelectric in some of its crystal phases. However, processing and reusing PVDF is a challenging task, and this is partly due to its limited solubility. This review begins with a discussion on the useful properties and applications of PVDF, followed by a discussion on the known solvents and diluents of PVDF and how it can be formed into membranes. Finally, we explore the limitations of PVDF's chemical and thermal stability, with a discussion on conditions under which it can degrade. Our aim is to provide a condensed overview that will be of use to both chemists and engineers who need to work with PVDF.
Collapse
Affiliation(s)
- Jean E. Marshall
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, UK; (S.R.); (P.Z.); (C.E.J.D.); (V.G.)
| | - Anna Zhenova
- Department of Chemistry, University of York, York YO10 5DD, UK; (A.Z.); (T.P.); (C.R.M.)
| | - Samuel Roberts
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, UK; (S.R.); (P.Z.); (C.E.J.D.); (V.G.)
| | - Tabitha Petchey
- Department of Chemistry, University of York, York YO10 5DD, UK; (A.Z.); (T.P.); (C.R.M.)
| | - Pengcheng Zhu
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, UK; (S.R.); (P.Z.); (C.E.J.D.); (V.G.)
| | - Claire E. J. Dancer
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, UK; (S.R.); (P.Z.); (C.E.J.D.); (V.G.)
| | - Con R. McElroy
- Department of Chemistry, University of York, York YO10 5DD, UK; (A.Z.); (T.P.); (C.R.M.)
| | - Emma Kendrick
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Vannessa Goodship
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, UK; (S.R.); (P.Z.); (C.E.J.D.); (V.G.)
| |
Collapse
|
47
|
Banwell MG, Pollard B, Liu X, Connal LA. Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chem Asian J 2021; 16:604-620. [PMID: 33463003 DOI: 10.1002/asia.202001451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Indexed: 12/16/2022]
Abstract
The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.
Collapse
Affiliation(s)
- Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou/Zhuhai, 510632/519070, P. R. China.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Brett Pollard
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
48
|
Grune C, Thamm J, Werz O, Fischer D. Cyrene™ as an Alternative Sustainable Solvent for the Preparation of Poly(lactic-co-glycolic acid) Nanoparticles. J Pharm Sci 2020; 110:959-964. [PMID: 33275992 DOI: 10.1016/j.xphs.2020.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Toxic and environmental harmful organic solvents are widely applied to prepare poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NP) in standard preparation methods. Alternative non-toxic solvents suffer from disadvantages like high viscosity and plasticizing effects. To overcome these hurdles, Cyrene™ as a new sustainable, non-toxic and low viscous solvent was used to formulate PLGA NPs. A new preparation method was developed and optimized. Small sized blank NPs around 220 nm with a narrow size distribution and highly negative charge (<-23 mV) were obtained. To test the application for drug delivery, the lipophilic model drug atorvastatin was encapsulated in high drug loads with comparable physicochemical characteristics as the blank NPs, and a total drug release within 24 h. No changes of the crystallinity or plasticizing effects could be observed. Highly purified NPs were obtained with a residual Cyrene™ content <2.5%. Finally, the biocompatibility of Cyrene™ itself and of the NPs formed in the presence of Cyrene™ was demonstrated in a hen's egg test. Conclusively, the use of Cyrene™ as solvent offers a simple, fast and non-toxic procedure for preparation of PLGA NPs as drug delivery systems circumventing the downsides of standard methods.
Collapse
Affiliation(s)
- Christian Grune
- Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| | - Oliver Werz
- Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
49
|
Schultze C, Foß S, Schmidt B. 8‐Prenylflavanones through Microwave Promoted Tandem Claisen Rearrangement/6‐
endo
‐trig Cyclization and Cross Metathesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christiane Schultze
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Stefan Foß
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| |
Collapse
|
50
|
|