1
|
Pushchina EV, Pimenova EA, Kapustyanov IA, Bykova ME. Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon ( Oncorhynchus keta) Brain After Acute Traumatic Injury. Int J Mol Sci 2025; 26:644. [PMID: 39859360 PMCID: PMC11765592 DOI: 10.3390/ijms26020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the "astrocyte-like" response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.P.); (I.A.K.); (M.E.B.)
| | | | | | | |
Collapse
|
2
|
Fontaine R, Rahmad Royan M, Henkel C, Hodne K, Ager-Wick E, Weltzien FA. Pituitary multi-hormone cells in mammals and fish: history, origin, and roles. Front Neuroendocrinol 2022; 67:101018. [PMID: 35870647 DOI: 10.1016/j.yfrne.2022.101018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Mazzitelli-Fuentes LS, Román FR, Castillo Elías JR, Deleglise EB, Mongiat LA. Spatial Learning Promotes Adult Neurogenesis in Specific Regions of the Zebrafish Pallium. Front Cell Dev Biol 2022; 10:840964. [PMID: 35646912 PMCID: PMC9130729 DOI: 10.3389/fcell.2022.840964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis could be considered as a homeostatic mechanism that accompanies the continuous growth of teleost fish. As an alternative but not excluding hypothesis, adult neurogenesis would provide a form of plasticity necessary to adapt the brain to environmental challenges. The zebrafish pallium is a brain structure involved in the processing of various cognitive functions and exhibits extended neurogenic niches throughout the periventricular zone. The involvement of neuronal addition as a learning-related plastic mechanism has not been explored in this model, yet. In this work, we trained adult zebrafish in a spatial behavioral paradigm and evaluated the neurogenic dynamics in different pallial niches. We found that adult zebrafish improved their performance in a cue-guided rhomboid maze throughout five daily sessions, being the fish able to relearn the task after a rule change. This cognitive activity increased cell proliferation exclusively in two pallial regions: the caudal lateral pallium (cLP) and the rostral medial pallium (rMP). To assessed whether learning impinges on pallial adult neurogenesis, mitotic cells were labeled by BrdU administration, and then fish were trained at different periods of adult-born neuron maturation. Our results indicate that adult-born neurons are being produced on demand in rMP and cLP during the learning process, but with distinct critical periods among these regions. Next, we evaluated the time course of adult neurogenesis by pulse and chase experiments. We found that labeled cells decreased between 4 and 32 dpl in both learning-sensitive regions, whereas a fraction of them continues proliferating over time. By modeling the population dynamics of neural stem cells (NSC), we propose that learning increases adult neurogenesis by two mechanisms: driving a chained proliferation of labeled NSC and rescuing newborn neurons from death. Our findings highlight adult neurogenesis as a conserved source of brain plasticity and shed light on a rostro-caudal specialization of pallial neurogenic niches in adult zebrafish.
Collapse
Affiliation(s)
- Laura S Mazzitelli-Fuentes
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Fernanda R Román
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Julio R Castillo Elías
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emilia B Deleglise
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Lucas A Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina
| |
Collapse
|
4
|
Shimizu Y, Kawasaki T, Deguchi T. Gfap transgenic medaka as a novel reporter line for neural stem cells. Gene X 2022; 820:146213. [PMID: 35104578 DOI: 10.1016/j.gene.2022.146213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Radial glial cells (RGCs) play an essential role in developing, maintaining, and repairing the central nervous system (CNS). However, a specific reporter line of RGCs is limited in medaka. Glial fibrillary acid protein (GFAP) is abundant in teleost CNS, including the brain and spinal cord, and is a possible candidate for a marker for RGCs in medaka CNS. We generated a transgenic medaka in which enhanced green fluorescent protein (EGFP) expression is regulated under putative medaka gfap regulatory elements. We observed EGFP expression in the CNS of live larval and juvenile medaka through the transparent body of the See-through medaka strain. Histological analysis for juvenile and adult Tg(gfap:EGFP) medaka showed that EGFP was expressed in GFAP-positive cells in the telencephalon, optic tectum, retina, and spinal cord. We further found another EGFP expressing cells in the optic tectum and retina. These cells are possibly neuroepithelial-like stem cells, deducing from the distribution of these EGFP-positive cells. We concluded that this reporter line would be valuable in the investigation of neural stem cell function during the development and regeneration of medaka CNS visualizing two types of neural stem cells, RGCs and neuroepithelial-like stem cells.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan; DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan.
| | - Takashi Kawasaki
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Tomonori Deguchi
- Advanced Genome Design Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| |
Collapse
|
5
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
6
|
Molecular Markers of Adult Neurogenesis in the Telencephalon and Tectum of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2022; 23:ijms23031188. [PMID: 35163116 PMCID: PMC8835435 DOI: 10.3390/ijms23031188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.
Collapse
|
7
|
Berrosteguieta I, Rosillo JC, Herrera ML, Olivera-Bravo S, Casanova G, Herranz-Pérez V, García-Verdugo JM, Fernández AS. Plasticity of cell proliferation in the retina of Austrolebias charrua fish under light and darkness conditions. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100042. [DOI: 10.1016/j.crneur.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
|
8
|
Seleit A, Aulehla A, Paix A. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. eLife 2021; 10:75050. [PMID: 34870593 PMCID: PMC8691840 DOI: 10.7554/elife.75050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology-directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient, and precise strategy for CRISPR/Cas9-mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR-amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30–40 bp), a synthetic single-guide RNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole genome sequencing results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.
Collapse
Affiliation(s)
- Ali Seleit
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexandre Paix
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
9
|
Raby L, Völkel P, Hasanpour S, Cicero J, Toillon RA, Adriaenssens E, Van Seuningen I, Le Bourhis X, Angrand PO. Loss of Polycomb Repressive Complex 2 Function Alters Digestive Organ Homeostasis and Neuronal Differentiation in Zebrafish. Cells 2021; 10:cells10113142. [PMID: 34831364 PMCID: PMC8620594 DOI: 10.3390/cells10113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) mediates histone H3K27me3 methylation and the stable transcriptional repression of a number of gene expression programs involved in the control of cellular identity during development and differentiation. Here, we report on the generation and on the characterization of a zebrafish line harboring a null allele of eed, a gene coding for an essential component of the PRC2. Homozygous eed-deficient mutants present a normal body plan development but display strong defects at the level of the digestive organs, such as reduced size of the pancreas, hepatic steatosis, and a loss of the intestinal structures, to die finally at around 10-12 days post fertilization. In addition, we found that PRC2 loss of function impairs neuronal differentiation in very specific and discrete areas of the brain and increases larval activity in locomotor assays. Our work highlights that zebrafish is a suited model to study human pathologies associated with PRC2 loss of function and H3K27me3 decrease.
Collapse
Affiliation(s)
- Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Shaghayegh Hasanpour
- Department of Fisheries and Animal Sciences, Faculty of Natural Resources, University of Tehran, Karaj 31587-77871, Iran;
| | - Julien Cicero
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
- Univ. Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), F-62300 Lens, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Eric Adriaenssens
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR 9020-U 1277 – CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (J.C.); (R.-A.T.); (E.A.); (I.V.S.); (X.L.B.)
- Correspondence: ; Tel.: +33-3-2033-6222
| |
Collapse
|
10
|
Constitutive Neurogenesis in the Brain of Different Vertebrate Groups. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Shimizu Y, Kawasaki T. Differential Regenerative Capacity of the Optic Tectum of Adult Medaka and Zebrafish. Front Cell Dev Biol 2021; 9:686755. [PMID: 34268310 PMCID: PMC8276636 DOI: 10.3389/fcell.2021.686755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish have superior regenerative capacity in the central nervous system (CNS) compared to mammals. In contrast, medaka were shown to have low regenerative capacity in the adult heart and larval retina, despite the well-documented high tissue regenerative ability of teleosts. Nevertheless, medaka and zebrafish share similar brain structures and biological features to those of mammals. Hence, this study aimed to compare the neural stem cell (NSC) responses and regenerative capacity in the optic tectum of adult medaka and zebrafish after stab wound injury. Limited neuronal differentiation was observed in the injured medaka, though the proliferation of radial glia (RG) was induced in response to tectum injury. Moreover, the expression of the pro-regenerative transcriptional factors ascl1a and oct4 was not enhanced in the injured medaka, unlike in zebrafish, whereas expression of sox2 and stat3 was upregulated in both fish models. Of note, glial scar-like structures composed of GFAP+ radial fibers were observed in the injured area of medaka at 14 days post injury (dpi). Altogether, these findings suggest that the adult medaka brain has low regenerative capacity with limited neuronal generation and scar formation. Hence, medaka represent an attractive model for investigating and evaluating critical factors for brain regeneration.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Takashi Kawasaki
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| |
Collapse
|
12
|
Shimizu Y, Kiyooka M, Ohshima T. Transcriptome Analyses Reveal IL6/Stat3 Signaling Involvement in Radial Glia Proliferation After Stab Wound Injury in the Adult Zebrafish Optic Tectum. Front Cell Dev Biol 2021; 9:668408. [PMID: 33996824 PMCID: PMC8119998 DOI: 10.3389/fcell.2021.668408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
Adult zebrafish have many neurogenic niches and a high capacity for central nervous system regeneration compared to mammals, including humans and rodents. The majority of radial glia (RG) in the zebrafish optic tectum are quiescent under physiological conditions; however, stab wound injury induces their proliferation and differentiation into newborn neurons. Although previous studies have functionally analyzed the molecular mechanisms of RG proliferation and differentiation and have performed single-cell transcriptomic analyses around the peak of RG proliferation, the cellular response and changes in global gene expression during the early stages of tectum regeneration remain poorly understood. In this study, we performed histological analyses which revealed an increase in isolectin B4+ macrophages prior to the induction of RG proliferation. Moreover, transcriptome and pathway analyses based on differentially expressed genes identified various enriched pathways, including apoptosis, the innate immune system, cell proliferation, cytokine signaling, p53 signaling, and IL6/Jak-Stat signaling. In particular, we found that Stat3 inhibition suppressed RG proliferation after stab wound injury and that IL6 administration into cerebroventricular fluid activates RG proliferation without causing injury. Together, the findings of these transcriptomic and functional analyses reveal that IL6/Stat3 signaling is an initial trigger of RG activation during optic tectum regeneration.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Mariko Kiyooka
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
13
|
Villamayor PR, Arana ÁJ, Coppel C, Ortiz-Leal I, Torres MV, Sanchez-Quinteiro P, Sánchez L. A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system. Sci Rep 2021; 11:8865. [PMID: 33893372 PMCID: PMC8065131 DOI: 10.1038/s41598-021-88317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Fish chemosensory olfactory receptors allow them to detect a wide range of water-soluble chemicals, that mediate fundamental behaviours. Zebrafish possess a well-developed sense of smell which governs reproduction, appetite, and fear responses. The spatial organization of functional properties within the olfactory epithelium and bulb are comparable to those of mammals, making this species suitable for studies of olfactory differentiation and regeneration and neuronal representation of olfactory information. The advent of genomic techniques has been decisive for the discovery of specific olfactory cell types and the identification of cell populations expressing vomeronasal receptors. These advances have marched ahead of morphological and neurochemical studies. This study aims to fill the existing gap in specific histological, lectin-histochemical and immunohistochemical studies on the olfactory rosette and the olfactory bulb of the zebrafish. Tissue dissection and microdissection techniques were employed, followed by histological staining techniques, lectin-histochemical labelling (UEA, LEA, BSI-B4) and immunohistochemistry using antibodies against G proteins subunits αo and αi2, growth-associated protein-43, calbindin, calretinin, glial-fibrillary-acidic-protein and luteinizing-hormone-releasing-hormone. The results obtained enrich the available information on the neurochemical patterns of the zebrafish olfactory system, pointing to a greater complexity than the one currently considered, especially when taking into account the peculiarities of the nonsensory epithelium.
Collapse
Affiliation(s)
- Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Carlos Coppel
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain.
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
14
|
DeOliveira-Mello L, Mack AF, Lara JM, Arévalo R. Cultures of glial cells from optic nerve of two adult teleost fish: Astatotilapia burtoni and Danio rerio. J Neurosci Methods 2021; 353:109096. [PMID: 33581217 DOI: 10.1016/j.jneumeth.2021.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND In vitro studies are very useful to increase the knowledge of different cell types and could be the key to understand cell metabolism and function. Fish optic nerves (ON) can recover visual functions by reestablishing its structure and reconnecting the axons of ganglion cells. This is because fish show spontaneous regeneration of the central nervous system which does not occur in mammals. In addition, several studies have indicated that glial cells of ON have different properties in comparison to the glial cells from brain or retina. Consequently, providing an in vitro tool will be highly beneficial to increase the knowledge of these cells. NEW METHOD We developed a cell culture protocol to isolate glial cells from ON of two teleost fish species, Danio rerio and Astatotilapia burtoni. RESULTS The optimized protocol allowed us to obtain ON cells and brain-derived cells from adult teleost fish. These cells were characterized as glial cells and their proprieties in vitro were analyzed.Comparison with Existing Method(s): Although it is striking that ON glial cells show peculiarities, their study in vitro has been limited by the only published protocol going back to the 1990s. Our protocol makes glial cells of different fish species available for experiments and studies to increase the understanding of these glial cell types. CONCLUSIONS This validated and effective in vitro tool increases the possibilities on studies of glial cells from fish ON which implies a reduction in animal experimentation.
Collapse
Affiliation(s)
- Laura DeOliveira-Mello
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis University of Tübingen Tübingen, Germany
| | - Juan M Lara
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| | - Rosario Arévalo
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| |
Collapse
|
15
|
Budaszewski Pinto C, de Sá Couto-Pereira N, Kawa Odorcyk F, Cagliari Zenki K, Dalmaz C, Losch de Oliveira D, Calcagnotto ME. Effects of acute seizures on cell proliferation, synaptic plasticity and long-term behavior in adult zebrafish. Brain Res 2021; 1756:147334. [PMID: 33539794 DOI: 10.1016/j.brainres.2021.147334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023]
Abstract
Acute seizures may cause permanent brain damage depending on the severity. The pilocarpine animal model has been broadly used to study the acute effects of seizures on neurogenesis and plasticity processes and the resulting epileptogenesis. Likewise, zebrafish is a good model to study neurogenesis and plasticity processes even in adulthood. Thus, the aim of this study is to evaluate the effects of pilocarpine-induced acute seizures-like behavior on neuroplasticity and long-term behavior in adult zebrafish. To address this issue, adult zebrafish were injected with Pilocarpine (350 mg/Kg, i.p; PILO group) or Saline (control group). Experiments were performed at 1, 2, 3, 10 or 30 days after injection. We evaluated behavior using the Light/Dark preference, Open Tank and aggressiveness tests. Flow cytometry and BrdU were carried out to detect changes in cell death and proliferation, while Western blotting was used to verify different proliferative, synaptic and neural markers in the adult zebrafish telencephalon. We identified an increased aggressive behavior and increase in cell death in the PILO group, with increased levels of cleaved caspase 3 and PARP1 1 day after seizure-like behavior induction. In addition, there were decreased levels of PSD95 and SNAP25 and increased BrdU positive cells 3 days after seizure-like behavior induction. Although most synaptic and cell death markers levels seemed normal by 30 days after seizures-like behavior, persistent aggressive and anxiolytic-like behaviors were still detected as long-term effects. These findings might indicate that acute severe seizures induce short-term biochemical alterations that ultimately reflects in a long-term altered phenotype.
Collapse
Affiliation(s)
- Charles Budaszewski Pinto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
17
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
18
|
Pushchina EV, Zharikova EI, Varaksin AA, Prudnikov IM, Tsyvkin VN. Proliferation, Adult Neuronal Stem Cells and Cells Migration in Pallium during Constitutive Neurogenesis and after Traumatic Injury of Telencephalon of Juvenile Masu Salmon, Oncorhynchus masou. Brain Sci 2020; 10:brainsci10040222. [PMID: 32276413 PMCID: PMC7226367 DOI: 10.3390/brainsci10040222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A study of the lateral pallium in zebrafish and the visual tectum of the medaka revealed a population of adult neuroepithelial (NE) cells supported from the early stage of development to various postembryonic stages of ontogenesis. These data emphasize the importance of non-radial glial stem cells in the neurogenesis of adult animals, in particular fish. However, the distribution, cell cycle features, and molecular markers of NE cells and glial progenitors in fish are still poorly understood at the postembryonic stages of ontogenesis. Fetalization predominates in the ontogenetic development of salmon fish, which is associated with a delay in development and preservation of the features of the embryonic structure of the brain during the first year of life. In the present work, we studied the features of proliferation and the migration of neuronal precursors in the pallial proliferative zone of juvenile Oncorhynchus masou. The aim of the study is a comparative analysis of the distribution of glial-type aNSCs markers, such as vimentin and glial fibrillar acid protein GFAP, as well as the proliferation marker BrdU and migratory neuronal precursor doublecortin, in the pallial zone of the intact telencephalon in juvenile O. masou normal and after mechanical injury. The immunohistochemical IHC labeling with antibodies to vimentin, GFAP and doublecortin in the pallium of intact fish revealed single, small, round and oval immunopositive cells, that correspond to a persistent pool of neuronal and/or glial progenitors. After the injury, heterogeneous cell clusters, radial glia processes, single and small intensely labeled GFAP+ cells in the parenchyma of Dd and lateral part of pallium (Dl) appeared, corresponding to reactive neurogenic niches containing glial aNSCs. A multifold increase in the pool of Vim+ neuronal precursor cells (NPCs) resulting from the injury was observed. Vim+ cells of the neuroepithelial type in Dd and Dm and cells of the glial type were identified in Dl after the injury. Doublecortine (Dc) immunolabeling after the injury revealed the radial migration of neuroblasts into Dm from the neurogenic zone of the pallium. The appearance of intensely labeled Dc+ cells in the brain parenchyma might indicate the activation of resident aNSCs as a consequence of the traumatic process.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
- Correspondence: ; Tel.: +79-149680177
| | - Eva I. Zharikova
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
| | - Anatoly A. Varaksin
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
| | - Igor M. Prudnikov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
| | - Vladimir N. Tsyvkin
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
| |
Collapse
|
19
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
20
|
Lange C, Rost F, Machate A, Reinhardt S, Lesche M, Weber A, Kuscha V, Dahl A, Rulands S, Brand M. Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain. Development 2020; 147:dev.185595. [PMID: 31908317 PMCID: PMC6983714 DOI: 10.1242/dev.185595] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023]
Abstract
Zebrafish display widespread and pronounced adult neurogenesis, which is fundamental for their regeneration capability after central nervous system injury. However, the cellular identity and the biological properties of adult newborn neurons are elusive for most brain areas. Here, we have used short-term lineage tracing of radial glia progeny to prospectively isolate newborn neurons from the her4.1+ radial glia lineage in the homeostatic adult forebrain. Transcriptome analysis of radial glia, newborn neurons and mature neurons using single cell sequencing identified distinct transcriptional profiles, including novel markers for each population. Specifically, we detected two separate newborn neuron types, which showed diversity of cell fate commitment and location. Further analyses showed that these cell types are homologous to neurogenic cells in the mammalian brain, identified neurogenic commitment in proliferating radial glia and indicated that glutamatergic projection neurons are generated in the adult zebrafish telencephalon. Thus, we prospectively isolated adult newborn neurons from the adult zebrafish forebrain, identified markers for newborn and mature neurons in the adult brain, and revealed intrinsic heterogeneity among adult newborn neurons and their homology with mammalian adult neurogenic cell types.
Collapse
Affiliation(s)
- Christian Lange
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Fabian Rost
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Susanne Reinhardt
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Matthias Lesche
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Anke Weber
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden (CRTD), CMCB, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
21
|
Camilletti MA, Martinez Mayer J, Vishnopolska SA, Perez-Millan MI. From Pituitary Stem Cell Differentiation to Regenerative Medicine. Front Endocrinol (Lausanne) 2020; 11:614999. [PMID: 33542708 PMCID: PMC7851048 DOI: 10.3389/fendo.2020.614999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise during embryonic development, from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. Human and mouse embryonic stem cells can differentiate into all major hormone-producing cell types of the anterior lobe in a highly plastic and dynamic manner. More recently human induced pluripotent stem cells (iPSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This mini-review gives an overview of the major advances that have been achieved to develop protocols to generate pituitary hormone-producing cell types from stem cells and how these mechanisms are regulated. We also discuss their application in pituitary diseases, such as pituitary hormone deficiencies.
Collapse
|
22
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
23
|
Pushchina EV, Kapustyanov IA, Varaksin AA. Proliferation and Neuro- and Gliogenesis in Normal and Mechanically Damaged Mesencephalic Tegmentum in Juvenile Chum Salmon, Oncorhynchus keta. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041902005x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Corredor VH, da Silva FT, Baran LCP, Ventura DF, Joselevitch C. Distribution and density of mixed-input ON bipolar cells of the goldfish (Carassius auratus) during growth. J Comp Neurol 2019; 527:903-915. [PMID: 30408167 DOI: 10.1002/cne.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022]
Abstract
Neurons are continuously produced at different rates and locations in the teleost retina. Goldfish rods are homogeneously distributed and maintain a stable density throughout growth, whereas little is known about their postsynaptic partners. We examined the distribution and density of mixed-input ON bipolar cells (ON mBCs) in 57 goldfish of various sizes by immunolabeling their retinas with an antibody against PKCα and counting PKCα-positive neurons in wholemounts. Cell densities were correlated with morphometric data for the same animals, and the spatial resolution of the ON mBC mosaic was calculated in each case. The distribution of ON mBCs is homogeneous throughout growth. For a 10-fold change in body size (i.e., from 20 to 200 mm), the total number of ON mBCs increases 2.8 times, while retinal area expands around 10 times. As a consequence, the density of ON mBCs in large fish falls to ∼1/3 of that of small animals, and intercellular spacing doubles. The eye and the lens become around three times larger from small to large fish. This causes the retinal magnification factor (and thereby the image projected onto retina) to augment by the same amount. Because the retinal magnification factor rises more than the intercellular spacing in the same animals, the spatial resolution of the ON mBC mosaic improves from 0.8 to 1.4 cycles/degree as the body size increases from 20 to 200 mm. As ON mBCs are mostly rod-driven, our results suggest that the scotopic acuity of the goldfish may improve as the animal grows.
Collapse
Affiliation(s)
- Vitor H Corredor
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Flávio T da Silva
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Luiz C P Baran
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Dora F Ventura
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Christina Joselevitch
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| |
Collapse
|
25
|
Midbrain tectal stem cells display diverse regenerative capacities in zebrafish. Sci Rep 2019; 9:4420. [PMID: 30872640 PMCID: PMC6418144 DOI: 10.1038/s41598-019-40734-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
How diverse adult stem and progenitor populations regenerate tissue following damage to the brain is poorly understood. In highly regenerative vertebrates, such as zebrafish, radial-glia (RG) and neuro-epithelial-like (NE) stem/progenitor cells contribute to neuronal repair after injury. However, not all RG act as neural stem/progenitor cells during homeostasis in the zebrafish brain, questioning the role of quiescent RG (qRG) post-injury. To understand the function of qRG during regeneration, we performed a stab lesion in the adult midbrain tectum to target a population of homeostatic qRG, and investigated their proliferative behaviour, differentiation potential, and Wnt/β-catenin signalling. EdU-labelling showed a small number of proliferating qRG after injury (pRG) but that progeny are restricted to RG. However, injury promoted proliferation of NE progenitors in the internal tectal marginal zone (TMZi) resulting in amplified regenerative neurogenesis. Increased Wnt/β-catenin signalling was detected in TMZi after injury whereas homeostatic levels of Wnt/β-catenin signalling persisted in qRG/pRG. Attenuation of Wnt signalling suggested that the proliferative response post-injury was Wnt/β-catenin-independent. Our results demonstrate that qRG in the tectum have restricted capability in neuronal repair, highlighting that RG have diverse functions in the zebrafish brain. Furthermore, these findings suggest that endogenous stem cell compartments compensate lost tissue by amplifying homeostatic growth.
Collapse
|
26
|
Fontaine R, Ager-Wick E, Hodne K, Weltzien FA. Plasticity of Lh cells caused by cell proliferation and recruitment of existing cells. J Endocrinol 2019; 240:361-377. [PMID: 30594119 DOI: 10.1530/joe-18-0412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023]
Abstract
Luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) control reproduction in vertebrates. Using a transgenic line of medaka, in which green fluorescent protein expression is controlled by the endogenous lhb promotor, we studied development and plasticity of Lh cells, comparing juveniles and adults of both genders. Confocal imaging and 3D reconstruction revealed hypertrophy and hyperplasia of Lh cells in both genders from juvenile to adult stages. We show that Lh cell hyperplasia may be caused by recruitment of existing pituitary cells that start to produce lhb, as evidenced by time lapse recordings of primary pituitary cell cultures, and/or through Lh cell proliferation, demonstrated through a combination of 5-bromo-2'-deoxyuridine incubation experiments and proliferating cell nuclear antigen staining. Proliferating Lh cells do not belong to the classical type of multipotent stem cells, as they do not stain with anti-sox2. Estradiol exposure in vivo increased pituitary cell proliferation, particularly Lh cells, whereas pituitary lhb and gpa expression levels decreased. RNA-seq and in situ hybridization showed that Lh cells express two estrogen receptors, esr1 and esr2b, and the aromatase gene cyp19a1b, suggesting a direct effect of estradiol, and possibly androgens, on Lh cell proliferation. In conclusion, our study reveals a high degree of plasticity in the medaka Lh cell population, resulting from a combination of recruitment and cell proliferation.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
27
|
Pushchina EV, Varaksin AA. Neurolin expression in the optic nerve and immunoreactivity of Pax6-positive niches in the brain of rainbow trout ( Oncorhynchus mykiss) after unilateral eye injury. Neural Regen Res 2019; 14:156-171. [PMID: 30531090 PMCID: PMC6263006 DOI: 10.4103/1673-5374.243721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to astrocytes in mammals, fish astrocytes promote axon regeneration after brain injury and actively participate in the regeneration process. Neurolin, a regeneration-associated, Zn8-labeled protein, is involved in the repair of damaged optic nerve in goldfish. At 1 week after unilateral eye injury, the expression of neurolin in the optic nerve and chiasm, and the expression of Pax6 that influences nervous system development in various brain regions in the rainbow trout (Oncorhynchus mykiss) were detected. Immunohistochemical staining revealed that the number of Zn8+ cells in the optic nerve head and intraorbital segment was obviously increased, and the increase in Zn8+ cells was also observed in the proximal and distal parts of injured optic nerve. This suggests that Zn8+ astrocytes participate in optic nerve regeneration. ELISA results revealed that Pax6 protein increased obviously at 1 week post-injury. Immunohistochemical staining revealed the appearance of Pax6+ neurogenic niches and a larger number of neural precursor cells, which are mainly from Pax6+ radial glia cells, in the nuclei of the diencephalon and optic tectum of rainbow trout (Oncorhynchus mykiss). Taken together, unilateral eye injury can cause optic nerve reaction, and the formation of neurogenic niches is likely a compensation phenomenon during the repair process of optic nerve injury in rainbow trout (Oncorhynchus mykiss).
Collapse
Affiliation(s)
- Evgeniya V Pushchina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anatoly A Varaksin
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
28
|
Rezaei F, Tiraihi T, Abdanipour A, Hassoun HK, Taheri T. Immunocytochemical analysis of valproic acid induced histone H3 and H4 acetylation during differentiation of rat adipose derived stem cells into neuron-like cells. Biotech Histochem 2018; 93:589-600. [PMID: 30273059 DOI: 10.1080/10520295.2018.1511063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Valproic acid (VPA) is an inhibitor of histone deacetylases (HDACs) that can regulate differentiation and proliferation of stem cells by epigenetic mechanisms. We investigated VPA induced histone H3 and H4 acetylation in adipose derived stem cells (ADSCs) transdifferentiated into neuron-like cells (NLCs). Rat ADSCs were transdifferentiated into neural stem cells (NSCs) that had been generated from neurospheres. The NSCs were differentiated into NLCs by induction with different concentrations of VPA at 24, 48 and 72 h. The NLCs were evaluated using anti-H3 and -H4 antibodies, and ADSCs, NSCs and NLCs were evaluated using immunofluorescence. The ADSCs were immunoreactive to CD90 and CD49d, but not to CD45 and CD31. Both the neurospheres and NSCs were immunostained with nestin and neurofilament 68. The neurospheres expressed Musashi1, Sox2 and Neu N genes as determined by RT-PCR. Our dose-response study indicated that the optimal concentration of VPA was 1 mM at 72 h. Histone acetylation levels of H3 and H4 immunostaining intensities in NLCs were significantly greater than for ADSCs and NSCs. VPA alters H4 and H3 acetylation immunoreactivities of ADSCs transdifferentiated into NLCs.
Collapse
Affiliation(s)
- F Rezaei
- a Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - T Tiraihi
- a Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - A Abdanipour
- b Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - H K Hassoun
- c Middle Euphrates Neuroscience Center, College of medicine , Kufa University , Kufa , Iraq
| | - T Taheri
- d Shefa Neuroscience Research Center , Khatam Alanbia Hospital , Tehran , Iran
| |
Collapse
|
29
|
Yasuda T, Ishikawa Y, Shioya N, Itoh K, Kamahori M, Nagata K, Takano Y, Mitani H, Oda S. Radical change of apoptotic strategy following irradiation during later period of embryogenesis in medaka (Oryzias latipes). PLoS One 2018; 13:e0201790. [PMID: 30075024 PMCID: PMC6075778 DOI: 10.1371/journal.pone.0201790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
Induction of apoptosis in response to various genotoxic stresses could block transmission of teratogenic mutations to progeny cells. The severity of biological effects following irradiation depends on the stage at which embryos are irradiated during embryogenesis. We reported previously that irradiation of medaka embryos 3 days post fertilization (dpf) with 10 Gy of gamma rays induced high incidence of apoptotic cells in the mid-brain, however, the embryos hatched normally and developed without apparent malformations. To determine the severity of biological effects following irradiation during a later period of embryogenesis, embryos of various developmental stages were irradiated with 15 Gy of gamma rays and examined for apoptotic induction at 24 h after irradiation in the brain, eyes and pharyngeal epithelium tissues, which are actively proliferating and sensitive to irradiation. Embryos irradiated at 3 dpf exhibited many apoptotic cells in these tissues, and all of them died due to severe malformations. In contrast, embryos irradiated at 5 dpf showed no apoptotic cells and subsequently hatched without apparent malformations. Embryos irradiated at 4 dpf had relatively low numbers of apoptotic cells compared to those irradiated at 3 dpf, thereafter most of them died within 1 week of hatching. In adult medaka, apoptotic cells were not found in these tissues following irradiation, suggesting that apoptosis occurs during a restricted time period of medaka embryogenesis throughout the life. No apoptotic cells were found in irradiated intestinal tissue, which is known to be susceptible to radiation damage in mammals, whereas many apoptotic cells were found in proliferating spermatogonial cells in the mature testis following irradiation. Taken together, with the exception of testicular tissue, the results suggest a limited period during medaka embryogenesis in which irradiation-induced apoptosis can occur.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuta Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Noriko Shioya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazusa Itoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Miyuki Kamahori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshiro Takano
- Section of Biostructural Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
30
|
Lindsey BW, Hall ZJ, Heuzé A, Joly JS, Tropepe V, Kaslin J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 2018; 170:99-114. [PMID: 29902500 DOI: 10.1016/j.pneurobio.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ontario, Canada; Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| | - Zachary J Hall
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Aurélie Heuzé
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Jean-Stéphane Joly
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| |
Collapse
|
31
|
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Curr Biol 2017; 26:R1001-R1009. [PMID: 27780043 DOI: 10.1016/j.cub.2016.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.
Collapse
|
32
|
Taboada X, Viñas A, Adrio F. Comparative expression patterns ofSox2andSox19genes in the forebrain of developing and adult turbot (Scophthalmus maximus). J Comp Neurol 2017; 526:899-919. [DOI: 10.1002/cne.24374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xoana Taboada
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Viñas
- Department of Zoology; Genetics and Physical Anthropology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Functional Biology, CIBUS, Faculty of Biology; Universidade de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
33
|
Torres-Pérez M, Rosillo JC, Berrosteguieta I, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain. Brain Res 2017; 1673:11-22. [DOI: 10.1016/j.brainres.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
|
34
|
Olivera-Pasilio V, Lasserre M, Castelló ME. Cell Proliferation, Migration, and Neurogenesis in the Adult Brain of the Pulse Type Weakly Electric Fish, Gymnotus omarorum. Front Neurosci 2017; 11:437. [PMID: 28860962 PMCID: PMC5562682 DOI: 10.3389/fnins.2017.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis, an essential mechanism of brain plasticity, enables brain development along postnatal life, constant addition of new neurons, neuronal turnover, and/or regeneration. It is amply distributed but negatively modulated during development and along evolution. Widespread cell proliferation, high neurogenic, and regenerative capacities are considered characteristics of teleost brains during adulthood. These anamniotes are promising models to depict factors that modulate cell proliferation, migration, and neurogenesis, and might be intervened to promote brain plasticity in mammals. Nevertheless, the migration path of derived cells to their final destination was not studied in various teleosts, including most weakly electric fish. In this group adult brain morphology is attributed to sensory specialization, involving the concerted evolution of peripheral electroreceptors and electric organs, encompassed by the evolution of neural networks involved in electrosensory information processing. In wave type gymnotids adult brain morphology is proposed to result from lifelong region specific cell proliferation and neurogenesis. Consistently, pulse type weakly electric gymnotids and mormyrids show widespread distribution of proliferation zones that persists in adulthood, but their neurogenic potential is still unknown. Here we studied the migration process and differentiation of newborn cells into the neuronal phenotype in the pulse type gymnotid Gymnotus omarorum. Pulse labeling of S-phase cells with 5-Chloro-2′-deoxyuridine thymidine followed by 1 to 180 day survivals evidenced long distance migration of newborn cells from the rostralmost telencephalic ventricle to the olfactory bulb, and between layers of all cerebellar divisions. Shorter migration appeared in the tectum opticum and torus semicircularis. In many brain regions, derived cells expressed early neuronal markers doublecortin (chase: 1–30 days) and HuC/HuD (chase: 7–180 days). Some newborn cells expressed the mature neuronal marker tyrosine hydroxylase in the subpallium (chase: 90 days) and olfactory bulb (chase: 180 days), indicating the acquisition of a mature neuronal phenotype. Long term CldU labeled newborn cells of the granular layer of the corpus cerebelli were also retrogradely labeled “in vivo,” suggesting their insertion into the neural networks. These findings evidence the neurogenic capacity of telencephalic, mesencephalic, and rhombencephalic brain proliferation zones in G. omarorum, supporting the phylogenetic conserved feature of adult neurogenesis and its functional significance.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| | - Moira Lasserre
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay
| | - María E Castelló
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| |
Collapse
|
35
|
Dambroise E, Simion M, Bourquard T, Bouffard S, Rizzi B, Jaszczyszyn Y, Bourge M, Affaticati P, Heuzé A, Jouralet J, Edouard J, Brown S, Thermes C, Poupon A, Reiter E, Sohm F, Bourrat F, Joly JS. Postembryonic Fish Brain Proliferation Zones Exhibit Neuroepithelial-Type Gene Expression Profile. Stem Cells 2017; 35:1505-1518. [PMID: 28181357 DOI: 10.1002/stem.2588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023]
Abstract
In mammals, neuroepithelial cells play an essential role in embryonic neurogenesis, whereas glial stem cells are the principal source of neurons at postembryonic stages. By contrast, neuroepithelial-like stem/progenitor (NE) cells have been shown to be present throughout life in teleosts. We used three-dimensional (3D) reconstructions of cleared transgenic wdr12:GFP medaka brains to demonstrate that this cell type is widespread in juvenile and to identify new regions containing NE cells. We established the gene expression profile of optic tectum (OT) NE cells by cell sorting followed by RNA-seq. Our results demonstrate that most OT NE cells are indeed active stem cells and that some of them exhibit long G2 phases. We identified several novel pathways (e.g., DNA repair pathways) potentially involved in NE cell homeostasis. In situ hybridization studies showed that all NE populations in the postembryonic medaka brain have a similar molecular signature. Our findings highlight the importance of NE progenitors in medaka and improve our understanding of NE-cell biology. These cells are potentially useful not only for neural stem cell studies but also for improving the characterization of neurodevelopmental diseases, such as microcephaly. Stem Cells 2017;35:1505-1518.
Collapse
Affiliation(s)
- Emilie Dambroise
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | - Matthieu Simion
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | | | | | - Barbara Rizzi
- Tefor Core Facility, TEFOR Infrastructure, Neuro-PSI, CNRS, Gif-sur-Yvette, France
| | | | | | - Pierre Affaticati
- Tefor Core Facility, TEFOR Infrastructure, Neuro-PSI, CNRS, Gif-sur-Yvette, France
| | - Aurélie Heuzé
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | - Julia Jouralet
- Plateforme BM-Gif, Imagif, UMR 9198, CNRS, Gif-sur-Yvette, France
| | - Joanne Edouard
- UMS AMAGEN CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | | | | - Frédéric Sohm
- UMS AMAGEN CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Bourrat
- INRA CASBAH Group, Neuro-PSI, UMR 9197, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
36
|
Galant S, Furlan G, Coolen M, Dirian L, Foucher I, Bally-Cuif L. Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. Dev Biol 2016; 420:120-135. [PMID: 27693369 PMCID: PMC5156517 DOI: 10.1016/j.ydbio.2016.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 01/11/2023]
Abstract
Neurogenesis in the post-embryonic vertebrate brain varies in extent and efficiency between species and brain territories. Distinct neurogenesis modes may account for this diversity, and several neural progenitor subtypes, radial glial cells (RG) and neuroepithelial progenitors (NE), have been identified in the adult zebrafish brain. The neurogenic sequences issued from these progenitors, and their contribution to brain construction, remain incompletely understood. Here we use genetic tracing techniques based on conditional Cre recombination and Tet-On neuronal birthdating to unravel the neurogenic sequence operating from NE progenitors in the zebrafish post-embryonic optic tectum. We reveal that a subpopulation of her5-positive NE cells of the posterior midbrain layer stands at the top of a neurogenic hierarchy involving, in order, the amplification pool of the tectal proliferation zone (TPZ), followed by her4-positive RG cells with transient neurogenic activity. We further demonstrate that the adult her5-positive NE pool is issued in lineage from an identically located NE pool expressing the same gene in the embryonic neural tube. Finally, we show that these features are reminiscent of the neurogenic sequence and embryonic origin of the her9-positive progenitor NE pool involved in the construction of the lateral pallium at post-embryonic stages. Together, our results highlight the shared recruitment of an identical neurogenic strategy by two remote brain territories, where long-lasting NE pools serve both as a growth zone and as the life-long source of young neurogenic RG cells. Zebrafish post-embryonic tectal neurogenesis is driven by neuroepithelial progenitors. The neuroepithelial progenitor pool is long-lasting and expresses Her5 life long. Tectal radial glia originate from the her5-positive pool and are transiently neurogenic. The post-embryonic neurogenic sequences of the tectum and lateral pallium are similar.
Collapse
Affiliation(s)
- Sonya Galant
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Giacomo Furlan
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Marion Coolen
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Lara Dirian
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France
| | - Isabelle Foucher
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Bldg 5, F-91198 Gif-sur-Yvette, France; Department of Developmental and Stem Cell Biology and CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
37
|
Rosillo JC, Torres M, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration. Neuroscience 2016; 336:63-80. [PMID: 27593094 DOI: 10.1016/j.neuroscience.2016.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3). The main cellular types described in other vertebrate neurogenic niches were identified (transient amplifying cells, stem cells and migrating neuroblasts). However, elongated vimentin/BLBP+ radial glia were the predominant cells in transitional and ventral zones. Use of halogenated thymidine analogs chloro- and iodo-deoxyuridine administered at different experimental times showed that both regions have the highest cell proliferation and migration rates. Zone 1 migration was toward the OB and telencephalon, whereas in zone 3, migration was directed toward the OB rostral portion constituting the equivalent of the mammal rostral migratory band. Medial zone (MZ) has fewer proliferating non-migrant cells that are the putative stem cells as indicated by short and long proliferation assays as well as cell lineage markers. Sparse migration observed suggests MZ may collaborate with VW growth. Scanning electron microscopy evidenced that the whole VW has only monociliated cells with remarkable differences in cilium length among regions. In OB there are monociliated cells with dwarf cilium whereas ventral telencephalon shows long cilium. Summarizing, we identified three neurogenic niches that might serve different functional purposes.
Collapse
Affiliation(s)
- Juan Carlos Rosillo
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Maximiliano Torres
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Silvia Olivera-Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Gabriela Casanova
- Unidad de Microscopia Electrónica de Transmisión, Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, 11400 Montevideo, Uruguay.
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Paterna, 46980, CIBERNED, Spain.
| | - Anabel Sonia Fernández
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay; Neuroanatomía Comparada, Unidad Asociada a la Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
38
|
Abstract
In all vertebrate species studied thus far, the adult central nervous system harbors neural stem cells that sustain constitutive neurogenesis, as well as latent neural progenitors that can be awakened in lesional contexts. In spite of this common theme, many species differ dramatically in their ability to recruit constitutive progenitors, to awaken latent progenitors, or to enhance or bias neural progenitor fate to achieve successful neuronal repair. This Review summarizes the striking similarities in the essential molecular and cellular properties of adult neural stem cells between different vertebrate species, both under physiological and reparative conditions. It also emphasizes the differences in the reparative process across evolution and how the study of non-mammalian models can provide insights into both basic neural stem cell properties and stimulatory cues shared between vertebrates, and subsequent neurogenic events, which are abortive under reparative conditions in mammals. Summary: This Review article provides a comparative view of neuronal repair across vertebrate species, with a particular focus on the molecular pathways that enable repair in some, but not all animals.
Collapse
Affiliation(s)
- Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Université Paris-Saclay, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
39
|
Abstract
Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
40
|
Benítez-Santana T, Simion M, Corraze G, Médale F, Joly JS. Effect of Nutrient Availability on Progenitor Cells in Zebrafish (Danio Rerio). Dev Neurobiol 2016; 77:26-38. [DOI: 10.1002/dneu.22406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tibiábin Benítez-Santana
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| | - Matthieu Simion
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| | - Geneviève Corraze
- INRA UR 1067, Nutrition, Metabolism, and Aquaculture; Saint Pée-sur-Nivelle France
| | - Françoise Médale
- INRA UR 1067, Nutrition, Metabolism, and Aquaculture; Saint Pée-sur-Nivelle France
| | - Jean-Stéphane Joly
- INRA CASBAH Group, Neuroscience Paris-Saclay Institute (Neuro-PSI) UMR 9197, CNRS - Université Paris Sud; Bat. 32/33, 1 Avenue De La Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
41
|
Vandenplas S, Vandeghinste R, Boutet A, Mazan S, Huysseune A. Slow cycling cells in the continuous dental lamina of Scyliorhinus canicula: new evidence for stem cells in sharks. Dev Biol 2016; 413:39-49. [DOI: 10.1016/j.ydbio.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 01/06/2023]
|
42
|
Préau L, Le Blay K, Saint Paul E, Morvan-Dubois G, Demeneix BA. Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs. Mol Cell Endocrinol 2016; 420:138-51. [PMID: 26628040 DOI: 10.1016/j.mce.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/21/2015] [Accepted: 11/22/2015] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs in neural stem cell (NSC) niches where slow cycling stem cells give rise to faster cycling progenitors. In the adult mouse NSC niche thyroid hormone, T3, and its receptor TRα act as a neurogenic switch promoting progenitor cell cycle completion and neuronal differentiation. Little is known about whether and how T3 controls proliferation of differentially cycling cells during xenopus neurogenesis. To address this question, we first used Sox3 as a marker of stem cell and progenitor populations and then applied pulse-chase EdU/IdU incorporation experiments to identify Sox3-expressing slow cycling (NSC) and fast cycling progenitor cells. We focused on the lateral ventricle of Xenopus laevis and two distinct stages of development: late embryonic development (pre-metamorphic) and juvenile frogs (post-metamorphic). These stages were selected for their relatively stable thyroid hormone availability, either side of the major dynamic phase represented by metamorphosis. TRα expression was found in both pre and post-metamorphic neurogenic regions. However, exogenous T3 treatment only increased proliferation of the fast cycling Sox3+ cell population in post-metamorphic juveniles, having no detectable effect on proliferation in pre-metamorphic tadpoles. We hypothesised that the resistance of proliferative cells to exogenous T3 in pre-metamorphic tadpoles could be related to T3 inactivation by the inactivating Deiodinase 3 enzyme. Expression of dio3 was widespread in the tadpole neurogenic niche, but not in the juvenile neurogenic niche. Use of a T3-reporter transgenic line showed that in juveniles, T3 had a direct transcriptional effect on rapid cycling progenitors. Thus, the fast cycling progenitor cells in the neurogenic niche of tadpoles and juvenile frogs respond differentially to T3 as a function of developmental stage.
Collapse
Affiliation(s)
- L Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - K Le Blay
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - E Saint Paul
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - G Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - B A Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France.
| |
Collapse
|
43
|
Than-Trong E, Bally-Cuif L. Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia 2015; 63:1406-28. [DOI: 10.1002/glia.22856] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuel Than-Trong
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| | - Laure Bally-Cuif
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| |
Collapse
|
44
|
Bourge M, Fort C, Soler MN, Satiat-Jeunemaître B, Brown SC. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle. THE NEW PHYTOLOGIST 2015; 205:938-50. [PMID: 25266734 DOI: 10.1111/nph.13069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/13/2014] [Indexed: 05/12/2023]
Abstract
Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.
Collapse
Affiliation(s)
- Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, Saclay Plant Sciences, 91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
45
|
Lindsey BW, Di Donato S, Kaslin J, Tropepe V. Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain. Eur J Neurosci 2014; 40:3591-607. [PMID: 25231569 DOI: 10.1111/ejn.12729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023]
Abstract
Teleost fishes retain populations of adult stem/progenitor cells within multiple primary sensory processing structures of the mature brain. Though it has commonly been thought that their ability to give rise to adult-born neurons is mainly associated with continuous growth throughout life, whether a relationship exists between the processing function of these structures and the addition of new neurons remains unexplored. We investigated the ultrastructural organisation and modality-specific neurogenic plasticity of niches located in chemosensory (olfactory bulb, vagal lobe) and visual processing (periventricular grey zone, torus longitudinalis) structures of the adult zebrafish (Danio rerio) brain. Transmission electron microscopy showed that the cytoarchitecture of sensory niches includes many of the same cellular morphologies described in forebrain niches. We demonstrate that cells with a radial-glial phenotype are present in chemosensory niches, while the niche of the caudal tectum contains putative neuroepithelial-like cells instead. This was supported by immunohistochemical evidence showing an absence of glial markers, including glial fibrillary acidic protein, glutamine synthetase, and S100β in the tectum. By exposing animals to sensory assays we further illustrate that stem/progenitor cells and their neuronal progeny within sensory structures respond to modality-specific stimulation at distinct stages in the process of adult neurogenesis - chemosensory niches at the level of neuronal survival and visual niches in the size of the stem/progenitor population. Our data suggest that the adult brain has the capacity for sensory-specific modulation of adult neurogenesis and that this property may be associated with the type of stem cell present in the niche.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, Vic., Australia
| | | | | | | |
Collapse
|
46
|
Olivera-Pasilio V, Peterson DA, Castelló ME. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum. Front Neuroanat 2014; 8:88. [PMID: 25249943 PMCID: PMC4157608 DOI: 10.3389/fnana.2014.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Daniel A Peterson
- Neuroscience, Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - María E Castelló
- Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| |
Collapse
|
47
|
Lindsey BW, Tropepe V. Changes in the social environment induce neurogenic plasticity predominantly in niches residing in sensory structures of the zebrafish brain independently of cortisol levels. Dev Neurobiol 2014; 74:1053-77. [PMID: 24753454 DOI: 10.1002/dneu.22183] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 11/07/2022]
Abstract
The social environment is known to modulate adult neurogenesis. Studies in mammals and birds have shown a strong correlation between social isolation and decreases in neurogenesis, whereas time spent in an enriched environment has been shown to restore these deficits and enhance neurogenesis. These data suggest that there exists a common adaptive response among neurogenic niches to each extreme of the social environment. We sought to further test this hypothesis in zebrafish, a social species with distinct neurogenic niches within primary sensory structures and telencephalic nuclei of the brain. By examining stages of adult neurogenesis, including the proliferating stem/progenitor population, their surviving cohort, and the resulting newly differentiated neuronal population, we show that niches residing in sensory structures are most sensitive to changes in the social context, and that social isolation or novelty are both capable of decreasing the number of proliferating cells while increasing the number of newborn neurons within a single niche. Contrary to observations in rodents, we demonstrate that social novelty, a form of enrichment, does not consistently rescue deficits in cell proliferation following social isolation, and that cortisol levels do not negatively regulate changes in adult neurogenesis, but are correlated with the social context. We propose that enhancement or suppression of adult neurogenesis in the zebrafish brain under different social contexts depends largely on the type of niche (sensory or telencephalic), experience from the preceding social environment, and occurs independently of changes in cortisol levels.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
48
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. J Anat 2014; 224:192-206. [PMID: 24164558 PMCID: PMC3969062 DOI: 10.1111/joa.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
49
|
Abduweli D, Baba O, Tabata MJ, Higuchi K, Mitani H, Takano, Y. Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes). Microscopy (Oxf) 2014; 63:141-53. [DOI: 10.1093/jmicro/dft085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
50
|
Traniello IM, Sîrbulescu RF, Ilieş I, Zupanc GKH. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol 2013; 74:514-30. [PMID: 24293183 DOI: 10.1002/dneu.22145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/15/2013] [Accepted: 10/29/2013] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well-established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age-related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long-term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain.
Collapse
Affiliation(s)
- Ian M Traniello
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts, 02115
| | | | | | | |
Collapse
|