1
|
Tabrik S, Dinse HR, Tegenthoff M, Behroozi M. Resting-State Network Plasticity Following Category Learning Depends on Sensory Modality. Hum Brain Mapp 2024; 45:e70111. [PMID: 39720915 PMCID: PMC11669188 DOI: 10.1002/hbm.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/26/2024] Open
Abstract
Learning new categories is fundamental to cognition, occurring in daily life through various sensory modalities. However, it is not well known how acquiring new categories can modulate the brain networks. Resting-state functional connectivity is an effective method for detecting short-term brain alterations induced by various modality-based learning experiences. Using fMRI, our study investigated the intricate link between novel category learning and brain network reorganization. Eighty-four adults participated in an object categorization experiment utilizing visual (n = 41, with 20 females and a mean age of 23.91 ± 3.11 years) or tactile (n = 43, with 21 females and a mean age of 24.57 ± 2.58 years) modalities. Resting-state networks (RSNs) were identified using independent component analysis across the group of participants, and their correlation with individual differences in object category learning across modalities was examined using dual regression. Our results reveal an increased functional connectivity of the frontoparietal network with the left superior frontal gyrus in visual category learning task and with the right superior occipital gyrus and the left middle temporal gyrus after tactile category learning. Moreover, the somatomotor network demonstrated an increased functional connectivity with the left parahippocampus exclusively after tactile category learning. These findings illuminate the neural mechanisms of novel category learning, emphasizing distinct brain networks' roles in diverse modalities. The dynamic nature of RSNs emphasizes the ongoing adaptability of the brain, which is essential for efficient novel object category learning. This research provides valuable insights into the dynamic interplay between sensory learning, brain plasticity, and network reorganization, advancing our understanding of cognitive processes across different modalities.
Collapse
Affiliation(s)
- Sepideh Tabrik
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Hubert R. Dinse
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Martin Tegenthoff
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr University BochumBochumGermany
| | - Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
2
|
Wang G, Alais D. Tactile adaptation to orientation produces a robust tilt aftereffect and exhibits crossmodal transfer when tested in vision. Sci Rep 2024; 14:10164. [PMID: 38702338 PMCID: PMC11068783 DOI: 10.1038/s41598-024-60343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Orientation processing is one of the most fundamental functions in both visual and somatosensory perception. Converging findings suggest that orientation processing in both modalities is closely linked: somatosensory neurons share a similar orientation organisation as visual neurons, and the visual cortex has been found to be heavily involved in tactile orientation perception. Hence, we hypothesized that somatosensation would exhibit a similar orientation adaptation effect, and this adaptation effect would be transferable between the two modalities, considering the above-mentioned connection. The tilt aftereffect (TAE) is a demonstration of orientation adaptation and is used widely in behavioural experiments to investigate orientation mechanisms in vision. By testing the classic TAE paradigm in both tactile and crossmodal orientation tasks between vision and touch, we were able to show that tactile perception of orientation shows a very robust TAE, similar to its visual counterpart. We further show that orientation adaptation in touch transfers to produce a TAE when tested in vision, but not vice versa. Additionally, when examining the test sequence following adaptation for serial effects, we observed another asymmetry between the two conditions where the visual test sequence displayed a repulsive intramodal serial dependence effect while the tactile test sequence exhibited an attractive serial dependence. These findings provide concrete evidence that vision and touch engage a similar orientation processing mechanism. However, the asymmetry in the crossmodal transfer of TAE and serial dependence points to a non-reciprocal connection between the two modalities, providing further insights into the underlying processing mechanism.
Collapse
Affiliation(s)
- Guandong Wang
- School of Psychology, The University of Sydney, Sydney, Australia.
| | - David Alais
- School of Psychology, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Alonzo EA, Lato TJ, Gonzalez M, Olson TL, Savage QR, Garza LN, Green MT, Koone JC, Cook NE, Dashnaw CM, Armstrong DB, Wood JL, Garbrecht LS, Haynes ML, Jacobson MR, Guberman-Pfeffer MJ, Minkara MS, Wedler HB, Zechmann B, Shaw BF. Universal pictures: A lithophane codex helps teenagers with blindness visualize nanoscopic systems. SCIENCE ADVANCES 2024; 10:eadj8099. [PMID: 38198555 PMCID: PMC10780880 DOI: 10.1126/sciadv.adj8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
People with blindness have limited access to the high-resolution graphical data and imagery of science. Here, a lithophane codex is reported. Its pages display tactile and optical readouts for universal visualization of data by persons with or without eyesight. Prototype codices illustrated microscopy of butterfly chitin-from N-acetylglucosamine monomer to fibril, scale, and whole insect-and were given to high schoolers from the Texas School for the Blind and Visually Impaired. Lithophane graphics of Fischer-Spier esterification reactions and electron micrographs of biological cells were also 3D-printed, along with x-ray structures of proteins (as millimeter-scale 3D models). Students with blindness could visualize (describe, recall, distinguish) these systems-for the first time-at the same resolution as sighted peers (average accuracy = 88%). Tactile visualization occurred alongside laboratory training, synthesis, and mentoring by chemists with blindness, resulting in increased student interest and sense of belonging in science.
Collapse
Affiliation(s)
- Emily A. Alonzo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Travis J. Lato
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Mayte Gonzalez
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Trevor L. Olson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Quentin R. Savage
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Levi N. Garza
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Morgan T. Green
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Jordan C. Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Noah E. Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | | | - John L. Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Lisa S. Garbrecht
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Madeline L. Haynes
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Miriam R. Jacobson
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | | | - Mona S. Minkara
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Tivadar RI, Franceschiello B, Minier A, Murray MM. Learning and navigating digitally rendered haptic spatial layouts. NPJ SCIENCE OF LEARNING 2023; 8:61. [PMID: 38102127 PMCID: PMC10724186 DOI: 10.1038/s41539-023-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Learning spatial layouts and navigating through them rely not simply on sight but rather on multisensory processes, including touch. Digital haptics based on ultrasounds are effective for creating and manipulating mental images of individual objects in sighted and visually impaired participants. Here, we tested if this extends to scenes and navigation within them. Using only tactile stimuli conveyed via ultrasonic feedback on a digital touchscreen (i.e., a digital interactive map), 25 sighted, blindfolded participants first learned the basic layout of an apartment based on digital haptics only and then one of two trajectories through it. While still blindfolded, participants successfully reconstructed the haptically learned 2D spaces and navigated these spaces. Digital haptics were thus an effective means to learn and translate, on the one hand, 2D images into 3D reconstructions of layouts and, on the other hand, navigate actions within real spaces. Digital haptics based on ultrasounds represent an alternative learning tool for complex scenes as well as for successful navigation in previously unfamiliar layouts, which can likely be further applied in the rehabilitation of spatial functions and mitigation of visual impairments.
Collapse
Affiliation(s)
- Ruxandra I Tivadar
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland.
- Centre for Integrative and Complementary Medicine, Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Cognitive Computational Neuroscience Group, Institute for Computer Science, University of Bern, Bern, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.
| | - Benedetta Franceschiello
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
- Institute of Systems Engineering, School of Engineering, University of Applied Sciences Western Switzerland (HES-SO Valais), Sion, Switzerland
| | - Astrid Minier
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Micah M Murray
- The Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.
| |
Collapse
|
5
|
Yizhar O, Tal Z, Amedi A. Loss of action-related function and connectivity in the blind extrastriate body area. Front Neurosci 2023; 17:973525. [PMID: 36968509 PMCID: PMC10035577 DOI: 10.3389/fnins.2023.973525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The Extrastriate Body Area (EBA) participates in the visual perception and motor actions of body parts. We recently showed that EBA’s perceptual function develops independently of visual experience, responding to stimuli with body-part information in a supramodal fashion. However, it is still unclear if the EBA similarly maintains its action-related function. Here, we used fMRI to study motor-evoked responses and connectivity patterns in the congenitally blind brain. We found that, unlike the case of perception, EBA does not develop an action-related response without visual experience. In addition, we show that congenital blindness alters EBA’s connectivity profile in a counterintuitive way—functional connectivity with sensorimotor cortices dramatically decreases, whereas connectivity with perception-related visual occipital cortices remains high. To the best of our knowledge, we show for the first time that action-related functions and connectivity in the visual cortex could be contingent on visuomotor experience. We further discuss the role of the EBA within the context of visuomotor control and predictive coding theory.
Collapse
Affiliation(s)
- Or Yizhar
- Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- *Correspondence: Or Yizhar,
| | - Zohar Tal
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
6
|
Mowery TM, Garraghty PE. Adult neuroplasticity employs developmental mechanisms. Front Syst Neurosci 2023; 16:1086680. [PMID: 36762289 PMCID: PMC9904365 DOI: 10.3389/fnsys.2022.1086680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Although neural plasticity is now widely studied, there was a time when the idea of adult plasticity was antithetical to the mainstream. The essential stumbling block arose from the seminal experiments of Hubel and Wiesel who presented convincing evidence that there existed a critical period for plasticity during development after which the brain lost its ability to change in accordance to shifts in sensory input. Despite the zeitgeist that mature brain is relatively immutable to change, there were a number of examples of adult neural plasticity emerging in the scientific literature. Interestingly, some of the earliest of these studies involved visual plasticity in the adult cat. Even earlier, there were reports of what appeared to be functional reorganization in adult rat somatosensory thalamus after dorsal column lesions, a finding that was confirmed and extended with additional experimentation. To demonstrate that these findings reflected more than a response to central injury, and to gain greater control of the extent of the sensory loss, peripheral nerve injuries were used that eliminated ascending sensory information while leaving central pathways intact. Merzenich, Kaas, and colleagues used peripheral nerve transections to reveal unambiguous reorganization in primate somatosensory cortex. Moreover, these same researchers showed that this plasticity proceeded in no less than two stages, one immediate, and one more protracted. These findings were confirmed and extended to more expansive cortical deprivations, and further extended to the thalamus and brainstem. There then began a series of experiments to reveal the physiological, morphological and neurochemical mechanisms that permitted this plasticity. Ultimately, Mowery and colleagues conducted a series of experiments that carefully tracked the levels of expression of several subunits of glutamate (AMPA and NMDA) and GABA (GABAA and GABAB) receptor complexes in primate somatosensory cortex at several time points after peripheral nerve injury. These receptor subunit mapping experiments revealed that membrane expression levels came to reflect those seen in early phases of critical period development. This suggested that under conditions of prolonged sensory deprivation the adult cells were returning to critical period like plastic states, i.e., developmental recapitulation. Here we outline the heuristics that drive this phenomenon.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Preston E. Garraghty
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
7
|
Koone JC, Dashnaw CM, Alonzo EA, Iglesias MA, Patero KS, Lopez JJ, Zhang AY, Zechmann B, Cook NE, Minkara MS, Supalo CA, Wedler HB, Guberman-Pfeffer MJ, Shaw BF. Data for all: Tactile graphics that light up with picture-perfect resolution. SCIENCE ADVANCES 2022; 8:eabq2640. [PMID: 35977019 PMCID: PMC9385137 DOI: 10.1126/sciadv.abq2640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
People who are blind do not have access to graphical data and imagery produced by science. This exclusion complicates learning and data sharing between sighted and blind persons. Because blind people use tactile senses to visualize data (and sighted people use eyesight), a single data format that can be easily visualized by both is needed. Here, we report that graphical data can be three-dimensionally printed into tactile graphics that glow with video-like resolution via the lithophane effect. Lithophane forms of gel electropherograms, micrographs, electronic and mass spectra, and textbook illustrations could be interpreted by touch or eyesight at ≥79% accuracy (n = 360). The lithophane data format enables universal visualization of data by people regardless of their level of eyesight.
Collapse
Affiliation(s)
- Jordan C. Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Emily A. Alonzo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Miguel A. Iglesias
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Kelly-Shaye Patero
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Juan J. Lopez
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Ao Yun Zhang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Noah E. Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Mona S. Minkara
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | | | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
8
|
Musz E, Loiotile R, Chen J, Cusack R, Bedny M. Naturalistic stimuli reveal a sensitive period in cross modal responses of visual cortex: Evidence from adult-onset blindness. Neuropsychologia 2022; 172:108277. [PMID: 35636634 PMCID: PMC9648859 DOI: 10.1016/j.neuropsychologia.2022.108277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
How do life experiences impact cortical function? In people who are born blind, the "visual" cortices are recruited during nonvisual tasks, such as Braille reading and sound localization. Do visual cortices have a latent capacity to respond to nonvisual information throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing especially possible during childhood? To gain insight into these questions, we leveraged meaningful naturalistic auditory stimuli to simultaneously engage a broad range of cognitive domains and quantify cross-modal responses across congenitally blind (n = 22), adult-onset blind (vision loss >18 years-of-age, n = 14) and sighted (n = 22) individuals. During fMRI scanning, participants listened to two types of meaningful naturalistic auditory stimuli: excerpts from movies and a spoken narrative. As controls, participants heard the same narrative with the sentences shuffled and the narrative played backwards (i.e., meaningless sounds). We correlated the voxel-wise timecourses of different participants within condition and group. For all groups, all stimulus conditions induced synchrony in auditory cortex while only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. As previously reported, inter-subject synchrony in visual cortices was higher in congenitally blind than sighted blindfolded participants and this between-group difference was particularly pronounced for meaningful stimuli (movies and narrative). Critically, visual cortex synchrony was no higher in adult-onset blind than sighted blindfolded participants and did not increase with blindness duration. Sensitive period plasticity enables cross-modal repurposing in visual cortices.
Collapse
Affiliation(s)
- Elizabeth Musz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Rita Loiotile
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Stevens J. More than a feeling: Tactile exploration informs relative size perception. Perception 2022; 51:672-675. [PMID: 35795959 DOI: 10.1177/03010066221108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Esref Armagan is a blind painter. Cognitive and neural scientists have described his use of line structure when drawing and his visual cortex activation during tactile exploration. But what remains unknown is how Esref, without ever having sight, may be able to understand the use of depth cues such as relative size in a picture. To examine whether tactile experience provides information about relative size, we blindfolded sighted individuals and asked them to haptically explore a set of objects in either near or far locations before drawing the objects on paper. Objects explored with an arms extended position were drawn significantly smaller than those explored just in front of the face. Our results provide the first evidence that haptic object interaction can provide information about relative size, akin to that garnered visually. It can be used to inform spatial layout or, in Esref's case, to artistically render objects in three dimensions.
Collapse
|
10
|
Digital haptics improve speed of visual search performance in a dual-task setting. Sci Rep 2022; 12:9728. [PMID: 35710569 PMCID: PMC9203452 DOI: 10.1038/s41598-022-13827-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dashboard-mounted touchscreen tablets are now common in vehicles. Screen/phone use in cars likely shifts drivers’ attention away from the road and contributes to risk of accidents. Nevertheless, vision is subject to multisensory influences from other senses. Haptics may help maintain or even increase visual attention to the road, while still allowing for reliable dashboard control. Here, we provide a proof-of-concept for the effectiveness of digital haptic technologies (hereafter digital haptics), which use ultrasonic vibrations on a tablet screen to render haptic perceptions. Healthy human participants (N = 25) completed a divided-attention paradigm. The primary task was a centrally-presented visual conjunction search task, and the secondary task entailed control of laterally-presented sliders on the tablet. Sliders were presented visually, haptically, or visuo-haptically and were vertical, horizontal or circular. We reasoned that the primary task would be performed best when the secondary task was haptic-only. Reaction times (RTs) on the visual search task were fastest when the tablet task was haptic-only. This was not due to a speed-accuracy trade-off; there was no evidence for modulation of VST accuracy according to modality of the tablet task. These results provide the first quantitative support for introducing digital haptics into vehicle and similar contexts.
Collapse
|
11
|
Gaze direction influences grasping actions towards unseen, haptically explored, objects. Sci Rep 2020; 10:15774. [PMID: 32978418 PMCID: PMC7519081 DOI: 10.1038/s41598-020-72554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject’s gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers’ kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping.
Collapse
|
12
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
13
|
Tivadar RI, Chappaz C, Anaflous F, Roche J, Murray MM. Mental Rotation of Digitally-Rendered Haptic Objects by the Visually-Impaired. Front Neurosci 2020; 14:197. [PMID: 32265628 PMCID: PMC7099598 DOI: 10.3389/fnins.2020.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
In the event of visual impairment or blindness, information from other intact senses can be used as substitutes to retrain (and in extremis replace) visual functions. Abilities including reading, mental representation of objects and spatial navigation can be performed using tactile information. Current technologies can convey a restricted library of stimuli, either because they depend on real objects or renderings with low resolution layouts. Digital haptic technologies can overcome such limitations. The applicability of this technology was previously demonstrated in sighted participants. Here, we reasoned that visually-impaired and blind participants can create mental representations of letters presented haptically in normal and mirror-reversed form without the use of any visual information, and mentally manipulate such representations. Visually-impaired and blind volunteers were blindfolded and trained on the haptic tablet with two letters (either L and P or F and G). During testing, they haptically explored on any trial one of the four letters presented at 0°, 90°, 180°, or 270° rotation from upright and indicated if the letter was either in a normal or mirror-reversed form. Rotation angle impacted performance; greater deviation from 0° resulted in greater impairment for trained and untrained normal letters, consistent with mental rotation of these haptically-rendered objects. Performance was also generally less accurate with mirror-reversed stimuli, which was not affected by rotation angle. Our findings demonstrate, for the first time, the suitability of a digital haptic technology in the blind and visually-impaired. Classic devices remain limited in their accessibility and in the flexibility of their applications. We show that mental representations can be generated and manipulated using digital haptic technology. This technology may thus offer an innovative solution to the mitigation of impairments in the visually-impaired, and to the training of skills dependent on mental representations and their spatial manipulation.
Collapse
Affiliation(s)
- Ruxandra I Tivadar
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.,Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | | | - Fatima Anaflous
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jean Roche
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.,Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland.,Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Naturalistic Audio-Movies and Narrative Synchronize "Visual" Cortices across Congenitally Blind But Not Sighted Individuals. J Neurosci 2019; 39:8940-8948. [PMID: 31548238 DOI: 10.1523/jneurosci.0298-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
How does developmental experience, as opposed to intrinsic physiology, shape cortical function? Naturalistic stimuli were used to elicit neural synchrony in individuals blind from birth (n = 18) and those who grew up with sight (n = 18). Blind and blindfolded sighted participants passively listened to three audio-movie clips, an auditory narrative, a sentence shuffled version of the narrative (maintaining language but lacking a plotline), and a version of the narrative backward (lacking both language and plot). For both groups, early auditory cortices were synchronized to a similar degree across stimulus types, whereas higher-cognitive temporoparietal and prefrontal areas were more synchronized by meaningful, temporally extended stimuli (i.e., audio movies and narrative). "Visual" cortices were more synchronized across blind than sighted individuals, but only for audio-movies and narrative. In the blind group, visual cortex synchrony was low for backward speech and intermediate for sentence shuffle. Meaningful auditory stimuli synchronize visual cortices of people born blind.SIGNIFICANCE STATEMENT Naturalistic stimuli engage cognitive processing at many levels. Here, we harnessed this richness to investigate the effect of experience on cortical function. We find that listening to naturalistic audio movies and narrative drives synchronized activity across "visual" cortices of blind, more so than sighted, individuals. Visual cortex synchronization varies with meaningfulness and cognitive complexity. Higher synchrony is observed for temporally extended meaningful stimuli (e.g., movies/narrative), intermediate for shuffled sentences, lowest for time varying complex noise. By contrast, auditory cortex was synchronized equally by meaningful and meaningless stimuli. In congenitally blind individuals most of visual cortex is engaged by meaningful naturalistic stimuli.
Collapse
|
15
|
Dempsey-Jones H, Themistocleous AC, Carone D, Ng TWC, Harrar V, Makin TR. Blocking tactile input to one finger using anaesthetic enhances touch perception and learning in other fingers. J Exp Psychol Gen 2019; 148:713-727. [PMID: 30973263 PMCID: PMC6459089 DOI: 10.1037/xge0000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain plasticity is a key mechanism for learning and recovery. A striking example of plasticity in the adult brain occurs following input loss, for example, following amputation, whereby the deprived zone is “invaded” by new representations. Although it has long been assumed that such reorganization leads to functional benefits for the invading representation, the behavioral evidence is controversial. Here, we investigate whether a temporary period of somatosensory input loss to one finger, induced by anesthetic block, is sufficient to cause improvements in touch perception (“direct” effects of deafferentation). Further, we determine whether this deprivation can improve touch perception by enhancing sensory learning processes, for example, by training (“interactive” effects). Importantly, we explore whether direct and interactive effects of deprivation are dissociable by directly comparing their effects on touch perception. Using psychophysical thresholds, we found brief deprivation alone caused improvements in tactile perception of a finger adjacent to the blocked finger but not to non-neighboring fingers. Two additional groups underwent minimal tactile training to one finger either during anesthetic block of the neighboring finger or a sham block with saline. Deprivation significantly enhanced the effects of tactile perceptual training, causing greater learning transfer compared with sham block. That is, following deafferentation and training, learning gains were seen in fingers normally outside the boundaries of topographic transfer of tactile perceptual learning. Our results demonstrate that sensory deprivation can improve perceptual abilities, both directly and interactively, when combined with sensory learning. This dissociation provides novel opportunities for future clinical interventions to improve sensation.
Collapse
Affiliation(s)
| | | | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford
| | - Tammy W C Ng
- Department of Anaesthesia, University College Hospital
| | - Vanessa Harrar
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London
| |
Collapse
|
16
|
Prieto A, Mayas J, Ballesteros S. Behavioral and electrophysiological correlates of interactions between grouping principles in touch: Evidence from psychophysical indirect tasks. Neuropsychologia 2019; 129:21-36. [PMID: 30879999 DOI: 10.1016/j.neuropsychologia.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022]
Abstract
In two experiments we investigated the behavioral and brain correlates of the interactions between spatial-proximity and texture-similarity grouping principles in touch. We designed two adaptations of the repetition discrimination task (RDT) previously used in vision. This task provides an indirect measure of grouping that does not require explicit attention to the grouping process. In Experiment 1, participants were presented with a row of elements alternating in texture except for one pair in which the same texture was repeated. The participants had to decide whether the repeated texture stimuli (similarity grouping) were smooth or rough, while the spatial proximity between targets and distractors was varied either to facilitate or hinder the response. In Experiment 2, participants indicated which cohort (proximity grouping) contained more elements, while texture-similarity within and between cohorts was modified. The results indicated additive effects of grouping cues in which proximity dominated the perceptual grouping process when the two principles acted together. In addition, the independent component analysis (ICA) performed on electrophysiological data revealed the implication of a widespread network of sensorimotor, prefrontal, parietal and occipital brain areas in both experiments.
Collapse
Affiliation(s)
- Antonio Prieto
- Departamento de Psicología Básica II, Studies on Aging and Neurodegenerative Diseases Research Group, Spain.
| | - Julia Mayas
- Departamento de Psicología Básica II, Studies on Aging and Neurodegenerative Diseases Research Group, Spain.
| | - Soledad Ballesteros
- Departamento de Psicología Básica II, Studies on Aging and Neurodegenerative Diseases Research Group, Spain.
| |
Collapse
|
17
|
Tivadar RI, Rouillard T, Chappaz C, Knebel JF, Turoman N, Anaflous F, Roche J, Matusz PJ, Murray MM. Mental Rotation of Digitally-Rendered Haptic Objects. Front Integr Neurosci 2019; 13:7. [PMID: 30930756 PMCID: PMC6427928 DOI: 10.3389/fnint.2019.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typically rely on real physical objects or pneumatically driven renderings and thus provide a limited library of stimuli to users. New developments in digital haptic technologies now make it possible to actively simulate an unprecedented range of tactile sensations. We provide a proof-of-concept for a new type of technology (hereafter haptic tablet) that renders haptic feedback by modulating the friction of a flat screen through ultrasonic vibrations of varying shapes to create the sensation of texture when the screen is actively explored. We reasoned that participants should be able to create mental representations of letters presented in normal and mirror-reversed haptic form without the use of any visual information and to manipulate such representations in a mental rotation task. Healthy sighted, blindfolded volunteers were trained to discriminate between two letters (either L and P, or F and G; counterbalanced across participants) on a haptic tablet. They then tactually explored all four letters in normal or mirror-reversed form at different rotations (0°, 90°, 180°, and 270°) and indicated letter form (i.e., normal or mirror-reversed) by pressing one of two mouse buttons. We observed the typical effect of rotation angle on object discrimination performance (i.e., greater deviation from 0° resulted in worse performance) for trained letters, consistent with mental rotation of these haptically-rendered objects. We likewise observed generally slower and less accurate performance with mirror-reversed compared to prototypically oriented stimuli. Our findings extend existing research in multisensory object recognition by indicating that a new technology simulating active haptic feedback can support the generation and spatial manipulation of mental representations of objects. Thus, such haptic tablets can offer a new avenue to mitigate visual impairments and train skills dependent on mental object-based representations and their spatial manipulation.
Collapse
Affiliation(s)
- Ruxandra I. Tivadar
- The Laboratory for Investigative Neurophysiology (LINE), Department of Radiology and Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
| | | | | | - Jean-François Knebel
- The Laboratory for Investigative Neurophysiology (LINE), Department of Radiology and Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Electroencephalography Brain Mapping Core, Center for Biomedical Imaging (CIBM) of Lausanne and Geneva, Lausanne, Switzerland
| | - Nora Turoman
- The Laboratory for Investigative Neurophysiology (LINE), Department of Radiology and Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Fatima Anaflous
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jean Roche
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Pawel J. Matusz
- The Laboratory for Investigative Neurophysiology (LINE), Department of Radiology and Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Information Systems Institute at the University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| | - Micah M. Murray
- The Laboratory for Investigative Neurophysiology (LINE), Department of Radiology and Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland
- Electroencephalography Brain Mapping Core, Center for Biomedical Imaging (CIBM) of Lausanne and Geneva, Lausanne, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Yasaka K, Mori T, Yamaguchi M, Kaba H. Representations of microgeometric tactile information during object recognition. Cogn Process 2018; 20:19-30. [PMID: 30446884 DOI: 10.1007/s10339-018-0892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/03/2018] [Indexed: 11/26/2022]
Abstract
Object recognition through tactile perception involves two elements: the shape of the object (macrogeometric properties) and the material of the object (microgeometric properties). Here we sought to determine the characteristics of microgeometric tactile representations regarding object recognition through tactile perception. Participants were directed to recognize objects with different surface materials using either tactile information or visual information. With a quantitative analysis of the cognitive process regarding object recognition, Experiment 1 confirmed the same eight concepts (composed of rules defining distinct cognitive processes) commonly generated in both tactile and visual perceptions to accomplish the task, although an additional concept was generated during the visual task. Experiment 2 focused only on tactile perception. Three tactile objects with different surface materials (plastic, cloth and sandpaper) were used for the object recognition task. The participants answered a questionnaire regarding the process leading to their answers (which was designed based on the results obtained in Experiment 1) and to provide ratings on the vividness, familiarity and affective valence. We used these experimental data to investigate whether changes in material attributes (tactile information) change the characteristics of tactile representation. The observation showed that differences in tactile information resulted in differences in cognitive processes, vividness, familiarity and emotionality. These two experiments collectively indicated that microgeometric tactile information contributes to object recognition by recruiting various cognitive processes including episodic memory and emotion, similar to the case of object recognition by visual information.
Collapse
Affiliation(s)
- Kazuhiko Yasaka
- Department of Physical Therapy, Kochi School of Allied Health and Medical Professions, 6012-10, Nagahama, Kochi, 781-0270, Japan.
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideto Kaba
- Department of Physiology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
19
|
Prieto A, Mayas J, Ballesteros S. Alpha and beta band correlates of haptic perceptual grouping: Results from an orientation detection task. PLoS One 2018; 13:e0201194. [PMID: 30024961 PMCID: PMC6053228 DOI: 10.1371/journal.pone.0201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Behavioral and neurophysiological findings in vision suggest that perceptual grouping is not a unitary process and that different grouping principles have different processing requirements and neural correlates. The present study aims to examine whether the same occurs in the haptic modality using two grouping principles widely studied in vision, spatial proximity and texture similarity. We analyzed behavioral responses (accuracy and response times) and conducted an independent component analysis of brain oscillations in alpha and beta bands for haptic stimuli grouped by spatial proximity and texture similarity, using a speeded orientation detection task performed on a novel haptic device (MonHap). Behavioral results showed faster response times for patterns grouped by spatial proximity relative to texture similarity. Independent component clustering analysis revealed the activation of a bilateral network of sensorimotor and parietal areas while performing the task. We conclude that, as occurs in visual perception, grouping the elements of the haptic scene by means of their spatial proximity is faster than forming the same objects by means of texture similarity. In addition, haptic grouping seems to involve the activation of a network of widely distributed bilateral sensorimotor and parietal areas as reflected by the consistent event-related desynchronization found in alpha and beta bands.
Collapse
Affiliation(s)
- Antonio Prieto
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
- * E-mail:
| | - Julia Mayas
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| | - Soledad Ballesteros
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| |
Collapse
|
20
|
Delis I, Dmochowski JP, Sajda P, Wang Q. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing. Neuroimage 2018; 175:12-21. [PMID: 29580968 PMCID: PMC5960621 DOI: 10.1016/j.neuroimage.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/21/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making.
Collapse
Affiliation(s)
- Ioannis Delis
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jacek P Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Data Science Institute, Columbia University, New York, NY, 10027, USA.
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
21
|
Testing the perceptual equivalence hypothesis in mental rotation of 3D stimuli with visual and tactile input. Exp Brain Res 2018; 236:881-896. [DOI: 10.1007/s00221-018-5172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
|
22
|
Abstract
It is known that, after a prolonged period of visual deprivation, the adult visual cortex can be recruited for nonvisual processing, reflecting cross-modal plasticity. Here, we investigated whether cross-modal plasticity can occur at short timescales in the typical adult brain by comparing the interaction between vision and touch during binocular rivalry before and after a brief period of monocular deprivation, which strongly alters ocular balance favoring the deprived eye. While viewing dichoptically two gratings of orthogonal orientation, participants were asked to actively explore a haptic grating congruent in orientation to one of the two rivalrous stimuli. We repeated this procedure before and after 150 min of monocular deprivation. We first confirmed that haptic stimulation interacted with vision during rivalry promoting dominance of the congruent visuo-haptic stimulus and that monocular deprivation increased the deprived eye and decreased the nondeprived eye dominance. Interestingly, after deprivation, we found that the effect of touch did not change for the nondeprived eye, whereas it disappeared for the deprived eye, which was potentiated after deprivation. The absence of visuo-haptic interaction for the deprived eye lasted for over 1 hr and was not attributable to a masking induced by the stronger response of the deprived eye as confirmed by a control experiment. Taken together, our results demonstrate that the adult human visual cortex retains a high degree of cross-modal plasticity, which can occur even at very short timescales.
Collapse
Affiliation(s)
- Luca Lo Verde
- University of Florence.,Institute of Neuroscience, Consiglio Nazionale Delle Ricerche, Pisa
| | | | - Claudia Lunghi
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche, Pisa.,University of Pisa
| |
Collapse
|
23
|
Stronks HC, Mitchell EB, Nau AC, Barnes N. Visual task performance in the blind with the BrainPort V100 Vision Aid. Expert Rev Med Devices 2016; 13:919-931. [DOI: 10.1080/17434440.2016.1237287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- H. Christiaan Stronks
- Department of Otorhinolaryngology, Leiden University Medical Centre, Leiden, The Netherlands
- Smart Vision Systems Research Group, Data61, CSIRO, Canberra, Australia
- Department of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ellen B. Mitchell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Nick Barnes
- Smart Vision Systems Research Group, Data61, CSIRO, Canberra, Australia
- Research School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, Australia
| |
Collapse
|
24
|
Voss P, Alary F, Lazzouni L, Chapman CE, Goldstein R, Bourgoin P, Lepore F. Crossmodal Processing of Haptic Inputs in Sighted and Blind Individuals. Front Syst Neurosci 2016; 10:62. [PMID: 27531974 PMCID: PMC4969315 DOI: 10.3389/fnsys.2016.00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
In a previous behavioral study, it was shown that early blind individuals were superior to sighted ones in discriminating two-dimensional (2D) tactile angle stimuli. The present study was designed to assess the neural substrate associated with a haptic 2D angle discrimination task in both sighted and blind individuals. Subjects performed tactile angle size discriminations in order to investigate whether the pattern of crossmodal occipital recruitment was lateralized as a function of the stimulated hand. Task-elicited activations were also compared across different difficulty levels to ascertain the potential modulatory role of task difficulty on crossmodal processing within occipital areas. We show that blind subjects had more widespread activation within the right lateral and superior occipital gyri when performing the haptic discrimination task. In contrast, the sighted activated the left cuneus and lingual gyrus more so than the blind when performing the task. Furthermore, activity within visual areas was shown to be predictive of tactile discrimination thresholds in the blind, but not in the sighted. Activity within parietal and occipital areas was modulated by task difficulty, where the easier angle comparison elicited more focal occipital activity along with bilateral posterior parietal activity, whereas the more difficult comparison produced more widespread occipital activity combined with reduced parietal activation. Finally, we show that crossmodal reorganization within the occipital cortex of blind individuals was primarily right lateralized, regardless of the stimulated hand, supporting previous evidence for a right-sided hemispheric specialization of the occipital cortex of blind individuals for the processing of tactile and haptic inputs.
Collapse
Affiliation(s)
- Patrice Voss
- Department of Neurology and Neurosurgery, Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Flamine Alary
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal QC, Canada
| | - Latifa Lazzouni
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal QC, Canada
| | - C E Chapman
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie and École de Réadaptation, Faculté de Médecine, Université de Montréal, Montréal QC, Canada
| | - Rachel Goldstein
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal QC, Canada
| | - Pierre Bourgoin
- Département de Radiologie, Faculté de Médicine, Université de Montréal, Montréal QC, Canada
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal QC, Canada
| |
Collapse
|
25
|
Roberts MH, Shenker JI. Non-optic vision: Beyond synesthesia? Brain Cogn 2016; 107:24-9. [PMID: 27363006 DOI: 10.1016/j.bandc.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
Abstract
Patient NS is a 28year-old female who went blind in her early twenties as a result of S-cone syndrome, a degenerative retinal disorder. A few years after losing her vision, she started experiencing visual perceptions of her hands as she moved them and objects that came into contact with her hands. Over the course of a year, these cross-modal sensations evolved to become veridical visual experiences accurately representative of her hands, objects she touched, and to some degree, objects she could infer from her immediate surroundings. We argue that these experiences are distinct from mental imagery as they occurred automatically, remained consistent over time, and were proprioceptively mediated by her head position much like normal optical vision. Moreover, she could neither consciously force these visual experiences to occur without sensory inference nor prevent them from happening when haptically exploring an object. Her previous visual experiences contributed to a strong influence of top-down processing in her perceptions. Though individuals have previously been able to develop limited veridical acquired synesthesia following extensive practice over many years with the use of a special sensory device, none reported experiencing the richness of complexity or degree of top-down processing exhibited by NS. Thus, we posit that NS's case may represent a phenomenon beyond synesthesia altogether.
Collapse
Affiliation(s)
| | - Joel I Shenker
- Department of Neurology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
26
|
Marangon M, Kubiak A, Króliczak G. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution. Front Hum Neurosci 2016; 9:691. [PMID: 26779002 PMCID: PMC4700263 DOI: 10.3389/fnhum.2015.00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.
Collapse
Affiliation(s)
- Mattia Marangon
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Agnieszka Kubiak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| |
Collapse
|
27
|
Kalagher H. Haptic exploration of tools: Insight into the processes that drive haptic exploration in preschool-aged children. COGNITIVE DEVELOPMENT 2015. [DOI: 10.1016/j.cogdev.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Koijck LA, Toet A, Van Erp JBF. Tactile roughness perception in the presence of olfactory and trigeminal stimulants. PeerJ 2015; 3:e955. [PMID: 26020010 PMCID: PMC4435474 DOI: 10.7717/peerj.955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/23/2015] [Indexed: 12/21/2022] Open
Abstract
Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA), we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol). We expected that—compared to a No-odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon) and unpleasant (Indole) odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness) than when presented with Ethanol or Indole (odors that can be associated with roughness). Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for future research.
Collapse
Affiliation(s)
| | | | - Jan B F Van Erp
- TNO , Soesterberg , The Netherlands ; Human Media Interaction, University of Twente , Enschede , The Netherlands
| |
Collapse
|
29
|
Abstract
Distinct preference for visual number symbols was recently discovered in the human right inferior temporal gyrus (rITG). It remains unclear how this preference emerges, what is the contribution of shape biases to its formation and whether visual processing underlies it. Here we use congenital blindness as a model for brain development without visual experience. During fMRI, we present blind subjects with shapes encoded using a novel visual-to-music sensory-substitution device (The EyeMusic). Greater activation is observed in the rITG when subjects process symbols as numbers compared with control tasks on the same symbols. Using resting-state fMRI in the blind and sighted, we further show that the areas with preference for numerals and letters exhibit distinct patterns of functional connectivity with quantity and language-processing areas, respectively. Our findings suggest that specificity in the ventral ‘visual’ stream can emerge independently of sensory modality and visual experience, under the influence of distinct connectivity patterns. The human visual cortex includes areas with preference for various object categories. Here, Abboud et al. demonstrate using visual-to-music substitution, that the congenitally blind show a similar preference for numerals in the right inferior temporal cortex as sighted individuals, despite having no visual experience.
Collapse
|
30
|
Lacey S, Sathian K. CROSSMODAL AND MULTISENSORY INTERACTIONS BETWEEN VISION AND TOUCH. SCHOLARPEDIA 2015; 10:7957. [PMID: 26783412 DOI: 10.4249/scholarpedia.7957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Simon Lacey
- Departments of Neurology, Emory University, Atlanta, GA, USA
| | - K Sathian
- Departments of Neurology, Emory University, Atlanta, GA, USA; Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
31
|
Silva GCDC, Góes CPDQF, Vincent MB. Aura-like features and photophobia in sightless migraine patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:949-53. [DOI: 10.1590/0004-282x20140200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/18/2014] [Indexed: 01/03/2023]
Abstract
Migraine is a central nervous system disorder frequently expressed with paroxysmal visual dysfunctions. Objective To test the hypothesis that normal visual input is vital for the migrainous aura and photophobia. Method We studied the migraine-related visual disturbances in 8 sightless migraineurs identified among 200 visually impaired subjects. Results The main findings were the visual aura and photophobia disappearance along with blindness development, the oddness of aura – too short, colourful (e.g. blue or fire-like), auditory in nature or different in shape (round forms) – and the lack of photophobia. Conclusion We propose that the aura duration should be accepted as shorter in visually impaired subjects. The changes in aura phenotype observed in our patients may be the result of both cerebral plasticity induced by the visual impairment and/or the lack of visual input per se. Integrity of visual pathways plays a key role in migraine visual aura and photophobia.
Collapse
|
32
|
Crabtree CE, Norman JF. Short-term visual deprivation, tactile acuity, and haptic solid shape discrimination. PLoS One 2014; 9:e112828. [PMID: 25397327 PMCID: PMC4232490 DOI: 10.1371/journal.pone.0112828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task – perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task – the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation.
Collapse
Affiliation(s)
- Charles E Crabtree
- Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - J Farley Norman
- Department of Psychological Sciences, Ogden College of Science and Engineering, Western Kentucky University, Bowling Green, Kentucky, United States of America
| |
Collapse
|
33
|
Cunningham SI, Weiland JD, Bao P, Lopez-Jaime GR, Tjan BS. Correlation of vision loss with tactile-evoked V1 responses in retinitis pigmentosa. Vision Res 2014; 111:197-207. [PMID: 25449160 DOI: 10.1016/j.visres.2014.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Neuroimaging studies have shown that the visual cortex of visually impaired humans is active during tactile tasks. We sought to determine if this cross-modal activation in the primary visual cortex is correlated with vision loss in individuals with retinitis pigmentosa (RP), an inherited degenerative photoreceptor disease that progressively diminishes vision later in life. RP and sighted subjects completed three tactile tasks: a symmetry discrimination task, a Braille-dot counting task, and a sandpaper roughness discrimination task. We measured tactile-evoked blood oxygenation level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI). For each subject, we quantified the cortical extent of the tactile-evoked response by the proportion of modulated voxels within the primary visual cortex (V1) and its strength by the mean absolute modulation amplitude of the modulated voxels. We characterized vision loss in terms of visual acuity and the areal proportion of V1 that corresponds to the preserved visual field. Visual acuity and proportion of the preserved visual field both had a highly significant effect on the cortical extent of the V1 BOLD response to tactile stimulation, while visual acuity also had a significant effect on the strength of the V1 response. These effects of vision loss on cross-modal responses were reliable despite high inter-subject variability. Controlling for task-evoked responses in the primary somatosensory cortex (S1) across subjects further strengthened the effects of vision loss on cross-model responses in V1. We propose that such cross-modal responses in V1 and other visual areas may be used as a cortically localized biomarker to account for individual differences in visual performance following sight recovery treatments.
Collapse
Affiliation(s)
- Samantha I Cunningham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Pinglei Bao
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | | | - Bosco S Tjan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
34
|
Kagawa T, Narita N, Iwaki S, Kawasaki S, Kamiya K, Minakuchi S. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study. PLoS One 2014; 9:e108685. [PMID: 25299397 PMCID: PMC4191970 DOI: 10.1371/journal.pone.0108685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.
Collapse
Affiliation(s)
- Tomonori Kagawa
- Gerodontology and Oral Rehabilitation Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriyuki Narita
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Sunao Iwaki
- Cognition and Action Research Group, Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Aist Tsukuba Central 6, Ibaraki, Japan
| | - Shingo Kawasaki
- Application Development Office, Hitachi Medical Corporation, Chiba, Japan
| | - Kazunobu Kamiya
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Shunsuke Minakuchi
- Gerodontology and Oral Rehabilitation Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model. Neurosci Biobehav Rev 2014; 47:735-52. [PMID: 25155242 DOI: 10.1016/j.neubiorev.2014.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 11/23/2022]
Abstract
The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism.
Collapse
|
36
|
Lacey S, Sathian K. Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 2014; 5:730. [PMID: 25101014 PMCID: PMC4102085 DOI: 10.3389/fpsyg.2014.00730] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Visual and haptic unisensory object processing show many similarities in terms of categorization, recognition, and representation. In this review, we discuss how these similarities contribute to multisensory object processing. In particular, we show that similar unisensory visual and haptic representations lead to a shared multisensory representation underlying both cross-modal object recognition and view-independence. This shared representation suggests a common neural substrate and we review several candidate brain regions, previously thought to be specialized for aspects of visual processing, that are now known also to be involved in analogous haptic tasks. Finally, we lay out the evidence for a model of multisensory object recognition in which top-down and bottom-up pathways to the object-selective lateral occipital complex are modulated by object familiarity and individual differences in object and spatial imagery.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Emory University School of Medicine Atlanta, GA, USA
| | - K Sathian
- Department of Neurology, Emory University School of Medicine Atlanta, GA, USA ; Department of Rehabilitation Medicine, Emory University School of Medicine Atlanta, GA, USA ; Department of Psychology, Emory University School of Medicine Atlanta, GA, USA ; Rehabilitation Research and Development Center of Excellence, Atlanta Veterans Affairs Medical Center Decatur, GA, USA
| |
Collapse
|
37
|
Patel GH, Kaplan DM, Snyder LH. Topographic organization in the brain: searching for general principles. Trends Cogn Sci 2014; 18:351-63. [PMID: 24862252 PMCID: PMC4074559 DOI: 10.1016/j.tics.2014.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
The neurons comprising many cortical areas have long been known to be arranged topographically such that nearby neurons have receptive fields at nearby locations in the world. Although this type of organization may be universal in primary sensory and motor cortex, in this review we demonstrate that associative cortical areas may not represent the external world in a complete and continuous fashion. After reviewing evidence for novel principles of topographic organization in macaque lateral intraparietal area (LIP) - one of the most-studied associative areas in the parietal cortex - we explore the implications of these new principles for brain function.
Collapse
Affiliation(s)
- Gaurav H Patel
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - David M Kaplan
- Department of Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Lawrence H Snyder
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
38
|
Lacey S, Stilla R, Sreenivasan K, Deshpande G, Sathian K. Spatial imagery in haptic shape perception. Neuropsychologia 2014; 60:144-58. [PMID: 25017050 DOI: 10.1016/j.neuropsychologia.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
We have proposed that haptic activation of the shape-selective lateral occipital complex (LOC) reflects a model of multisensory object representation in which the role of visual imagery is modulated by object familiarity. Supporting this, a previous functional magnetic resonance imaging (fMRI) study from our laboratory used inter-task correlations of blood oxygenation level-dependent (BOLD) signal magnitude and effective connectivity (EC) patterns based on the BOLD signals to show that the neural processes underlying visual object imagery (objIMG) are more similar to those mediating haptic perception of familiar (fHS) than unfamiliar (uHS) shapes. Here we employed fMRI to test a further hypothesis derived from our model, that spatial imagery (spIMG) would evoke activation and effective connectivity patterns more related to uHS than fHS. We found that few of the regions conjointly activated by spIMG and either fHS or uHS showed inter-task correlations of BOLD signal magnitudes, with parietal foci featuring in both sets of correlations. This may indicate some involvement of spIMG in HS regardless of object familiarity, contrary to our hypothesis, although we cannot rule out alternative explanations for the commonalities between the networks, such as generic imagery or spatial processes. EC analyses, based on inferred neuronal time series obtained by deconvolution of the hemodynamic response function from the measured BOLD time series, showed that spIMG shared more common paths with uHS than fHS. Re-analysis of our previous data, using the same EC methods as those used here, showed that, by contrast, objIMG shared more common paths with fHS than uHS. Thus, although our model requires some refinement, its basic architecture is supported: a stronger relationship between spIMG and uHS compared to fHS, and a stronger relationship between objIMG and fHS compared to uHS.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Randall Stilla
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Karthik Sreenivasan
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, USA; Department of Psychology, Auburn University, Auburn, AL, USA
| | - K Sathian
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA; Department of Psychology, Emory University, Atlanta, GA, USA; Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, GA, USA.
| |
Collapse
|
39
|
Multisensory perceptual learning and sensory substitution. Neurosci Biobehav Rev 2014; 41:16-25. [DOI: 10.1016/j.neubiorev.2012.11.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 11/23/2022]
|
40
|
Abstract
Sensory integration of touch and sight is crucial to perceiving and navigating the environment. While recent evidence from other sensory modality combinations suggests that low-level sensory areas integrate multisensory information at early processing stages, little is known about how the brain combines visual and tactile information. We investigated the dynamics of multisensory integration between vision and touch using the high spatial and temporal resolution of intracranial electrocorticography in humans. We present a novel, two-step metric for defining multisensory integration. The first step compares the sum of the unisensory responses to the bimodal response as multisensory responses. The second step eliminates the possibility that double addition of sensory responses could be misinterpreted as interactions. Using these criteria, averaged local field potentials and high-gamma-band power demonstrate a functional processing cascade whereby sensory integration occurs late, both anatomically and temporally, in the temporo-parieto-occipital junction (TPOJ) and dorsolateral prefrontal cortex. Results further suggest two neurophysiologically distinct and temporally separated integration mechanisms in TPOJ, while providing direct evidence for local suppression as a dominant mechanism for synthesizing visual and tactile input. These results tend to support earlier concepts of multisensory integration as relatively late and centered in tertiary multimodal association cortices.
Collapse
|
41
|
Kok MA, Chabot N, Lomber SG. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early- and late-onset deafness. J Comp Neurol 2013; 522:654-75. [DOI: 10.1002/cne.23439] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Melanie A. Kok
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario N6A 5C1 Canada
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario N6A 5C1 Canada
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Stephen G. Lomber
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario N6A 5C1 Canada
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Psychology; University of Western Ontario; London Ontario N6A 5C1 Canada
- Brain and Mind Institute, University of Western Ontario; London Ontario N6A 5C1 Canada
| |
Collapse
|
42
|
Maidenbaum S, Abboud S, Amedi A. Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 2013; 41:3-15. [PMID: 24275274 DOI: 10.1016/j.neubiorev.2013.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/06/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
Abstract
Sensory substitution devices (SSDs) have come a long way since first developed for visual rehabilitation. They have produced exciting experimental results, and have furthered our understanding of the human brain. Unfortunately, they are still not used for practical visual rehabilitation, and are currently considered as reserved primarily for experiments in controlled settings. Over the past decade, our understanding of the neural mechanisms behind visual restoration has changed as a result of converging evidence, much of which was gathered with SSDs. This evidence suggests that the brain is more than a pure sensory-machine but rather is a highly flexible task-machine, i.e., brain regions can maintain or regain their function in vision even with input from other senses. This complements a recent set of more promising behavioral achievements using SSDs and new promising technologies and tools. All these changes strongly suggest that the time has come to revive the focus on practical visual rehabilitation with SSDs and we chart several key steps in this direction such as training protocols and self-train tools.
Collapse
Affiliation(s)
- Shachar Maidenbaum
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Sami Abboud
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| |
Collapse
|
43
|
van der Groen O, van der Burg E, Lunghi C, Alais D. Touch influences visual perception with a tight orientation-tuning. PLoS One 2013; 8:e79558. [PMID: 24244523 PMCID: PMC3828350 DOI: 10.1371/journal.pone.0079558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Stimuli from different sensory modalities are thought to be processed initially in distinct unisensory brain areas prior to convergence in multisensory areas. However, signals in one modality can influence the processing of signals from other modalities and recent studies suggest this cross-modal influence may occur early on, even in 'unisensory' areas. Some recent psychophysical studies have shown specific cross-modal effects between touch and vision during binocular rivalry, but these cannot completely rule out a response bias. To test for genuine cross-modal integration of haptic and visual signals, we investigated whether congruent haptic input could influence visual contrast sensitivity compared to incongruent haptic input in three psychophysical experiments using a two-interval, two-alternative forced-choice method to eliminate response bias. The initial experiment demonstrated that contrast thresholds for a visual grating were lower when exploring a haptic grating that shared the same orientation compared to an orthogonal orientation. Two subsequent experiments mapped the orientation and spatial frequency tunings for the congruent haptic facilitation of vision, finding a clear orientation tuning effect but not a spatial frequency tuning. In addition to an increased contrast sensitivity for iso-oriented visual-haptic gratings, we found a significant loss of sensitivity for orthogonally oriented visual-haptic gratings. We conclude that the tactile influence on vision is a result of a tactile input to orientation-tuned visual areas.
Collapse
Affiliation(s)
- Onno van der Groen
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | | | - Claudia Lunghi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - David Alais
- School of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
44
|
Landgraf S, Osterheider M. "To see or not to see: that is the question." The "Protection-Against-Schizophrenia" (PaSZ) model: evidence from congenital blindness and visuo-cognitive aberrations. Front Psychol 2013; 4:352. [PMID: 23847557 PMCID: PMC3696841 DOI: 10.3389/fpsyg.2013.00352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/30/2013] [Indexed: 12/12/2022] Open
Abstract
The causes of schizophrenia are still unknown. For the last 100 years, though, both “absent” and “perfect” vision have been associated with a lower risk for schizophrenia. Hence, vision itself and aberrations in visual functioning may be fundamental to the development and etiological explanations of the disorder. In this paper, we present the “Protection-Against-Schizophrenia” (PaSZ) model, which grades the risk for developing schizophrenia as a function of an individual's visual capacity. We review two vision perspectives: (1) “Absent” vision or how congenital blindness contributes to PaSZ and (2) “perfect” vision or how aberrations in visual functioning are associated with psychosis. First, we illustrate that, although congenitally blind and sighted individuals acquire similar world representations, blind individuals compensate for behavioral shortcomings through neurofunctional and multisensory reorganization. These reorganizations may indicate etiological explanations for their PaSZ. Second, we demonstrate that visuo-cognitive impairments are fundamental for the development of schizophrenia. Deteriorated visual information acquisition and processing contribute to higher-order cognitive dysfunctions and subsequently to schizophrenic symptoms. Finally, we provide different specific therapeutic recommendations for individuals who suffer from visual impairments (who never developed “normal” vision) and individuals who suffer from visual deterioration (who previously had “normal” visual skills). Rather than categorizing individuals as “normal” and “mentally disordered,” the PaSZ model uses a continuous scale to represent psychiatrically relevant human behavior. This not only provides a scientific basis for more fine-grained diagnostic assessments, earlier detection, and more appropriate therapeutic assignments, but it also outlines a trajectory for unraveling the causes of abnormal psychotic human self- and world-perception.
Collapse
Affiliation(s)
- Steffen Landgraf
- Department for Forensic Psychiatry and Psychotherapy, District Hospital, University Regensburg Regensburg, Germany ; Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany
| | | |
Collapse
|
45
|
Silverstein SM, Wang Y, Keane BP. Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front Psychol 2013; 3:624. [PMID: 23349646 PMCID: PMC3552473 DOI: 10.3389/fpsyg.2012.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/31/2012] [Indexed: 12/12/2022] Open
Abstract
Several authors have noted that there are no reported cases of people with schizophrenia who were born blind or who developed blindness shortly after birth, suggesting that congenital or early (C/E) blindness may serve as a protective factor against schizophrenia. By what mechanisms might this effect operate? Here, we hypothesize that C/E blindness offers protection by strengthening cognitive functions whose impairment characterizes schizophrenia, and by constraining cognitive processes that exhibit excessive flexibility in schizophrenia. After briefly summarizing evidence that schizophrenia is fundamentally a cognitive disorder, we review areas of perceptual and cognitive function that are both impaired in the illness and augmented in C/E blindness, as compared to healthy sighted individuals. We next discuss: (1) the role of neuroplasticity in driving these cognitive changes in C/E blindness; (2) evidence that C/E blindness does not confer protective effects against other mental disorders; and (3) evidence that other forms of C/E sensory loss (e.g., deafness) do not reduce the risk of schizophrenia. We conclude by discussing implications of these data for designing cognitive training interventions to reduce schizophrenia-related cognitive impairment, and perhaps to reduce the likelihood of the development of the disorder itself.
Collapse
Affiliation(s)
- Steven M. Silverstein
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Yushi Wang
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
| | - Brian P. Keane
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- Rutgers University Center for Cognitive SciencePiscataway, NJ, USA
| |
Collapse
|
46
|
Striem-Amit E, Bubic R, Amedi A. Neurophysiological Mechanisms Underlying Plastic Changes and Rehabilitation following Sensory Loss in Blindness and Deafness. Front Neurosci 2013. [DOI: 10.1201/9781439812174-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
47
|
Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME. Altered connectivity of the balance processing network after tongue stimulation in balance-impaired individuals. Brain Connect 2013; 3:87-97. [PMID: 23216162 PMCID: PMC3621359 DOI: 10.1089/brain.2012.0123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p ≤ 1E-5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network.
Collapse
Affiliation(s)
- Joe C Wildenberg
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | |
Collapse
|
48
|
McNorgan C. A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Front Hum Neurosci 2012; 6:285. [PMID: 23087637 PMCID: PMC3474291 DOI: 10.3389/fnhum.2012.00285] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
The relationship between imagery and mental representations induced through perception has been the subject of philosophical discussion since antiquity and of vigorous scientific debate in the last century. The relatively recent advent of functional neuroimaging has allowed neuroscientists to look for brain-based evidence for or against the argument that perceptual processes underlie mental imagery. Recent investigations of imagery in many new domains and the parallel development of new meta-analytic techniques now afford us a clearer picture of the relationship between the neural processes underlying imagery and perception, and indeed between imagery and other cognitive processes. This meta-analysis surveyed 65 studies investigating modality-specific imagery in auditory, tactile, motor, gustatory, olfactory, and three visual sub-domains: form, color and motion. Activation likelihood estimate (ALE) analyses of activation foci reported within- and across sensorimotor modalities were conducted. The results indicate that modality-specific imagery activations generally overlap with—but are not confined to—corresponding somatosensory processing and motor execution areas, and suggest that there is a core network of brain regions recruited during imagery, regardless of task. These findings have important implications for investigations of imagery and theories of cognitive processes, such as perceptually-based representational systems.
Collapse
Affiliation(s)
- Chris McNorgan
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA
| |
Collapse
|
49
|
Plasticity of the dorsal "spatial" stream in visually deprived individuals. Neural Plast 2012; 2012:687659. [PMID: 22970390 PMCID: PMC3433149 DOI: 10.1155/2012/687659] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Studies on visually deprived individuals provide one of the most striking demonstrations that the brain is highly plastic and is able to rewire as a function of the sensory input it receives from the environment. In the current paper, we focus on spatial abilities that are typically related to the dorsal visual pathway (i.e., spatial/motion processing). Bringing together evidence from cataract-reversal individuals, early- and late-blind individuals and sight-recovery cases of long-standing blindness, we suggest that the dorsal “spatial” pathway is mostly plastic early in life and is then more resistant to subsequent experience once it is set, highlighting some limits of neuroplasticity.
Collapse
|
50
|
Toussaint L, Caissie AF, Blandin Y. Does mental rotation ability depend on sensory-specific experience? JOURNAL OF COGNITIVE PSYCHOLOGY 2012. [DOI: 10.1080/20445911.2011.641529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|