1
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042099. [PMID: 35206286 PMCID: PMC8871992 DOI: 10.3390/ijerph19042099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Research on proteins and peptides that play roles in metabolic regulation, which may be considered potential insulin resistance markers in some medical conditions, such as diabetes mellitus, obesity and polycystic ovarian syndrome (PCOS), has recently gained in interest. PCOS is a common endocrine disorder associated with hyperandrogenemia and failure of ovulation, which is often accompanied by metabolic abnormalities, including obesity, dyslipidemia, hyperinsulinemia, and insulin resistance. In this review, we focus on less commonly known peptides/proteins and investigate their role as potential biomarkers for insulin resistance in females affected by PCOS. We summarize studies comparing the serum fasting concentration of particular agents in PCOS individuals and healthy controls. Based on our analysis, we propose that, in the majority of studies, the levels of nesfastin-1, myonectin, omentin, neudesin were decreased in PCOS patients, while the levels of the other considered agents (e.g., preptin, gremlin-1, neuregulin-4, xenopsin-related peptide, xenin-25, and galectin-3) were increased. However, there also exist studies presenting contrary results; in particular, most data existing for lipocalin-2 are inconsistent. Therefore, further research is required to confirm those hypotheses, as well as to elucidate the involvement of these factors in PCOS-related metabolic complications.
Collapse
|
3
|
Kuwahara Y, Takahashi K, Akai M, Kato I, Kozakai T, Asano S, Inui T, Marunaka Y, Kuwahara A. Minimum biological domain of xenin-25 required to induce anion secretion in the rat ileum. Peptides 2022; 147:170680. [PMID: 34757144 DOI: 10.1016/j.peptides.2021.170680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent. We have previously reported that xenin-25 modulates intestinal ion transport and colonic smooth muscle activity. However, minimal biological domain of xenin-25 to induce ion transport was not clear. To improve the mechanistic understanding of xenin-25 and to gain additional insights into the functions of xenin-25, the present study was designed to determine the minimal biological domain of xenin-25 required for ion transport in the rat ileum using various truncated xenin fragments and analogues in an Ussing chamber system. The present results demonstrate that the minimum biological domain of xenin-25 to induce Cl-/HCO3- secretion in the ileum contains the C-terminal pentapeptide. Furthermore, Arg at position 21 is important to retain the biological activity of xenin-25 and induces Cl-/HCO3- secretion in the rat ileum.
Collapse
Affiliation(s)
- Yuko Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kohei Takahashi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Miho Akai
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Takaharu Kozakai
- Faculty of Education, Art, and Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| |
Collapse
|
4
|
Craig SL, Irwin N, Gault VA. Xenin and Related Peptides: Potential Therapeutic Role in Diabetes and Related Metabolic Disorders. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211043868. [PMID: 34588834 PMCID: PMC8474313 DOI: 10.1177/11795514211043868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Xenin bioactivity and its role in normal physiology has been investigated by several research groups since its discovery in 1992. The 25 amino acid peptide hormone is secreted from the same enteroendocrine K-cells as the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), with early studies highlighting the biological significance of xenin in the gastrointestinal tract, along with effects on satiety. Recently there has been more focus directed towards the role of xenin in insulin secretion and potential for diabetes therapies, especially through its ability to potentiate the insulinotropic actions of GIP as well as utilisation in dual/triple acting gut hormone therapeutic approaches. Currently, there is a lack of clinically approved therapies aimed at restoring GIP bioactivity in type 2 diabetes mellitus, thus xenin could hold real promise as a diabetes therapy. The biological actions of xenin, including its ability to augment insulin secretion, induce satiety effects, as well as restoring GIP sensitivity, earmark this peptide as an attractive antidiabetic candidate. This minireview will focus on the multiple biological actions of xenin, together with its proposed mechanism of action and potential benefits for the treatment of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Sarah L Craig
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| | - Nigel Irwin
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| | - Victor A Gault
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| |
Collapse
|
5
|
Perry RA, Craig SL, Gault VA, Flatt PR, Irwin N. A novel neurotensin/xenin fusion peptide enhances β-cell function and exhibits antidiabetic efficacy in high-fat fed mice. Biosci Rep 2021; 41:BSR20211275. [PMID: 34370015 PMCID: PMC8390788 DOI: 10.1042/bsr20211275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotensin and xenin possess antidiabetic potential, mediated in part through augmentation of incretin hormone, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), action. In the present study, fragment peptides of neurotensin and xenin, acetyl-neurotensin and xenin-8-Gln, were fused together to create Ac-NT/XN-8-Gln. Following assessment of enzymatic stability, effects of Ac-NT/XN-8-Gln on in vitro β-cell function were studied. Subchronic antidiabetic efficacy of Ac-NT/XN-8-Gln alone, and in combination with the clinically approved GLP-1 receptor agonist exendin-4, was assessed in high-fat fed (HFF) mice. Ac-NT/XN-8-Gln was highly resistant to plasma enzyme degradation and induced dose-dependent insulin-releasing actions (P<0.05 to P<0.01) in BRIN-BD11 β-cells and isolated mouse islets. Ac-NT/XN-8-Gln augmented (P<0.001) the insulinotropic actions of GIP, while possessing independent β-cell proliferative (P<0.001) and anti-apoptotic (P<0.01) actions. Twice daily treatment of HFF mice with Ac-NT/XN-8-Gln for 32 days improved glycaemic control and circulating insulin, with benefits significantly enhanced by combined exendin-4 treatment. This was reflected by reduced body fat mass (P<0.001), improved circulating lipid profile (P<0.01) and reduced HbA1c concentrations (P<0.01) in the combined treatment group. Following an oral glucose challenge, glucose levels were markedly decreased (P<0.05) only in combination treatment group and superior to exendin-4 alone, with similar observations made in response to glucose plus GIP injection. The combined treatment group also presented with improved insulin sensitivity, decreased pancreatic insulin content as well as increased islet and β-cell areas. These data reveal that Ac-NT/XN-8-Gln is a biologically active neurotensin/xenin fusion peptide that displays prominent antidiabetic efficacy when administered together with exendin-4.
Collapse
Affiliation(s)
- Rachele A. Perry
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Sarah. L. Craig
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Victor A. Gault
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Peter R. Flatt
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| |
Collapse
|
6
|
Craig SL, Gault VA, Shiels CE, Hamscher G, Irwin N. Comparison of independent and combined effects of the neurotensin receptor agonist, JMV-449, and incretin mimetics on pancreatic islet function, glucose homeostasis and appetite control. Biochim Biophys Acta Gen Subj 2021; 1865:129917. [PMID: 33964357 DOI: 10.1016/j.bbagen.2021.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurotensin receptor activation augments the biosctivity of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). JMV-449, a C-terminal neurotensin-like fragment with a reduced peptide bond, represents a neurotensin receptor agonist. METHODS The present study assessed the actions of JMV-449 on pancreatic beta-cells alone, and in combination with GIP and GLP-1. Further studies examined the impact of JMV-449 and incretin mimetics on glucose homeostasis and appetite control in mice. RESULTS JMV-449 was resistant to plasma enzyme degradation and induced noticeable dose-dependent insulin-releasing actions in BRIN-BD11 beta-cells. In combination with either GIP or GLP-1, JMV-449 augmented (P < 0.05) the insulinotropic actions of both hormones, as well as enhancing (P < 0.001) insulin secretory activity of both incretin peptides. JMV-449 also increased beta-cell proliferation and induced significant benefits on beta-cell survival in response to cytokine-induced apoptosis. JMV-449 (25 nmol/kg) inhibited (P < 0.05-P < 0.001) food intake in overnight fasted lean mice, and enhanced (P < 0.01) the appetite supressing effects of an enzymatically stable GLP-1 mimetic. When injected co-jointly with glucose, JMV-449 evoked glucose lowering actions, but more interestingly significantly augmented (P < 0.05) the glucose lowering effects of established long-acting GIP and GLP-1 receptor mimetics. In terms of glucose-induced insulin secretion, only GIP receptor signalling was associated with increases in insulin concentrations, and this was not enhanced by JMV-449. CONCLUSION JMV-449 is a neurotensin receptor agonist that positively augments key aspects of the biological action profile of GIP and GLP-1. GENERAL SIGNIFICANCE These observations emphasise the, yet untapped, therapeutic potential of combined neurotensin and incretin receptor signalling for diabetes.
Collapse
Affiliation(s)
- S L Craig
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - C E Shiels
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - G Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, Giessen, Germany
| | - N Irwin
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
7
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
9
|
Tanday N, Moffett RC, Gault VA, Flatt PR, Irwin N. Enzymatically stable analogue of the gut-derived peptide xenin on beta-cell transdifferentiation in high fat fed and insulin-deficient Ins1 Cre/+ ;Rosa26-eYFP mice. Diabetes Metab Res Rev 2021; 37:e3384. [PMID: 32662136 DOI: 10.1002/dmrr.3384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The antidiabetic effects of the gut hormone xenin include augmenting insulin secretion and positively affecting pancreatic islet architecture. METHODS The current study has further probed pancreatic effects through sub-chronic administration of the long-acting xenin analogue, xenin-25[Lys13 PAL], in both high fat fed (HFF) and streptozotocin (STZ)-induced insulin-deficient Ins1Cre/+ ;Rosa26-eYFP transgenic mice. Parallel effects on metabolic control and pancreatic islet morphology, including islet beta-cell lineage tracing were also assessed. RESULTS Xenin-25[Lys13 PAL] treatment reversed body weight loss induced by STZ, increased plasma insulin and decreased blood glucose levels. There were less obvious effects on these parameters in HFF mice, but all xenin-25[Lys13 PAL] treated mice exhibited decreased pancreatic alpha-cell areas and circulating glucagon. Xenin-25[Lys13 PAL] treatment fully, or partially, returned overall islet and beta-cell areas in STZ- and HFF mice to those of lean control animals, respectively, and was consistently associated with decreased beta-cell apoptosis. Interestingly, xenin-25[Lys13 PAL] also increased beta-cell proliferation and decreased alpha-cell apoptosis in STZ mice, with reduced alpha-cell growth noted in HFF mice. Lineage tracing studies revealed that xenin-25[Lys13 PAL] reduced the number of insulin positive pancreatic islet cells that lost their beta-cell identity, in keeping with a decreased transition of insulin positive to glucagon positive cells. These beneficial effects on islet cell differentiation were linked to maintained expression of Pdx1 within beta-cells. Xenin-25[Lys13 PAL] treatment was also associated with increased numbers of smaller sized islets in both models. CONCLUSIONS Benefits of xenin-25[Lys13 PAL] on diabetes includes positive modulation of islet cell differentiation, in addition to promoting beta-cell growth and survival.
Collapse
Affiliation(s)
- Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
10
|
Wölk E, Stengel A, Schaper SJ, Rose M, Hofmann T. Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Front Behav Neurosci 2021; 15:629729. [PMID: 33664656 PMCID: PMC7921165 DOI: 10.3389/fnbeh.2021.629729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 ± 9.5 kg/m2. Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p < 0.001; men: r = 0.731, p < 0.001) and did not significantly differ between sexes (p > 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 ± 21.7 vs. 47.0 ± 20.8, p = 0.002; GAD-7: 9.7 ± 5.8 vs. 7.1 ± 5.3, p = 0.004; PHQ-9: 11.6 ± 6.6 vs. 8.8 ± 5.9, p = 0.008; EDI-2: 50.5 ± 12.8 vs. 39.7 ± 11.9, p < 0.001). Only women showed positive correlations of both neuropeptides with stress (neurotensin: r = 0.231, p = 0.023; xenin: r = 0.254, p = 0.013), anxiety (neurotensin: r = 0.265, p = 0.009; xenin: r = 0.257, p = 0.012), depressiveness (neurotensin: r = 0.281, p = 0.006; xenin: r = 0.241, p = 0.019) and eating disorder symptoms (neurotensin: r = 0.276, p = 0.007; xenin: r = 0.26, p = 0.011), whereas, men did not (p > 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation.
Collapse
Affiliation(s)
- Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
The methionine aminopeptidase 2 inhibitor, TNP-470, enhances the antidiabetic properties of sitagliptin in mice by upregulating xenin. Biochem Pharmacol 2020; 183:114355. [PMID: 33279496 DOI: 10.1016/j.bcp.2020.114355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
The therapeutic mechanism of action of methionine aminopeptidase 2 (MetAP2) inhibitors for obesity-diabetes has not yet been fully defined. Xenin, a K-cell derived peptide hormone, possesses an N-terminal Met amino acid residue. Thus, elevated xenin levels could represent a potential pharmacological mechanism of MetAP2 inhibitors, since long-acting xenin analogues have been shown to improve obesity-diabetes. The present study has assessed the ability of the MetAP2 inhibitor, TNP-470, to augment the antidiabetic utility of the incretin-enhancer drug, sitagliptin, in high fat fed (HFF) mice. TNP-470 (1 mg/kg) and sitagliptin (25 mg/kg) were administered once-daily alone, or in combination, to diabetic HFF mice (n = 10) for 18 days. Individual therapy with TNP-470 or sitagliptin resulted in numerous metabolic benefits including reduced blood glucose, increased circulating and pancreatic insulin and improved glucose tolerance, insulin sensitivity, pyruvate tolerance and overall pancreatic islet architecture. Further assessment of metabolic rate revealed that all treatments reduced respiratory exchange ratio and increased locomotor activity. All sitagliptin treated mice also exhibited increased energy expenditure. In addition, treatment with TNP-470 alone, or in combination with sitagliptin, reduced food intake and body weight, as well as elevating plasma and intestinal xenin. Importantly, combined sitagliptin and TNP-470 therapy was associated with further significant benefits beyond that observed by either treatment alone. This included more rapid restoration of normoglycaemia, superior glucose tolerance, increased circulating GIP concentrations and an enhanced pancreatic beta:alpha cell ratio. In conclusion, these data demonstrate that TNP-470 increases plasma and intestinal xenin levels, and augments the antidiabetic advantages of sitagliptin.
Collapse
|
12
|
English A, Craig SL, Flatt PR, Irwin N. Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes. Biol Chem 2020; 401:1293-1303. [PMID: 32769216 DOI: 10.1515/hsz-2020-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP), released postprandially from K-cells, has established actions on adipocytes and lipid metabolism. In addition, xenin, a related peptide hormone also secreted from K-cells after a meal, has postulated effects on energy regulation and lipid turnover. The current study has probed direct individual and combined effects of GIP and xenin on adipocyte function in 3T3-L1 adipocytes, using enzyme-resistant peptide analogues, (d-Ala2)GIP and xenin-25-Gln, and knockdown (KD) of receptors for both peptides. (d-Ala2)GIP stimulated adipocyte differentiation and lipid accumulation in 3T3-L1 adipocytes over 96 h, with xenin-25-Gln evoking similar effects. Combined treatment significantly countered these individual adipogenic effects. Individual receptor KD impaired lipid accumulation and adipocyte differentiation, with combined receptor KD preventing differentiation. (d-Ala2)GIP and xenin-25-Gln increased glycerol release from 3T3-L1 adipocytes, but this lipolytic effect was significantly less apparent with combined treatment. Key adipogenic and lipolytic genes were upregulated by (d-Ala2)GIP or xenin-25-Gln, but not by dual peptide culture. Similarly, both (d-Ala2)GIP and xenin-25-Gln stimulated insulin-induced glucose uptake in 3T3-L1 adipocytes, but this effect was annulled by dual treatment. In conclusion, GIP and xenin possess direct, comparable, lipogenic and lipolytic actions in 3T3-L1 adipocytes. However, effects on lipid metabolism are significantly diminished by combined administration.
Collapse
Affiliation(s)
- Andrew English
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Sarah L Craig
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
13
|
Gobron B, Bouvard B, Vyavahare S, Blom LV, Pedersen KK, Windeløv JA, Boer GA, Harada N, Zhang S, Shimazu-Kuwahara S, Wice B, Inagaki N, Legrand E, Flatt PR, Chappard D, Hartmann B, Holst JJ, Rosenkilde MM, Irwin N, Mabilleau G. Enteroendocrine K Cells Exert Complementary Effects to Control Bone Quality and Mass in Mice. J Bone Miner Res 2020; 35:1363-1374. [PMID: 32155286 DOI: 10.1002/jbmr.4004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benoît Gobron
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Béatrice Bouvard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Sagar Vyavahare
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Liv Vv Blom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Pedersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke A Boer
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Norio Harada
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sheng Zhang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Satoko Shimazu-Kuwahara
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Burton Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erick Legrand
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Daniel Chappard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Guillaume Mabilleau
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| |
Collapse
|
14
|
Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP's involvement in the pathophysiology of type 2 diabetes. Peptides 2020; 125:170178. [PMID: 31682875 DOI: 10.1016/j.peptides.2019.170178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
During the past four decades derangements in glucose-dependent insulinotropic polypeptide (GIP) biology has been viewed upon as contributing factors to various parts of the pathophysiology type 2 diabetes. This overview outlines and discusses the impaired insulin responses to GIP as well as the effect of GIP on glucagon secretion and the potential involvement of GIP in the obesity and bone disease associated with type 2 diabetes. As outlined in this review, it is unlikely that the impaired insulinotropic effect of GIP occurs as a primary event in the development of type 2 diabetes, but rather develops once the diabetic state is present and beta cells are unable to maintain normoglycemia. In various models, GIP has effects on glucagon secretion, bone and lipid homeostasis, but whether these effects contribute substantially to the pathophysiology of type 2 diabetes is at present controversial. The review also discusses the substantial uncertainty surrounding the translation of preclinical data relating to the GIP system and outline future research directions.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Reimann F, Diakogiannaki E, Hodge D, Gribble FM. Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion. Peptides 2020; 125:170206. [PMID: 31756367 DOI: 10.1016/j.peptides.2019.170206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/01/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted from the upper small intestine, which plays an important physiological role in the control of glucose metabolism through its incretin action to enhance glucose-dependent insulin secretion. GIP has also been implicated in postprandial lipid homeostasis. GIP is secreted from enteroendocrine K-cells residing in the intestinal epithelium. K-cells sense a variety of components found in the gut lumen following food consumption, resulting in an increase in plasma GIP signal dependent on the nature and quantity of ingested nutrients. We review the evidence for an important role of sodium-coupled glucose uptake through SGLT1 for carbohydrate sensing, of free-fatty acid receptors FFAR1/FFAR4 and the monoacyl-glycerol sensing receptor GPR119 for lipid detection, of the calcium-sensing receptor CASR and GPR142 for protein sensing, and additional modulation by neurotransmitters such as somatostatin and galanin. These pathways have been identified through combinations of in vivo, in vitro and molecular approaches.
Collapse
Affiliation(s)
- Frank Reimann
- Wellcome Trust/MRC Institute of Metabolic Science (IMS), University of Cambridge, United Kingdom.
| | - Eleftheria Diakogiannaki
- Wellcome Trust/MRC Institute of Metabolic Science (IMS), University of Cambridge, United Kingdom
| | - Daryl Hodge
- Wellcome Trust/MRC Institute of Metabolic Science (IMS), University of Cambridge, United Kingdom
| | - Fiona M Gribble
- Wellcome Trust/MRC Institute of Metabolic Science (IMS), University of Cambridge, United Kingdom.
| |
Collapse
|
16
|
Sarnobat D, Moffett RC, Gault VA, Tanday N, Reimann F, Gribble FM, Flatt PR, Irwin N. Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic Glu CreERT2;ROSA26-eYFP mice. Peptides 2020; 125:170205. [PMID: 31738969 PMCID: PMC7212078 DOI: 10.1016/j.peptides.2019.170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023]
Abstract
Enzyme-resistant long-acting forms of the gut-derived peptide hormones, glucose-dependent insulinotropic polypeptide (GIP), xenin and oxyntomodulin (Oxm) have been generated, and exert beneficial effects on diabetes control and pancreatic islet architecture. The current study has employed alpha-cell lineage tracing in GluCreERT2;ROSA26-eYFP transgenic mice to investigate the extent to which these positive pancreatic effects are associated with alpha- to beta-cell transdifferentiation. Twice-daily administration of (D-Ala2)GIP, xenin-25[Lys13PAL] or (D-Ser2)-Oxm[Lys38PAL] for 10 days to streptozotocin (STZ)-induced diabetic mice did not affect body weight, food intake or blood glucose levels, but (D-Ser2)-Oxm[Lys38PAL] reduced (P < 0.05 to P < 0.001) fluid intake and circulating glucagon. (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] also augmented (P < 0.05 and P < 0.01, respectively) pancreatic insulin content. Detrimental changes of pancreatic morphology induced by STZ in GluCreERT2;ROSA26-eYFP mice were partially reversed by all treatment interventions. This was associated with reduced (P < 0.05) apoptosis and increased (P < 0.05 to P < 0.01) proliferation of beta-cells, alongside opposing effects on alpha-cells, with (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] being particularly effective in this regard. Alpha-cell lineage tracing revealed that induction of diabetes was accompanied by increased (P < 0.01) transdifferentiation of glucagon positive alpha-cells to insulin positive beta-cells. This islet cell transitioning process was augmented (P < 0.01 and P < 0.001, respectively) by (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL]. (D-Ser2)-Oxm[Lys38PAL] also significantly (P < 0.05) promoted loss of alpha-cell identity in favour of other endocrine islet cells. These data highlight intra-islet benefits of (D-Ala2)GIP, xenin-25[Lys13PAL] and (D-Ser2)-Oxm[Lys38PAL] in diabetes with beta-cell loss induced by STZ. The effects appear to be independent of glycaemic change, and associated with alpha- to beta-cell transdifferentiation for the GIP and Oxm analogues.
Collapse
Affiliation(s)
- Dipak Sarnobat
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
17
|
Craig S, Perry R, Vyavahare S, Ng M, Gault V, Flatt P, Irwin N. A GIP/xenin hybrid in combination with exendin-4 improves metabolic status in db/db diabetic mice and promotes enduring antidiabetic benefits in high fat fed mice. Biochem Pharmacol 2020; 171:113723. [DOI: 10.1016/j.bcp.2019.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
|
18
|
Antidiabetic effects and sustained metabolic benefits of sub-chronic co-administration of exendin-4/gastrin and xenin-8-Gln in high fat fed mice. Eur J Pharmacol 2019; 865:172733. [PMID: 31614140 DOI: 10.1016/j.ejphar.2019.172733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022]
Abstract
The present study has examined the antidiabetic effects of 21 days co-administration of xenin-8-Gln with the dual-acting fusion peptide, exendin-4/gastrin, as well as persistence of beneficial metabolic benefits, in high fat fed (HFF) mice. Xenin-8-Gln, exendin-4 and gastrin represent compounds that activate receptors of the gut-derived hormones, xenin, glucagon-like peptide-1 (GLP-1) and gastrin, respectively. Twice-daily administration of exendin-4/gastrin, xenin-8-Gln or a combination of both peptides significantly reduced circulating glucose, HbA1c and cumulative energy intake. Combination therapy with xenin-8-Gln and exendin-4/gastrin increased circulating insulin. All HFF mice treated with exendin-4/gastrin presented with body weight similar to lean control mice on day 21. Each treatment improved glucose tolerance and the glucose-lowering actions of glucose dependent insulinotropic polypeptide (GIP), as well as augmenting glucose- and GIP-induced insulin secretion, with benefits being most prominent in the combination group. Administration of exendin-4/gastrin alone, and in combination with xenin-8-Gln, increased pancreatic insulin content and improved the insulin sensitivity index. Pancreatic beta-cell area was significantly increased, and alpha cell area decreased, by all treatments, with the combination group also displaying enhanced overall islet area. Notably, metabolic benefits were generally retained in all groups of HFF mice, and especially in the combination group, following discontinuation of the treatment regimens for 21 days. This was associated with maintenance of increased islet and beta-cell areas. Together, these data confirm the antidiabetic effects of co-activation of GLP-1, gastrin and xenin cell signalling pathways, and highlight the sustainable benefits this type of treatment paradigm can offer in T2DM.
Collapse
|
19
|
English A, Irwin N. Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419888871. [PMID: 32425629 PMCID: PMC7216561 DOI: 10.1177/1179551419888871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
The pancreas has physiologically important endocrine and exocrine functions; secreting enzymes into the small intestine to aid digestion and releasing multiple peptide hormones via the islets of Langerhans to regulate glucose metabolism, respectively. Insulin and glucagon, in combination with ghrelin, pancreatic polypeptide and somatostatin, are the main classical islet peptides critical for the maintenance of blood glucose. However, pancreatic islets also synthesis numerous ‘nonclassical’ peptides that have recently been demonstrated to exert fundamental effects on overall islet function and metabolism. As such, insights into the physiological relevance of these nonclassical peptides have shown impact on glucose metabolism, insulin action, cell survival, weight loss, and energy expenditure. This review will focus on the role of individual nonclassical islet peptides to stimulate pancreatic islet secretions as well as regulate metabolism. In addition, the more recognised actions of these peptides on satiety and energy regulation will also be considered. Furthermore, recent advances in the field of peptide therapeutics and obesity-diabetes have focused on the benefits of simultaneously targeting several hormone receptor signalling cascades. The potential for nonclassical islet hormones within such combinational approaches will also be discussed.
Collapse
Affiliation(s)
- Andrew English
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
20
|
Guclu YA, Sahin E, Aksit M. The relationship between elevated serum xenin and insulin resistance in women with polycystic ovary syndrome: a case-control study. Gynecol Endocrinol 2019; 35:960-964. [PMID: 31010340 DOI: 10.1080/09513590.2019.1604663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study aims to determine whether serum xenin-25 levels are altered in women with polycystic ovary syndrome (PCOS). The study included 31 women diagnosed with PCOS according to the 2003 Rotterdam criteria and 30 healthy controls. The primary outcome was serum xenin-25 levels. Other variables evaluated were menstrual history, physical findings, Ferriman-Gallwey hirsutism score, blood pressure, transvaginal ultrasonography, fasting blood glucose, insulin, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, C-reactive protein, follicle stimulating hormone, luteinizing hormone, estradiol, total testosterone, dehydroepiandrosterone sulfate, and day-21 progesterone. Median (min-max) values of xenin-25 were 45.50 pg/mL (7.10-656.40) and 9.85 pg/mL (7.00-564.40) for cases and controls, respectively, demonstrating a significant difference (Z = 2.803, p = .007). The ROC curve for xenin-25 predicting the PCOS risk had an area under the curve of 0.747. The optimal cutoff value of xenin-25 for detecting PCOS was calculated as ≥32.60 pg/mL with sensitivity, specificity values of 61.3% and 86.7%, respectively. A logistic regression model including xenin-25, FSH, Ferriman-Gallwey score, and Menstrual cycle frequency demonstrated the independent relationship of xenin-25 on PCOS (p < .05). This study demonstrated that xenin-25 may contribute to the diagnosis of PCOS. Further studies are needed to fully elucidate the effects of xenin-25 in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yusuf Adnan Guclu
- Department of Family Medicine, Tepecik Education and Research Hospital, Health Sciences University , Izmir , Turkey
| | - Ebru Sahin
- Department of Gynecology and Obstetrics, Tepecik Education and Research Hospital, Health Sciences University , Izmir , Turkey
| | - Murat Aksit
- Department of Biochemistry, Tepecik Education and Research Hospital , Izmir , Turkey
| |
Collapse
|
21
|
Craig SL, Gault VA, McClean S, Hamscher G, Irwin N. Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, ψ-xenin-6, on pancreatic islet function and metabolism. Mol Cell Endocrinol 2019; 496:110523. [PMID: 31352038 DOI: 10.1016/j.mce.2019.110523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The present study was undertaken to define the biological actions and potential antidiabetic properties of Ψ-xenin-6. In vitro enzymatic stability, insulin and glucagon secretory activity, as well as effects on beta-cell survival were determined. Studies in mice were used to assess the impact of Ψ-xenin-6 on glucose homeostasis and satiety. Ψ-xenin-6 was resistant to murine plasma degradation. In BRIN-BD11 cells and isolated murine islets, Ψ-xenin-6 significantly stimulated insulin secretion, and prominently enhanced the insulinotropic actions of GIP. Xenin-6 and Ψ-xenin-6 had no impact on glucagon secretion, although xenin-6 partially reversed the glucagonotropic action of GIP. Further in vitro investigations revealed that, similar to GLP-1, Ψ-xenin-6 significantly augmented proliferation of human and rodent clonal beta-cells, whilst also fully protecting against cytokine-induced beta-cell cytotoxicity, with greater potency than xenin-25 and xenin-6. When administered to mice in combination with glucose, Ψ-xenin-6 significantly reduced glucose levels and enhanced glucose-induced insulin release, with a duration of biological action beyond 8 h. Ψ-xenin-6 also significantly enhanced the glucose-lowering action of GIP in vivo. In overnight fasted mice, Ψ-xenin-6 exhibited satiety actions at both 25 and 250 nmol/kg. These data demonstrates that Ψ-xenin-6 is a metabolically stable C-terminal fragment analogue of xenin-25, with a metabolic action profile that merits further study as a potential antidiabetic compound.
Collapse
Affiliation(s)
- S L Craig
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - G Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Germany
| | - N Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
22
|
Kuwahara A, Kuwahara Y, Kato I, Kawaguchi K, Harata D, Asano S, Inui T, Marunaka Y. Xenin-25 induces anion secretion by activating noncholinergic secretomotor neurons in the rat ileum. Am J Physiol Gastrointest Liver Physiol 2019; 316:G785-G796. [PMID: 30978113 DOI: 10.1152/ajpgi.00333.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan
| | - Yuko Kuwahara
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University , Kobe , Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Daiki Harata
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | | | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association , Kyoto , Japan
| |
Collapse
|
23
|
Verma MK, Goel R, Krishnadas N, Nemmani KVS. Targeting glucose-dependent insulinotropic polypeptide receptor for neurodegenerative disorders. Expert Opin Ther Targets 2018; 22:615-628. [PMID: 29911915 DOI: 10.1080/14728222.2018.1487952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1) exert pleiotropic effects on endocrine pancreas and nervous system. Expression of GIP and GIP receptor (GIPR) in neurons, their roles in neurogenesis, synaptic plasticity, neurotransmission, and neuromodulation uniquely position GIPR for therapeutic applications in neurodegenerative disorders. GIP analogs acting as GIPR agonists attenuate neurobehavioral and neuropathological sequelae of neurodegenerative disorders in preclinical models, e.g. Alzheimer's disease (AD), Parkinson's disease (PD), and cerebrovascular disorders. Modulation of GIPR signaling offers an unprecedented approach for disease modification by arresting neuronal viability decline, enabling neuronal regeneration, and reducing neuroinflammation. Growth-promoting effects of GIP signaling and broad-based neuroprotection highlight the therapeutic potential of GIPR agonists. Areas covered: This review focuses on the role of GIPR-mediated signaling in the central nervous system in neurophysiological and neuropathological conditions. In context of neurodegeneration, the article summarizes potential of targeting GIPR signaling for neurodegenerative conditions such as AD, PD, traumatic brain injury, and cerebrovascular disorders. Expert opinion: GIPR represents a validated therapeutic target for neurodegenerative disorders. GIPR agonists impart symptomatic improvements, slowed neurodegeneration, and enhanced neuronal regenerative capacity in preclinical models. Modulation of GIPR signaling is potentially a viable therapeutic approach for disease modification in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahip K Verma
- a Department of Pharmacology, Novel Drug Discovery and Development , Lupin Limited , Pune , India
| | - Rajan Goel
- a Department of Pharmacology, Novel Drug Discovery and Development , Lupin Limited , Pune , India
| | - Nandakumar Krishnadas
- b Department of Pharmacology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE) , Manipal , India
| | - Kumar V S Nemmani
- a Department of Pharmacology, Novel Drug Discovery and Development , Lupin Limited , Pune , India
| |
Collapse
|