1
|
Effect of FIGF overexpression on liver cells transforming to insulin-producing cells. J Biosci 2019. [DOI: 10.1007/s12038-019-9965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Bell GI, Seneviratne AK, Nasri GN, Hess DA. Transplantation Models to Characterize the Mechanisms of Stem Cell–Induced Islet Regeneration. ACTA ACUST UNITED AC 2018; 26:2B.4.1-2B.4.35. [DOI: 10.1002/9780470151808.sc02b04s26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gillian I. Bell
- Vascular Biology Research Group Robarts Research Institute Department of Physiology and Pharmacology The University of Western Ontario London Ontario Canada
| | - Ayesh K. Seneviratne
- Vascular Biology Research Group Robarts Research Institute Department of Physiology and Pharmacology The University of Western Ontario London Ontario Canada
| | - Grace N. Nasri
- Bachelors in Medical Sciences Program The University of Western Ontario London Ontario Canada
| | - David A. Hess
- Vascular Biology Research Group Robarts Research Institute Department of Physiology and Pharmacology The University of Western Ontario London Ontario Canada
| |
Collapse
|
3
|
Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, Mollard P, Schaeffer M, Fernandez A, Lamb NJC. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res Ther 2017; 8:86. [PMID: 28420418 PMCID: PMC5395782 DOI: 10.1186/s13287-017-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency. Results In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10–12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2–4 weeks. Conclusion These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0539-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violeta Mitutsova
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Wendy Wai Yeng Yeo
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Romain Davaze
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Celine Franckhauser
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - El-Habib Hani
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Syahril Abdullah
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Patrice Mollard
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Marie Schaeffer
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| | - Ned J C Lamb
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| |
Collapse
|
4
|
You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH. Adenoviruses Expressing PDX-1, BETA2/NeuroD and MafA Induces the Transdifferentiation of Porcine Neonatal Pancreas Cell Clusters and Adult Pig Pancreatic Cells into Beta-Cells. Diabetes Metab J 2011; 35:119-29. [PMID: 21738894 PMCID: PMC3122894 DOI: 10.4093/dmj.2011.35.2.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/08/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A limitation in the number of insulin-producing pancreatic beta-cells is a special feature of diabetes. The identification of alternative sources for the induction of insulin-producing surrogate beta-cells is a matter of profound importance. PDX-1/VP16, BETA2/NeuroD, and MafA overexpression have been shown to influence the differentiation and proliferation of pancreatic stem cells. However, few studies have been conducted using adult animal pancreatic stem cells. METHODS Adult pig pancreatic cells were prepared from the non-endocrine fraction of adult pig pancreata. Porcine neonatal pancreas cell clusters (NPCCs) were prepared from neonatal pigs aged 1-2 days. The dispersed pancreatic cells were infected with PDX-1/VP16, BETA2/NeuroD, and MafA adenoviruses. After infection, these cells were transplanted under the kidney capsules of normoglycemic nude mice. RESULTS The adenovirus-mediated overexpression of PDX-1, BETA2/NeuroD and MafA induced insulin gene expression in NPCCs, but not in adult pig pancreatic cells. Immunocytochemistry revealed that the number of insulin-positive cells in NPCCs and adult pig pancreatic cells was approximately 2.6- and 1.1-fold greater than those in the green fluorescent protein control group, respectively. At four weeks after transplantation, the relative volume of insulin-positive cells in the grafts increased in the NPCCs, but not in the adult porcine pancreatic cells. CONCLUSION These data indicate that PDX-1, BETA2/NeuroD, and MafA facilitate the beta-cell differentiation of NPCCs, but not adult pig pancreatic cells. Therefore PDX-1, BETA2/NeuroD, and MafA-induced NPCCs can be considered good sources for the induction of pancreatic beta-cells, and may also have some utility in the treatment of diabetes.
Collapse
Affiliation(s)
- Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Dong-Sik Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Heon-Seok Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Marie Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Kim SY, Lee S, Hong SW, Min BH, Lee KU, Bendayan M, Park IS. Nestin action during insulin-secreting cell differentiation. J Histochem Cytochem 2010; 58:567-76. [PMID: 20197491 DOI: 10.1369/jhc.2010.955682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nestin, which was initially identified as a marker of neural stem cells, has been reported in regenerating pancreas as well as in early embryonic stem (ES) cell derivatives. However, little is known about its specific roles in stem cells as a functional regulator. We investigated the source of the action of nestin in ES and adult pancreatic ductal stem (PDS) cells in regard to the neogenesis of insulin-secreting beta-cells. In ES cells, suppression of nestin by gene silencing led to an increased expression of the pluripotency-associated genes, including Oct 4, Nanog, and SSEA-1, before embryoid body (EB) formation, whereas it reduced endodermal and pancreatic transcription factors in EBs. Inhibition of nestin expression in adult PDS cells caused a low expression of pancreatic transcription factors and islet hormones, leading to poor beta-cell development and insulin secretion. These data may indicate not only that nestin is a simple stem cell marker, but also that it constitutes a functional factor at the time of stem cell differentiation. We suggest that nestin plays pivotal roles as an intermediate regulator governing both stemness and differentiation of stem cells in the process of their differentiation into insulin-secreting cells.
Collapse
Affiliation(s)
- So-Yoon Kim
- Department of Anatomy and BK21 Center for Advanced Medical Education, College of Medicine, Inha University, Shinheung-Dong, Jung-Gu, Incheon, 400-103, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Hillel AT, Varghese S, Petsche J, Shamblott MJ, Elisseeff JH. Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Eng Part A 2009; 15:479-86. [PMID: 18673089 DOI: 10.1089/ten.tea.2007.0352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is an extensive clinical need for soft tissue filler materials, such as adipose tissue, for plastic and reconstructive surgery. Due to limitations with autologous adipose transplantation, engineered adipose tissue provides a potential alternative therapy. Embryonic germ cells form embryoid bodies and subsequent embryoid body-derived (EBD) cells have the ability to differentiate toward multiple tissue types. The objective of this study was to demonstrate that EBD cells were capable of adipogenic differentiation in vitro and in vivo using a poly(ethylene glycol)-based hydrogel scaffold. EBD cells underwent adipogenic differentiation in vitro and in vivo. Results were directly compared to adipogenic differentiation of adult bone marrow-derived mesenchymal stem cells (MSCs). Differentiated EBD cells in both monolayer and three-dimensional in vitro culture demonstrated fat granules by light microscopy, stained positive for lipids with oil red-O, and expressed adipocyte-specific genes (lipoprotein lipase [LPL], peroxisome proliferator activated receptor gamma2, and adipocyte-specific fatty acid binding protein [alphaP2]). In vivo constructs demonstrated adipogenic differentiation by alphaP2 and LPL gene expression and oil red-O staining of lipid granules. In conclusion, EBD cells are capable of differentiating toward an adipogenic lineage in vitro and in vivo. EBD cells' adipogenic differentiation is comparable to that of MSCs and demonstrate therapeutic potential for soft tissue augmentation and reconstruction.
Collapse
Affiliation(s)
- Alexander T Hillel
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
7
|
Gerlach JC, Zeilinger K, Patzer II JF. Bioartificial liver systems: why, what, whither? Regen Med 2008; 3:575-95. [DOI: 10.2217/17460751.3.4.575] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute liver disease is a life-threatening condition for which liver transplantation is the only recognized effective therapy. While etiology varies considerably, the clinical course of acute liver failure is common among the etiologies: encephalopathy progressing toward coma and multiple organ failure. Detoxification processes, such as molecular adsorbent recirculating system (MARS®) and Prometheus, have had limited success in altering blood chemistries positively in clinical evaluations, but have not been shown to be clinically effective with regard to patient survival or other clinical outcomes in any Phase III prospective, randomized trial. Bioartificial liver systems, which use liver cells (hepatocytes) to provide metabolic support as well as detoxification, have shown promising results in early clinical evaluations, but again have not demonstrated clinical significance in any Phase III prospective, randomized trial. Cell transplantation therapy has had limited success but is not practicable for wide use owing to a lack of cells (whole-organ transplantation has priority). New approaches in regenerative medicine for treatment of liver disease need to be directed toward providing a functional cell source, expandable in large quantities, for use in various applications. To this end, a novel bioreactor design is described that closely mimics the native liver cell environment and is easily scaled from microscopic (<1 ml cells) to clinical (∼600 ml cells) size, while maintaining the same local cell environment throughout the bioreactor. The bioreactor is used for study of primary liver cell isolates, liver-derived cell lines and stem/progenitor cells.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Departments of Surgery & Bioengineering, McGowan Institute for Regenerative Medicine, Bridgeside Point Bldg., 100 Technology Drive, Suite 225, Pittsburgh, PA 15219-3130, USA
- Charite - Campus Virchow, Humboldt University Berlin, Germany
| | | | - John F Patzer II
- Departments of Bioengineering, Chemical Engineering & Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
8
|
Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 2008; 317:531-40. [PMID: 18394599 DOI: 10.1016/j.ydbio.2008.02.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
High levels of Ngn3 expression in pancreatic progenitor cells are both necessary and sufficient to initiate endocrine differentiation. While it is clear that the Notch-Hes1-mediated signals control the number of Ngn3-expressing cells in the developing pancreas, it is not known what factors control the level of Ngn3 expression in individual pancreatic cells. Here we report that Myt1b and Ngn3 form a feed-forward expression loop that regulates endocrine differentiation. Myt1b induces glucagon expression by potentiating Ngn3 transcription in pancreatic progenitors. Vice versa, Ngn3 protein production induces the expression of Myt1. Furthermore, pancreatic Myt1 expression largely, but not totally, relies on Ngn3 activity. Surprisingly, a portion of Myt1 expressing pancreatic cells express glucagon and other alpha cell markers in Ngn3 nullizygous mutant animals. These results demonstrate that Myt1b and Ngn3 positively regulate each other's expression to promote endocrine differentiation. In addition, the data uncover an unexpected Ngn3 expression-independent endocrine cell production pathway, which further bolsters the notion that the seemingly equivalent endocrine cells of each type, as judged by hormone and transcription factor expression, are heterogeneous in their origin.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology, Department of Cell and Developmental Biology, 465 21st Avenue South, Rm 4128, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mfopou JK, Bouwens L. Hedgehog signals in pancreatic differentiation from embryonic stem cells: revisiting the neglected. Differentiation 2007; 76:107-17. [PMID: 17573915 DOI: 10.1111/j.1432-0436.2007.00191.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent demonstrations of insulin expression by progenies of mouse and human embryonic stem (ES) cells have attracted interest in setting up these cells as alternative sources of beta-cells needed in diabetes cell therapy. It is widely acknowledged that information gathered in the field of developmental biology as applied to the pancreas is of relevance for designing in vitro differentiation strategies. However, looking back at the protocols used so far, it appears that the natural route toward the pancreas, which goes via the definitive endoderm, was usually bypassed. As a consequence Hedgehog signaling, the earliest inhibitor of pancreas initiation from the endoderm, was generally not considered. A recall of the status of this pathway during ES cell differentiation appears necessary, especially in the light of findings that Activin A treatment of mouse and human ES cells coax them into definitive endoderm, a lineage showing wide Hedgehog ligands expression with the potential to hinder pancreatic programming.
Collapse
Affiliation(s)
- J K Mfopou
- Cell Differentiation Unit, Diabetes Research Center, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | |
Collapse
|
10
|
Abstract
Hybrid extracorporeal liver support is an option to assist liver transplantation therapy. An overview on liver cell bioreactors is given and our own development is described. Furthermore, the prospects of the utilization of human liver cells from discarded transplantation organs due to steatosis, cirrhosis, or traumatic injury, and liver progenitor cells are discussed. Our Modular Extracorporeal Liver Support (MELS) concept proposes an integrative approach for the treatment of hepatic failure with appropriate extracorporeal therapy units, tailored to suit the actual clinical needs of each patient. The CellModule is a specific bioreactor (charged actually with primary human liver cells, harvested from human donor livers found to be unsuitable for transplantation). The DetoxModule enables albumin dialysis for the removal of albumin-bound toxins, reducing the biochemical burden of the liver cells and replacing the bile excretion of hepatocytes in the bioreactor. A Dialysis Module for continuous veno-venous hemofiltration can be added to the system if required in hepato-renal syndrome.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Bieberich E. Replacement of insulin by LongR3-IGF-1 allows for the differentiation of ES cells into neuroprogenitors and insulin-secreting cells. Anal Biochem 2005; 346:185-7. [PMID: 16169509 DOI: 10.1016/j.ab.2005.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Revised: 07/18/2005] [Accepted: 07/26/2005] [Indexed: 11/27/2022]
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, 1120 15th Street Room CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Paek HJ, Morgan JR, Lysaght MJ. Sequestration and Synthesis: The Source of Insulin in Cell Clusters Differentiated from Murine Embryonic Stem Cells. Stem Cells 2005; 23:862-7. [PMID: 15888689 DOI: 10.1634/stemcells.2004-0288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The source of insulin released from insulin-releasing cell clusters (IRCCs) differentiated from embryonic stem cells remains unclear. Rajagopal et al. have suggested that IRCCs do not synthesize but secrete insulin that had been absorbed from media during the multistep protocol. We report here further data relevant to this controversy. No radioisotopic labeling of insulin was observed when IRCCs were incubated in a medium containing 35S-cysteine. Less than 1% of the extra-cellular stoichiometric C-peptide equivalent to insulin was secreted during glucose stimulation. However, intracellular immunostaining and immunogold labeling were both positive for C-peptide. Finally, a mass balance calculation showed that simple equilibration of IRCCs by Fickian diffusion from media accounted for at most 4% of secreted insulin. These findings and further analysis of the results of others suggest that the mechanism of insulin secretion by IRCCs is a combination of sequestration and de novo synthesis.
Collapse
Affiliation(s)
- Hyun Joon Paek
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
13
|
Yamazoe H, Murakami Y, Mizuseki K, Sasai Y, Iwata H. Collection of neural inducing factors from PA6 cells using heparin solution and their immobilization on plastic culture dishes for the induction of neurons from embryonic stem cells. Biomaterials 2005; 26:5746-54. [PMID: 15878380 DOI: 10.1016/j.biomaterials.2005.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/23/2005] [Indexed: 12/31/2022]
Abstract
Embryonic stem (ES) cells have the ability to replicate themselves and differentiate into various mature cells. Recently, dopaminergic neurons were efficiently induced from ES cells using mouse stromal cells (PA6 cells) as a feeder cell layer. This simple procedure seems to be very efficient to obtain dopamine-releasing cells for future clinical cell transplantation treatment of Parkinson's disease. In this study, we prepared stock solutions containing neural inducing factors (NIFs) by washing PA6 cells with phosphate-buffered saline containing heparin. ES cells grew successfully in culture media supplemented with 33 v/v% NIFs stock solution, and the rate of neural differentiation of ES cell progeny increased with increasing heparin concentration in the culture media. In addition, NIFs-immobilized surfaces were prepared by exposing polyethyleneimine-modified surfaces to NIFs stock solutions. The NIFs-immobilized culture dish effectively supported cell growth as the culture medium supplemented with NIFs stock did, but its induction effect to dopaminergic neurons from ES cells was much smaller than free NIFs. NIFs stock solutions have two different activities. One can stimulate cell growth and the other induces differentiation of ES cells to the neural fate when heparin existed. The former factors were effectively immobilized on the culture dish, but those that induce differentiation may not be. Further optimization is required.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
14
|
Abstract
Stem cells can be used to treat a variety of diseases and several recent studies in animal models demonstrate the potential of bioengineering strategies targeting adult and embryonic stem cells. In order to obtain the desired cells for transplantation, stem cell bioengineering approaches entail the manipulation of environmental signals influencing cell survival, proliferation, self-renewal and differentiation. In that regard, multivariate analytical approaches have been used with success to optimise different stem cell culture processes. The genetic or molecular enhancement of stem cells is also a powerful means to control their proliferation or differentiation or to correct genetic defects in recipients. In the future, systems-level approaches have the potential to revolutionise the field of stem cell bioengineering by improving our understanding of regulatory networks controlling cellular behaviour. This advance in basic biology will be instrumental for the implementation of many stem cell-based regenerative therapies at the clinical level, as treatment accessibility will depend on the development of robust technologies to produce sufficient cell numbers.
Collapse
Affiliation(s)
- Julie Audet
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Yao ZX, Qin ML, Liu JJ, Chen XS, Zhou DS. In vitro cultivation of human fetal pancreatic ductal stem cells and their differentiation into insulin-producing cells. World J Gastroenterol 2004; 10:1452-6. [PMID: 15133852 PMCID: PMC4656283 DOI: 10.3748/wjg.v10.i10.1452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To isolate, culture and identify the human fetal pancreatic ductal stem cells in vitro, and to observe the potency of these multipotential cells differentiation into insulin-producing cells.
METHODS: The human fetal pancreas was digested by 1 g/L collagease type IV and then 2.5 g/L trypsin was used to isolate the pancreatic ductal stem cells, followed by culture in serum-free, glucose-free DMEM media with some additional chemical substrates in vitro (according to the different stage). The cells were induced by glucose-free (control), 5 mmol/L, 17.8 mmol/L and 25 mmol/L glucose, respectively. The cell types of differentiated cells were identified using immunocytochemical staining.
RESULTS: The shape of human fetal pancreatic ductal stem cells cultured in vitro was firstly fusiform in the first 2 wk, and became monolayer and cobblestone pattern after another 3 to 4 wk. After induced and differentiated by the glucose of different concentrations for another 1 to 2 wk, the cells formed the pancreatic islet-like structures. The identification and potency of these cells were then identified by using the pancreatic ductal stem cell marker, cytokeratin-19 (CK-19), pancreatic β cell marker, insulin and pancreatic α cell marker, glucagons with immunocytochemical staining. At the end of the second week, 95.2% of the cells were positive for CK-19 immunoreactivity. Up to 22.7% of the cells induced by glucose were positive for insulin immunoreactivity, and less than 3.8% of the cells were positive for glucagon immunoreactivity in pancreatic islet-like structures. The positive ratio of immunoreactive staining was dependent on the concentration of glucose, and it was observed that the 17.8 mmol/L glucose stimulated effectively to produce insulin- and glucagons-producing cells.
CONCLUSION: The human fetal pancreatic ductal stem cells are capable of proliferation in vitro. These cells have multidifferentiation potential and can be induced by glucose and differentiated into insulin-producing cells in vitro.
Collapse
Affiliation(s)
- Zhong-Xiang Yao
- Department of Histology and Embryology, The Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Significant attention is currently directed to the biological and therapeutic capabilities of stem cells for developing novel treatments for acute and chronic kidney diseases. To date, viable sources of stem cells for renal therapies include adult bone marrow and embryonic tissues, including the metanephric mesenchyme and mesonephros. Native adult kidney stem cells have yet to be identified. Systemically introduced stem cells can engraft in sites of renal disease and injury to show donor phenotypes. Stem cells can differentiate into cells similar to glomeruli, mesangium, and tubules in the kidneys. The impact of stem-cell engraftment and differentiation on renal function presently is unknown. Identification of renal diseases treatable with stem-cell therapies is expected to evolve as stem-cell technologies advance. Methods of modifying stem cells to improve homing, differentiation, and integration into host tissues need further characterization. Ethical and legal controversies about embryonic research and cloning are shaping the regulation and funding of stem-cell research for kidney diseases. Scientific and clinical understanding of stem cells and their potential for renal treatments are in the early stage of development. This field offers great promise, and there are significant opportunities for future investigation in clinical, biological, and ethical aspects of stem-cell therapy for kidney diseases.
Collapse
Affiliation(s)
- Daniel J Mollura
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
17
|
Current literature in diabetes. Diabetes Metab Res Rev 2003; 19:164-71. [PMID: 12673786 DOI: 10.1002/dmrr.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|