1
|
Liang Y, Qiao L, Qian Q, Zhang R, Li Y, Xu X, Xu Z, Bu Q, Wang H, Li X, Huang T, Zhou J, Lu L, Chen Q. Integrated single-cell and spatial transcriptomic profiling reveals that CD177 + Tregs enhance immunosuppression through apoptosis and resistance to immunotherapy in hepatocellular carcinoma. Oncogene 2025; 44:1578-1591. [PMID: 40055567 DOI: 10.1038/s41388-025-03330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 05/23/2025]
Abstract
Regulatory T cells (Tregs), an immunosuppressive subpopulation of CD4+ T cells, are prevalent in tumor tissues, where they impede effective antitumor immune responses and represent potential targets for immunotherapy. However, targeting tumor-infiltrating Treg cells (TiTregs) remains challenging. In this study, we identified CD177 as a biomarker specifically expressed in TiTregs but not in adjacent or peripheral Treg cells through single-cell transcriptome sequencing combined with a stringent screening strategy. These CD177+ TiTregs exhibited distinct transcriptional profiles characterized by enhanced immunosuppressive capabilities and were correlated with poor patient prognosis. Mechanistically, the apoptosis-related transcription factor REL drove the differentiation of CD177+ TiTregs, accompanied by apoptosis and enhanced immunosuppression. Furthermore, using a CD177 Treg conditional knockout mouse model, we demonstrated that inhibiting CD177 in Tregs significantly impaired their immunosuppressive function and inhibited the progression of hepatocellular carcinoma (HCC) in vitro. Our results underscore the critical role of CD177+ TiTregs in cancer immunology and highlight their potential as novel therapeutic targets in HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Humans
- Apoptosis/immunology
- Apoptosis/genetics
- Mice
- Single-Cell Analysis/methods
- Immunotherapy/methods
- Gene Expression Profiling/methods
- Transcriptome
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/immunology
- Mice, Knockout
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/immunology
- Immune Tolerance
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Drug Resistance, Neoplasm/genetics
- Isoantigens
Collapse
Affiliation(s)
- Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaozhang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China.
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Qiuyang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Marshall L, Raychaudhuri S, Viatte S. Understanding rheumatic disease through continuous cell state analysis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01253-6. [PMID: 40335652 DOI: 10.1038/s41584-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Autoimmune rheumatic diseases are a heterogeneous group of conditions, including rheumatoid arthritis (RA) and systemic lupus erythematosus. With the increasing availability of large single-cell datasets, novel disease-associated cell types continue to be identified and characterized at multiple omics layers, for example, 'T peripheral helper' (TPH) (CXCR5- PD-1hi) cells in RA and systemic lupus erythematosus and MerTK+ myeloid cells in RA. Despite efforts to define disease-relevant cell atlases, the very definition of a 'cell type' or 'lineage' has proven controversial as higher resolution assays emerge. This Review explores the cell types and states involved in disease pathogenesis, with a focus on the shifting perspectives on immune and stromal cell taxonomy. These understandings of cell identity are closely related to the computational methods adopted for analysis, with implications for the interpretation of single-cell data. Understanding the underlying cellular architecture of disease is also crucial for therapeutic research as ambiguity hinders translation to the clinical setting. We discuss the implications of different frameworks for cell identity for disease treatment and the discovery of predictive biomarkers for stratified medicine - an unmet clinical need for autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Lysette Marshall
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Soumya Raychaudhuri
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology, Inflammation and Immunity and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Mikulak J, Terzoli S, Marzano P, Cazzetta V, Martiniello G, Piazza R, Viano ME, Vitobello D, Portuesi R, Grizzi F, Hegazi MAAA, Fiamengo B, Basso G, Parachini L, Mannarino L, D'Incalci M, Marchini S, Mavilio D. Immune evasion mechanisms in early-stage I high-grade serous ovarian carcinoma: insights into regulatory T cell dynamics. Cell Death Dis 2025; 16:229. [PMID: 40164596 PMCID: PMC11958665 DOI: 10.1038/s41419-025-07557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
The mechanisms driving immune evasion in early-stage I high-grade serous ovarian carcinoma (HGSOC) remain poorly understood. To investigate this, we performed single-cell RNA-sequencing analysis. Our findings revealed a highly immunosuppressive HGSOC microenvironment, characterized by abundant infiltration of regulatory T cells (Tregs). Trajectory analysis uncovered differentiation pathways of naïve Tregs, which underwent either activation and proliferation or transcriptional instability. The predicted Treg-cell interaction network, including crosstalk within tumor cells, facilitates Treg mobility and maturation while reinforcing their immunosuppressive function and persistence in the tumor. Moreover, their interactions with immune cells likely inhibit CD8 T cells and antigen-presenting cells, supporting tumor immune escape. Additionally, more immunogenic tumor conditions, marked by IFNγ production, may contribute to Treg destabilization. Our findings underscore the pivotal role of Tregs in early immune evasion of HGSOC and provide insights into potential therapeutic strategies targeting their activity and differentiation fate.
Collapse
Affiliation(s)
- Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giampaolo Martiniello
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Maria Estefania Viano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Vitobello
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rosalba Portuesi
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Fiamengo
- Unit of Pathological Anatomy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gianluca Basso
- Humanitas Genomic Facility, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lara Parachini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Attrill MH, Shinko D, Viveiros TM, Milighetti M, de Gruijter NM, Jebson B, Kartawinata M, Rosser EC, Wedderburn LR, Pesenacker AM. Treg fitness signatures as a biomarker for disease activity in Juvenile Idiopathic Arthritis. J Autoimmun 2025; 152:103379. [PMID: 39954509 DOI: 10.1016/j.jaut.2025.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Juvenile Idiopathic Arthritis (JIA) is an autoimmune condition characterised by flares of joint inflammation. However, no reliable biomarker exists to predict the erratic disease course. Normally, regulatory T cells (Tregs) maintain tolerance, with altered Tregs associated with autoimmunity. Treg signatures have shown promise in monitoring other conditions, therefore a Treg gene/protein signature could offer novel biomarker potential for predicting disease activity in JIA. Machine learning on our nanoString Treg 48-gene signature on peripheral blood (PB) Tregs generated a model to distinguish active JIA (active joint count, AJC≥1) Tregs from healthy controls (HC, AUC = 0.9875 on test data). Biomarker scores from this model successfully differentiated inactive (AJC = 0) from active JIA PB Tregs. Moreover, scores correlated with clinical activity scores (cJADAS), and discriminated subclinical disease (AJC = 0, cJADAS≥0.5) from remission (cJADAS<0.5). To investigate altered protein expression as a surrogate measure for Treg fitness in JIA, we utilised spectral flow cytometry and unbiased clustering analysis. Three Treg clusters were of interest in active JIA PB, including TIGIThighCD226highCD25low Teff-like Tregs, CD39-TNFR2-Helioshigh, and a 4-1BBlowTIGITlowID2intermediate Treg cluster predominated in inactive JIA PB (AJC = 0). The ratio of these Treg clusters correlated to cJADAS, and higher ratios could potentially predict inactive individuals that flared by 9-month follow-up. Thus, we demonstrate altered Treg signatures and subsets as an important factor, and useful biomarker, for disease progression versus remission in JIA, revealing genes and proteins contributing to Treg fitness. Ultimately, PB Treg fitness measures could serve as routine biomarkers to guide disease and treatment management to sustain remission in JIA.
Collapse
Affiliation(s)
- Meryl H Attrill
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK; Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK
| | - Diana Shinko
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK
| | - Telma Martins Viveiros
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK
| | - Martina Milighetti
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK; Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; Division of Medicine, UCL, London, WC1E 6JF, UK
| | - Bethany Jebson
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK
| | - Melissa Kartawinata
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; Division of Medicine, UCL, London, WC1E 6JF, UK
| | - Lucy R Wedderburn
- Infection, Immunity & Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK; Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, WC1E 6JF, UK; NIHR Biomedical Research Centre at GOSH, London, WC1N 1EH, UK
| | - Anne M Pesenacker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, London, NW3 2PP, UK.
| |
Collapse
|
5
|
Ren J, Zhou Y, Hu Y, Yang J, Fang H, Lyu X, Guo J, Shi X, Li Q. A model-based factorization method for scRNA data unveils bifurcating transcriptional modules underlying cell fate determination. eLife 2025; 13:RP97424. [PMID: 39907554 PMCID: PMC11798574 DOI: 10.7554/elife.97424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.
Collapse
Affiliation(s)
- Jun Ren
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamenChina
- School of Informatics, Xiamen University, XiamenXiamenChina
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamenChina
| | - Yudi Hu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
| | - Jing Yang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongkun Fang
- Department of Scientific Research Management, Weifang People’s Hospital, Shandong Second Medical UniversityWeifangChina
| | - Xuejing Lyu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
| | - Jintao Guo
- Department of Scientific Research Management, Weifang People’s Hospital, Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Shi
- School of Informatics, Xiamen University, XiamenXiamenChina
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen UniversityXiamenChina
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
6
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
7
|
Gurram RK, Li P, Oh J, Chen X, Spolski R, Yao X, Lin JX, Roy S, Liao MJ, Liu C, Yu ZX, Levine SJ, Zhu J, Leonard WJ. TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation. Sci Immunol 2025; 10:eadk0073. [PMID: 39792638 DOI: 10.1126/sciimmunol.adk0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (Teffs), which drive the immune response, and regulatory T cells (Tregs), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on Teffs versus Tregs to balance type 2 immunity. As expected, deletion of TSLP receptor (TSLPR) on all T cells (Cd4CreCrlf2fl/fl mice) resulted in lower numbers of T helper 2 (TH2) cells and diminished ovalbumin-induced airway inflammation, but selective deletion of TSLPR on Tregs (Foxp3YFP-Cre/YCrlf2fl/fl mice) resulted in increased interleukin-5 (IL-5)- and IL-13-secreting TH2 cells and lung eosinophilia. Moreover, TSLP augmented the expression of factors that stabilize Tregs. During type 2 immune responses, TSLPR-deficient Tregs acquired TH2-like properties, with augmented GATA3 expression and secretion of IL-13. TSLP not only is a driver of TH2 effector cells but also acts in a negative feedback loop, thus promoting the ability of Tregs to limit allergic inflammation.
Collapse
Affiliation(s)
- Rama K Gurram
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suyasha Roy
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Matthew J Liao
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Attrill MH, Shinko D, Alexiou V, Kartawinata M, Wedderburn LR, Pesenacker AM. The immune landscape of the inflamed joint defined by spectral flow cytometry. Clin Exp Immunol 2024; 218:221-241. [PMID: 39101538 PMCID: PMC11557149 DOI: 10.1093/cei/uxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024] Open
Abstract
Cellular phenotype and function are altered in different microenvironments. For targeted therapies it is important to understand site-specific cellular adaptations. Juvenile idiopathic arthritis (JIA) is characterized by autoimmune joint inflammation, with frequent inadequate treatment responses. To comprehensively assess the inflammatory immune landscape, we designed a 37-parameter spectral flow cytometry panel delineating mononuclear cells from JIA synovial fluid (SF) of autoimmune inflamed joints, compared to JIA and healthy control blood. Synovial monocytes and NK cells (CD56bright) lack Fc-receptor CD16, suggesting antibody-mediated targeting may be ineffective. B cells and DCs, both in small frequencies in SF, undergo maturation with high 4-1BB, CD71, CD39 expression, supporting T-cell activation. SF effector and regulatory T cells were highly active with newly described co-receptor combinations that may alter function, and suggestion of metabolic reprogramming via CD71, TNFR2, and PD-1. Most SF effector phenotypes, as well as an identified CD4-Foxp3+ T-cell population, were restricted to the inflamed joint, yet specific SF-predominant CD4+ Foxp3+ Treg subpopulations were increased in blood of active but not inactive JIA, suggesting possible recirculation and loss of immunoregulation at distal sites. This first comprehensive dataset of the site-specific inflammatory landscape at protein level will inform functional studies and the development of targeted therapeutics to restore immunoregulatory balance and achieve remission in JIA.
Collapse
Affiliation(s)
- Meryl H Attrill
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity, and Inflammation Research and Teaching Department, University College London, London, UK
| | - Diana Shinko
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Vicky Alexiou
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity, and Inflammation Research and Teaching Department, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, UK
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Melissa Kartawinata
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity, and Inflammation Research and Teaching Department, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, UK
| | - Lucy R Wedderburn
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity, and Inflammation Research and Teaching Department, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
| | - Anne M Pesenacker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
10
|
Pant A, Jain A, Chen Y, Patel K, Saleh L, Tzeng S, Nitta RT, Zhao L, Wu CYJ, Bederson M, Wang WL, Bergsneider BHL, Choi J, Medikonda R, Verma R, Cho KB, Kim LH, Kim JE, Yazigi E, Lee SY, Rajendran S, Rajappa P, Mackall CL, Li G, Tyler B, Brem H, Pardoll DM, Lim M, Jackson CM. The CCR6-CCL20 Axis Promotes Regulatory T-cell Glycolysis and Immunosuppression in Tumors. Cancer Immunol Res 2024; 12:1542-1558. [PMID: 39133127 DOI: 10.1158/2326-6066.cir-24-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity toward CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wild-type mice and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyun Chen
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephany Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Liang Zhao
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Maria Bederson
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - William Lee Wang
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | | | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Ravi Medikonda
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Jennifer E Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Sakthi Rajendran
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Prajwal Rajappa
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Yoshitomi H. Peripheral helper T cells, mavericks of peripheral immune responses. Int Immunol 2024; 36:9-16. [PMID: 37788648 PMCID: PMC10823579 DOI: 10.1093/intimm/dxad041] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
Abstract
Peripheral helper T (Tph) cells have been established, through intensive efforts to elucidate local immune responses in human rheumatoid arthritis (RA), as a CD4 subset intimately involved in acquired immunity in peripheral tissues. Initially, Tph cells were noted as a CD4 population that produces high levels of CXCL13 in RA synovial tissues, followed by a demonstration of their ability to help B cells. In contrast to follicular helper T (Tfh) cells, Tph cells do not express the transcription factor BCL6 but express molecules such as CXCL13, interleukin (IL)-21, and inducible T-cell costimulator (ICOS) to help B cells in peripheral tissues. Subsequent studies showed that Tph cells are associated with various diseases, including autoimmune diseases, infections, and malignancies, and with the development of early life immunity. This review summarizes the phenotype and function of Tph cells in RA and discusses their differentiation and diversity in various conditions.
Collapse
Affiliation(s)
- Hiroyuki Yoshitomi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Li Q, Yuan Z, Bahabayi A, Zhang Z, Zeng X, Kang R, Xu Q, Guan Z, Wang P, Liu C. Upregulation of CX3CR1 expression in circulating T cells of systemic lupus erythematosus patients as a reflection of autoimmune status through characterization of cytotoxic capacity. Int Immunopharmacol 2024; 126:111231. [PMID: 38016349 DOI: 10.1016/j.intimp.2023.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.
Collapse
Affiliation(s)
- Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qinzhu Xu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Mazzoni A, Annunziato F, Maggi L. T lymphocytes-related cell network in the pathogenesis of juvenile idiopathic arthritis: a key point for personalized treatment. Curr Opin Rheumatol 2024; 36:40-45. [PMID: 37905987 DOI: 10.1097/bor.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Juvenile idiopathic arthritis (JIA) is a heterogeneous group of arthritis of unknown origin occurring in children under 16 years of age and persisting for at least 6 weeks. Given that JIA is an inflammatory disorder, treatment strategies, including also biologicals, are focused on suppressing excessive inflammation. The finding that different patients display different responses to biological drugs supports the concept that different pathogenic mechanisms can exist in JIA, with specific cellular and molecular mechanisms driving inflammation in each patient. The aim of this review is to highlight the most recent advances in understanding the role of immune cells in JIA pathogenesis. RECENT FINDINGS This review encompasses the role of the different cell subsets involved in sustaining inflammation in JIA, with a particular emphasis on T cells, as they orchestrate both innate and adaptive auto-reactive immunity in affected joints. SUMMARY The characterization of the cellular and molecular pathways supporting inflammation will be crucial to design novel therapeutic approaches in the context of personalized medicine.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence
- Flow cytometry diagnostic center and immunotherapy, Careggi University Hospital, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence
- Flow cytometry diagnostic center and immunotherapy, Careggi University Hospital, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence
| |
Collapse
|
15
|
Harjacek M. Role of regulatory T cells in pathogenesis and therapeutics of spondyloarthritis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:165-196. [DOI: 10.1016/b978-0-443-13947-5.00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Nijhuis L, Swart JF, Prakken BJ, van Loosdregt J, Vastert SJ. The clinical and experimental treatment of Juvenile Idiopathic Arthritis. Clin Exp Immunol 2023; 213:276-287. [PMID: 37074076 PMCID: PMC10571000 DOI: 10.1093/cei/uxad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children and comprises of multiple subtypes. The most relevant disease subtypes, grouped upon current insight in disease mechanisms, are nonsystemic (oligo- and polyarticular) JIA and systemic JIA (sJIA). In this review, we summarize some of the main proposed mechanisms of disease in both nonsystemic and sJIA and discuss how current therapeutic modalities target some of the pathogenic immune pathways. Chronic inflammation in nonsystemic JIA is the result of a complex interplay between effector and regulatory immune cell subsets, with adaptive immune cells, specifically T-cell subsets and antigen-presenting cells, in a central role. There is, however, also innate immune cell contribution. SJIA is nowadays recognized as an acquired chronic inflammatory disorder with striking autoinflammatory features in the first phase of the disease. Some sJIA patients develop a refractory disease course, with indications for involvement of adaptive immune pathways as well. Currently, therapeutic strategies are directed at suppressing effector mechanisms in both non-systemic and sJIA. These strategies are often not yet optimally tuned nor timed to the known active mechanisms of disease in individual patients in both non-systemic and sJIA. We discuss current treatment strategies in JIA, specifically the 'Step-up' and 'Treat to Target approach' and explore how increased insight into the biology of disease may translate into future more targeted strategies for this chronic inflammatory disease at relevant time points: preclinical disease, active disease, and clinically inactive disease.
Collapse
Affiliation(s)
- L Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Swart
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - B J Prakken
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - J van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - S J Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Cheru N, Hafler DA, Sumida TS. Regulatory T cells in peripheral tissue tolerance and diseases. Front Immunol 2023; 14:1154575. [PMID: 37197653 PMCID: PMC10183596 DOI: 10.3389/fimmu.2023.1154575] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.
Collapse
Affiliation(s)
- Nardos Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Tomokazu S. Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Tseng WY, Stacey M, Lin HH. Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int J Mol Sci 2023; 24:ijms24065499. [PMID: 36982575 PMCID: PMC10055975 DOI: 10.3390/ijms24065499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders of the immune system, including immunodeficiency, immuno-malignancy, and (auto)inflammatory, autoimmune, and allergic diseases, have a great impact on a host’s health. Cellular communication mediated through cell surface receptors, among different cell types and between cell and microenvironment, plays a critical role in immune responses. Selective members of the adhesion G protein-coupled receptor (aGPCR) family are expressed differentially in diverse immune cell types and have been implicated recently in unique immune dysfunctions and disorders in part due to their dual cell adhesion and signaling roles. Here, we discuss the molecular and functional characteristics of distinctive immune aGPCRs and their physiopathological roles in the immune system.
Collapse
Affiliation(s)
- Wen-Yi Tseng
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hsi-Hsien Lin
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|