1
|
Duy PQ, Mehta NH, Kahle KT. Biomechanical instability of the brain-CSF interface in hydrocephalus. Brain 2024; 147:3274-3285. [PMID: 38798141 PMCID: PMC11449143 DOI: 10.1093/brain/awae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neel H Mehta
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Developmental Brain and CSF Disorders Program, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Singh AK, Allington G, Viviano S, McGee S, Kiziltug E, Ma S, Zhao S, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. A novel SMARCC1 BAFopathy implicates neural progenitor epigenetic dysregulation in human hydrocephalus. Brain 2024; 147:1553-1570. [PMID: 38128548 PMCID: PMC10994532 DOI: 10.1093/brain/awad405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.
Collapse
Affiliation(s)
- Amrita K Singh
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Yale University, New Haven, CT 06510, USA
| | - Stephen Viviano
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaojie Ma
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Shujuan Zhao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John P Shohfi
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adriana Cherskov
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | | | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London, WC1H 9RN, UK
| | - Syed R A Rizvi
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Seth L Alper
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nenad Sestan
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Hermela Shimelis
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Lauren K Walsh
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, 17822, USA
| | - Sheng Chih Jin
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | - Engin Deniz
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
4
|
Hourvitz N, Kurolap A, Mory A, Haratz KK, Kidron D, Malinger G, Baris Feldman H, Yaron Y. SMARCC1 is a susceptibility gene for congenital hydrocephalus with an autosomal dominant inheritance mode and incomplete penetrance. Prenat Diagn 2023; 43:1374-1377. [PMID: 37639281 DOI: 10.1002/pd.6426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
A Jewish couple of mixed origin was referred for genetic counseling following termination of pregnancy at 18 weeks of gestation due to severe ventriculomegaly with aqueduct stenosis. Trio exome sequencing revealed a loss-of-function heterozygous variant in the SMARCC1 gene inherited from an unaffected mother. The SMARCC1 gene is associated with embryonic neurodevelopmental processes. Recent studies have linked perturbations of the gene with autosomal dominant congenital hydrocephalus, albeit with reduced penetrance. However, these studies were not referenced in the SMARCC1 OMIM record (*601732) and the gene was not considered, at the time, an OMIM morbid gene. Following our case and appeal, SMARCC1 is now considered a susceptibility gene for hydrocephalus. This allowed us to reclassify the variant as likely pathogenic and empowered the couple to make informed reproductive choices.
Collapse
Affiliation(s)
- Noa Hourvitz
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Mory
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Karina Krajden Haratz
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dvora Kidron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gustavo Malinger
- Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity and Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Yaron
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Singh AK, Viviano S, Allington G, McGee S, Kiziltug E, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Ma S, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. A novel SMARCC1 -mutant BAFopathy implicates epigenetic dysregulation of neural progenitors in hydrocephalus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.19.23287455. [PMID: 36993720 PMCID: PMC10055611 DOI: 10.1101/2023.03.19.23287455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Importance Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery. A few familial forms of congenital hydrocephalus (CH) have been identified, but the cause of most sporadic cases of CH remains elusive. Recent studies have implicated SMARCC1 , a component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, as a candidate CH gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, CH-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo . Objectives The aims of this study are to (i) assess the extent to which rare, damaging de novo mutations (DNMs) in SMARCC1 are associated with cerebral ventriculomegaly; (ii) describe the clinical and radiographic phenotypes of SMARCC1 -mutated patients; and (iii) assess the pathogenicity and mechanisms of CH-associated SMARCC1 mutations in vivo . Design setting and participants A genetic association study was conducted using whole-exome sequencing from a cohort consisting of 2,697 ventriculomegalic trios, including patients with neurosurgically-treated CH, totaling 8,091 exomes collected over 5 years (2016-2021). Data were analyzed in 2023. A comparison control cohort consisted of 1,798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents sourced from the Simons simplex consortium. Main outcomes and measures Gene variants were identified and filtered using stringent, validated criteria. Enrichment tests assessed gene-level variant burden. In silico biophysical modeling estimated the likelihood and extent of the variant impact on protein structure. The effect of a CH-associated SMARCC1 mutation on the human fetal brain transcriptome was assessed by analyzing RNA-sequencing data. Smarcc1 knockdowns and a patient-specific Smarcc1 variant were tested in Xenopus and studied using optical coherence tomography imaging, in situ hybridization, and immunofluorescence microscopy. Results SMARCC1 surpassed genome-wide significance thresholds in DNM enrichment tests. Six rare protein-altering DNMs, including four loss-of-function mutations and one recurrent canonical splice site mutation (c.1571+1G>A) were detected in unrelated patients. DNMs localized to the highly conserved DNA-interacting SWIRM, Myb-DNA binding, Glu-rich, and Chromo domains of SMARCC1 . Patients exhibited developmental delay (DD), aqueductal stenosis, and other structural brain and heart defects. G0 and G1 Smarcc1 Xenopus mutants exhibited aqueductal stenosis and cardiac defects and were rescued by human wild-type SMARCC1 but not a patient-specific SMARCC1 mutant. Hydrocephalic SMARCC1 -mutant human fetal brain and Smarcc1 -mutant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2 . Conclusions SMARCC1 is a bona fide CH risk gene. DNMs in SMARCC1 cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)", characterized by cerebral ventriculomegaly, aqueductal stenosis, DD, and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodeling complex for human brain morphogenesis and provide evidence for a "neural stem cell" paradigm of human CH pathogenesis. These results highlight the utility of trio-based WES for identifying risk genes for congenital structural brain disorders and suggest WES may be a valuable adjunct in the clinical management of CH patients. KEY POINTS Question: What is the role of SMARCC1 , a core component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, in brain morphogenesis and congenital hydrocephalus (CH)? Findings: SMARCC1 harbored an exome-wide significant burden of rare, protein-damaging de novo mutations (DNMs) (p = 5.83 × 10 -9 ) in the largest ascertained cohort to date of patients with cerebral ventriculomegaly, including treated CH (2,697 parent-proband trios). SMARCC1 contained four loss-of-function DNMs and two identical canonical splice site DNMs in a total of six unrelated patients. Patients exhibited developmental delay, aqueductal stenosis, and other structural brain and cardiac defects. Xenopus Smarcc1 mutants recapitulated core human phenotypes and were rescued by the expression of human wild-type but not patient-mutant SMARCC1 . Hydrocephalic SMARCC1 -mutant human brain and Smarcc1 -mutant Xenopus brain exhibited similar alterationsin the expression of key transcription factors that regulate neural progenitor cell proliferation. Meaning: SMARCC1 is essential for human brain morphogenesis and is a bona fide CH risk gene. SMARCC1 mutations cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)". These data implicate epigenetic dysregulation of fetal neural progenitors in the pathogenesis of hydrocephalus, with diagnostic and prognostic implications for patients and caregivers.
Collapse
|
7
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
8
|
Chen CA, Lattier J, Zhu W, Rosenfeld J, Wang L, Scott TM, Du H, Patel V, Dang A, Magoulas P, Streff H, Sebastian J, Svihovec S, Curry K, Delgado MR, Hanchard N, Lalani S, Marom R, Madan-Khetarpal S, Saenz M, Dai H, Meng L, Xia F, Bi W, Liu P, Posey JE, Scott DA, Lupski JR, Eng CM, Xiao R, Yuan B. Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease-associated loci for BAFopathies. Genet Med 2022; 24:364-373. [PMID: 34906496 PMCID: PMC8957292 DOI: 10.1016/j.gim.2021.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lei Wang
- Baylor Genetics Laboratory, Houston, TX
| | - Tiana M. Scott
- Texas Children’s Hospital, Houston, TX, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Anh Dang
- Baylor Genetics Laboratory, Houston, TX
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Shayna Svihovec
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Kathryn Curry
- Genetics and Metabolic Department, St. Luke’s Health System
| | - Mauricio R. Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA, Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neil Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Margarita Saenz
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX, Current address: Department of Laboratories, Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
9
|
[A review on the genetic mechanism of chromatin remodeling in children with neurodevelopmental disorders]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33691929 PMCID: PMC7969188 DOI: 10.7499/j.issn.1008-8830.2012076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neural development is regulated by both external environment and internal signals, and in addition to transcription factors, epigenetic modifications also play an important role. By focusing on the genetic mechanism of ATP-dependent chromatin remodeling in children with neurodevelopmental disorders, this article elaborates on the effect of four chromatin remodeling complexes on neurogenesis and the development and maturation of neurons and neuroglial cells and introduces the clinical research advances in neurodevelopmental disorders.
Collapse
|
10
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
|
12
|
Santos C, Pai YJ, Mahmood MR, Leung KY, Savery D, Waddington SN, Copp AJ, Greene NDE. Impaired folate 1-carbon metabolism causes formate-preventable hydrocephalus in glycine decarboxylase-deficient mice. J Clin Invest 2020; 130:1446-1452. [PMID: 31794432 PMCID: PMC7269562 DOI: 10.1172/jci132360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Ventriculomegaly and hydrocephalus are associated with loss of function of glycine decarboxylase (Gldc) in mice and in humans suffering from non-ketotic hyperglycinemia (NKH), a neurometabolic disorder characterized by accumulation of excess glycine. Here, we showed that ventriculomegaly in Gldc-deficient mice is preceded by stenosis of the Sylvian aqueduct and malformation or absence of the subcommissural organ and pineal gland. Gldc functions in the glycine cleavage system, a mitochondrial component of folate metabolism, whose malfunction results in accumulation of glycine and diminished supply of glycine-derived 1-carbon units to the folate cycle. We showed that inadequate 1-carbon supply, as opposed to excess glycine, is the cause of hydrocephalus associated with loss of function of the glycine cleavage system. Maternal supplementation with formate prevented both ventriculomegaly, as assessed at prenatal stages, and postnatal development of hydrocephalus in Gldc-deficient mice. Furthermore, ventriculomegaly was rescued by genetic ablation of 5,10-methylene tetrahydrofolate reductase (Mthfr), which results in retention of 1-carbon groups in the folate cycle at the expense of transfer to the methylation cycle. In conclusion, a defect in folate metabolism can lead to prenatal aqueduct stenosis and resultant hydrocephalus. These defects are preventable by maternal supplementation with formate, which acts as a 1-carbon donor.
Collapse
Affiliation(s)
- Chloe Santos
- UCL Great Ormond Street Institute of Child Health and
| | - Yun Jin Pai
- UCL Great Ormond Street Institute of Child Health and
| | | | - Kit-Yi Leung
- UCL Great Ormond Street Institute of Child Health and
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child Health and
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London, United Kingdom.,MRC Antiviral Gene Therapy Research Unit, Faculty of Health Science, University of the Witswatersrand, Johannesburg, South Africa
| | - Andrew J Copp
- UCL Great Ormond Street Institute of Child Health and
| | | |
Collapse
|
13
|
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 2020; 26:1754-1765. [PMID: 33077954 PMCID: PMC7871900 DOI: 10.1038/s41591-020-1090-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Geisinger, Danville, PA, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - August A Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Rebecca L Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sierra Conine
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Xue Zeng
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Michael C Sierant
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - William Sullivan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Helena Perez Peña
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - James R Broach
- Institute for Personalized Medicine, The Penn State College of Medicine, Hershey, PA, USA
| | | | | | - Christine Hehnly
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Li Ge
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Boris Keren
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Yener Sahin
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen J Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Laura R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Han J, Kim I, Park JH, Yun JH, Joo K, Kim T, Park GY, Ryu KS, Ko YJ, Mizutani K, Park SY, Seong RH, Lee J, Suh JY, Lee W. A Coil-to-Helix Transition Serves as a Binding Motif for hSNF5 and BAF155 Interaction. Int J Mol Sci 2020; 21:E2452. [PMID: 32244797 PMCID: PMC7177284 DOI: 10.3390/ijms21072452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human SNF5 and BAF155 constitute the core subunit of multi-protein SWI/SNF chromatin-remodeling complexes that are required for ATP-dependent nucleosome mobility and transcriptional control. Human SNF5 (hSNF5) utilizes its repeat 1 (RPT1) domain to associate with the SWIRM domain of BAF155. Here, we employed X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and various biophysical methods in order to investigate the detailed binding mechanism between hSNF5 and BAF155. Multi-angle light scattering data clearly indicate that hSNF5171-258 and BAF155SWIRM are both monomeric in solution and they form a heterodimer. NMR data and crystal structure of the hSNF5171-258/BAF155SWIRM complex further reveal a unique binding interface, which involves a coil-to-helix transition upon protein binding. The newly formed αN helix of hSNF5171-258 interacts with the β2-α1 loop of hSNF5 via hydrogen bonds and it also displays a hydrophobic interaction with BAF155SWIRM. Therefore, the N-terminal region of hSNF5171-258 plays an important role in tumorigenesis and our data will provide a structural clue for the pathogenesis of Rhabdoid tumors and malignant melanomas that originate from mutations in the N-terminal loop region of hSNF5.
Collapse
Affiliation(s)
- Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| | - Iktae Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| | - Keehyoung Joo
- Center for In Silico Protein Science and Center for Advanced Computation, Korea Institute for Advanced Study, Seoul 130-722, Korea;
| | - Taehee Kim
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| | - Gye-Young Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance Research, Korea Basic Science Institute, Yangcheong-Ri 804-1, Ochang-Eup, Cheongwon-Gun, Chungcheongbuk-Do 363-883, Korea;
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan; (K.M.); (S.-Y.P.)
| | - Sam-Young Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan; (K.M.); (S.-Y.P.)
| | - Rho Hyun Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea;
| | - Jooyoung Lee
- Center for In Silico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea; (J.H.); (J.-H.P.); (J.-H.Y.); (T.K.); (G.-Y.P.)
| |
Collapse
|
15
|
Prozzillo Y, Delle Monache F, Ferreri D, Cuticone S, Dimitri P, Messina G. The True Story of Yeti, the "Abominable" Heterochromatic Gene of Drosophila melanogaster. Front Physiol 2019; 10:1093. [PMID: 31507454 PMCID: PMC6713933 DOI: 10.3389/fphys.2019.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Yeti gene (CG40218) was originally identified by recessive lethal mutation and subsequently mapped to the deep pericentromeric heterochromatin of chromosome 2. Functional studies have shown that Yeti encodes a 241 amino acid protein called YETI belonging to the evolutionarily conserved family of Bucentaur (BCNT) proteins and exhibiting a widespread distribution in animals and plants. Later studies have demonstrated that YETI protein: (i) is able to bind both subunits of the microtubule-based motor kinesin-I; (ii) is required for proper chromosome organization in both mitosis and meiosis divisions; and more recently (iii) is a new subunit of dTip60 chromatin remodeling complex. To date, other functions of YETI counterparts in chicken (CENtromere Protein 29, CENP-29), mouse (Cranio Protein 27, CP27), zebrafish and human (CranioFacial Development Protein 1, CFDP1) have been reported in literature, but the fully understanding of the multifaceted molecular function of this protein family remains still unclear. In this review we comprehensively highlight recent work and provide a more extensive hypothesis suggesting a broader range of YETI protein functions in different cellular processes.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Francesca Delle Monache
- "Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Diego Ferreri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Stefano Cuticone
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Patrizio Dimitri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Messina
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Xie Y, Castro-Hernández R, Sokpor G, Pham L, Narayanan R, Rosenbusch J, Staiger JF, Tuoc T. RBM15 Modulates the Function of Chromatin Remodeling Factor BAF155 Through RNA Methylation in Developing Cortex. Mol Neurobiol 2019; 56:7305-7320. [PMID: 31020615 DOI: 10.1007/s12035-019-1595-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Chromatin remodeling factor BAF155 is an important regulator of many biological processes. As a core and scaffold subunit of the BAF (SWI/SNF-like) complex, BAF155 is capable of regulating the stability and function of the BAF complex. The spatiotemporal expression of BAF155 during embryogenesis is essential for various aspects of organogenesis, particularly in the brain development. However, our understanding of the mechanisms that regulate the expression and function of BAF155 is limited. Here, we report that RBM15, a subunit of the m6A methyltransferase complex, interacts with BAF155 mRNA and mediates BAF155 mRNA degradation through the mRNA methylation machinery. Ablation of endogenous RBM15 expression in cultured neuronal cells and in the developing cortex augmented the expression of BAF155. Conversely, RBM15 overexpression decreased BAF155 mRNA and protein levels, and perturbed BAF155 functions in vivo, including repression of BAF155-dependent transcriptional activity and delamination of apical radial glial progenitors as a hallmark of basal radial glial progenitor genesis. Furthermore, we demonstrated that the regulation of BAF155 by RBM15 depends on the activity of the mRNA methylation complex core catalytic subunit METTL3. Altogether, our findings reveal a new regulatory avenue that elucidates how BAF complex subunit stoichiometry and functional modulation are achieved in mammalian cells.
Collapse
Affiliation(s)
- Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| | - Ricardo Castro-Hernández
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Ramanathan Narayanan
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH), 8057, Zurich, Switzerland
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
17
|
Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT. Human Genetics and Molecular Mechanisms of Congenital Hydrocephalus. World Neurosurg 2018; 119:441-443. [PMID: 30205212 DOI: 10.1016/j.wneu.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Jungmin Choi
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Andrew T Timberlake
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Ashley M Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - August A Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA; Department of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Shang Z, Chen D, Wang Q, Wang S, Deng Q, Wu L, Liu C, Ding X, Wang S, Zhong J, Zhang D, Cai X, Zhu S, Yang H, Liu L, Fink JL, Chen F, Liu X, Gao Z, Xu X. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation. Gigascience 2018; 7:5099469. [PMID: 30239706 PMCID: PMC6420650 DOI: 10.1093/gigascience/giy117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Investigating cell fate decision and subpopulation specification in the context of the neural lineage is fundamental to understanding neurogenesis and neurodegenerative diseases. The differentiation process of neural-tube-like rosettes in vitro is representative of neural tube structures, which are composed of radially organized, columnar epithelial cells and give rise to functional neural cells. However, the underlying regulatory network of cell fate commitment during early neural differentiation remains elusive. Results In this study, we investigated the genome-wide transcriptome profile of single cells from six consecutive reprogramming and neural differentiation time points and identified cellular subpopulations present at each differentiation stage. Based on the inferred reconstructed trajectory and the characteristics of subpopulations contributing the most toward commitment to the central nervous system lineage at each stage during differentiation, we identified putative novel transcription factors in regulating neural differentiation. In addition, we dissected the dynamics of chromatin accessibility at the neural differentiation stages and revealed active cis-regulatory elements for transcription factors known to have a key role in neural differentiation as well as for those that we suggest are also involved. Further, communication network analysis demonstrated that cellular interactions most frequently occurred in the embryoid body stage and that each cell subpopulation possessed a distinctive spectrum of ligands and receptors associated with neural differentiation that could reflect the identity of each subpopulation. Conclusions Our study provides a comprehensive and integrative study of the transcriptomics and epigenetics of human early neural differentiation, which paves the way for a deeper understanding of the regulatory mechanisms driving the differentiation of the neural lineage.
Collapse
Affiliation(s)
- Zhouchun Shang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Shengpeng Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jixing Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - J Lynn Fink
- BGI-Shenzhen, Shenzhen 518083, China.,BGI Australia, L6, CBCRC, 300 Herston Rd, Herston, QLD 4006, Australia.,The University of Queensland, Diamantina Institute (UQDI), Brisbane, QLD 4102, Australia
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Xiaoqing Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
19
|
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018; 99:302-314.e4. [PMID: 29983323 PMCID: PMC7839075 DOI: 10.1016/j.neuron.2018.06.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10-7), SMARCC1 (p = 8.15 × 10-10), and PTCH1 (p = 1.06 × 10-6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10-4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications.
Collapse
Affiliation(s)
- Charuta Gavankar Furey
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan R Gaillard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Erin Loring
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer M Strahle
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI 53726, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Irina Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | | | | | - Robert D Bjornson
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London WC1N 1AX, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul 34860, Turkey
| | - Yasar Bayri
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Yener Sahin
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Hallgrimsson B, Green RM, Katz DC, Fish JL, Bernier FP, Roseman CC, Young NM, Cheverud JM, Marcucio RS. The developmental-genetics of canalization. Semin Cell Dev Biol 2018; 88:67-79. [PMID: 29782925 DOI: 10.1016/j.semcdb.2018.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
Canalization, or robustness to genetic or environmental perturbations, is fundamental to complex organisms. While there is strong evidence for canalization as an evolved property that varies among genotypes, the developmental and genetic mechanisms that produce this phenomenon are very poorly understood. For evolutionary biology, understanding how canalization arises is important because, by modulating the phenotypic variation that arises in response to genetic differences, canalization is a determinant of evolvability. For genetics of disease in humans and for economically important traits in agriculture, this subject is important because canalization is a potentially significant cause of missing heritability that confounds genomic prediction of phenotypes. We review the major lines of thought on the developmental-genetic basis for canalization. These fall into two groups. One proposes specific evolved molecular mechanisms while the other deals with robustness or canalization as a more general feature of development. These explanations for canalization are not mutually exclusive and they overlap in several ways. General explanations for canalization are more likely to involve emergent features of development than specific molecular mechanisms. Disentangling these explanations is also complicated by differences in perspectives between genetics and developmental biology. Understanding canalization at a mechanistic level will require conceptual and methodological approaches that integrate quantitative genetics and developmental biology.
Collapse
Affiliation(s)
- Benedikt Hallgrimsson
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Rebecca M Green
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Katz
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer L Fish
- Dept. of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Francois P Bernier
- Dept of Medical Genetics, Alberta Children's Hospital Research Institute Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Charles C Roseman
- Dept. of Animal Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Nathan M Young
- Dept. of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA
| | - James M Cheverud
- Dept. of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Ralph S Marcucio
- Dept. of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA.
| |
Collapse
|
21
|
Al Mutairi F, Alzahrani F, Ababneh F, Kashgari AA, Alkuraya FS. A mendelian form of neural tube defect caused by a de novo null variant in SMARCC1
in an identical twin. Ann Neurol 2018; 83:433-436. [DOI: 10.1002/ana.25152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Fuad Al Mutairi
- Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz; University for Health Sciences; Riyadh Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Farouq Ababneh
- Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Amna A. Kashgari
- Medical Imaging Department, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine; Alfaisal University; Riyadh Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology; Riyadh Saudi Arabia
| |
Collapse
|
22
|
Seabra CM, Szoko N, Erdin S, Ragavendran A, Stortchevoi A, Maciel P, Lundberg K, Schlatzer D, Smith J, Talkowski ME, Gusella JF, Natowicz MR. A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings. Am J Med Genet A 2017; 173:2478-2484. [PMID: 28691782 PMCID: PMC5561488 DOI: 10.1002/ajmg.a.38327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/21/2017] [Indexed: 11/10/2022]
Abstract
Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities.
Collapse
Affiliation(s)
- Catarina M. Seabra
- GABBA - Institute of Biomedical Sciences Abel Salazar of the University of Porto, Portugal
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Nicholas Szoko
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Kathleen Lundberg
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Janice Smith
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX, USA
| | - Michael E. Talkowski
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Marvin R. Natowicz
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
- Pathology & Laboratory Medicine, Genomic Medicine, Neurology and Pediatrics Institutes, Cleveland Clinic, OH, USA and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
23
|
Scott CA, Marsden AN, Rebagliati MR, Zhang Q, Chamling X, Searby CC, Baye LM, Sheffield VC, Slusarski DC. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet 2017; 13:e1006936. [PMID: 28753627 PMCID: PMC5550010 DOI: 10.1371/journal.pgen.1006936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients. To understand how mutations in one gene can cause two distinct human syndromes (McKusick-Kaufman syndrome and Bardet-Bield syndrome), we investigated the cellular functions of the implicated gene BBS6. We found that BBS6 is actively transported between the cytoplasm and nucleus, and this interaction is disrupted in McKusick-Kaufman syndrome, but not Bardet-Biedl syndrome. We find that by manipulating BBS6, we can affect another protein, SMARCC1, which has a direct role in regulating gene expression. When we profiled these changes in gene expression, we find that many genes, which can be directly linked to the symptoms of McKusick-Kaufman syndrome, are affected. Therefore, our data support that the nuclear-cytoplasmic transport defect of BBS6, through disruption of proteins controlling gene expression, cause the symptoms observed in McKusick-Kaufman syndrome patients.
Collapse
Affiliation(s)
- Charles Anthony Scott
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Autumn N. Marsden
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael R. Rebagliati
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Xitiz Chamling
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lisa M. Baye
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tischfield DJ, Kim J, Anderson SA. Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells. Stem Cell Reports 2017; 8:1135-1143. [PMID: 28416285 PMCID: PMC5829278 DOI: 10.1016/j.stemcr.2017.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022] Open
Abstract
Recent studies indicate that the location of neurogenesis within the medial ganglionic eminence (MGE) critically influences the fate determination of cortical interneuron subgroups, with parvalbumin (Pv) interneurons originating from subventricular zone divisions and somatostatin (Sst) interneurons primarily arising from apical divisions. The aPKC-CBP and Notch signaling pathways regulate the transition from apical to basal progenitor and their differentiation into post-mitotic neurons. We find that aPKC inhibition enhances intermediate neurogenesis from stem cell-derived MGE progenitors, resulting in a markedly increased ratio of Pv- to Sst-expressing interneurons. Conversely, inhibition of Notch signaling enriches for Sst subtypes at the expense of Pv fates. These findings confirm that the mode of neurogenesis influences the fate of MGE-derived interneurons and provide a means of further enrichment for the generation of specific interneuron subgroups from pluripotent stem cells.
Collapse
Affiliation(s)
- David J Tischfield
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA
| | - Junho Kim
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA
| | - Stewart A Anderson
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA.
| |
Collapse
|
25
|
Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. J Neurosci 2017; 37:2565-2579. [PMID: 28154153 DOI: 10.1523/jneurosci.2121-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.
Collapse
|
26
|
CLIP-GENE: a web service of the condition specific context-laid integrative analysis for gene prioritization in mouse TF knockout experiments. Biol Direct 2016; 11:57. [PMID: 27776539 PMCID: PMC5078909 DOI: 10.1186/s13062-016-0158-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Transcriptome data from the gene knockout experiment in mouse is widely used to investigate functions of genes and relationship to phenotypes. When a gene is knocked out, it is important to identify which genes are affected by the knockout gene. Existing methods, including differentially expressed gene (DEG) methods, can be used for the analysis. However, existing methods require cutoff values to select candidate genes, which can produce either too many false positives or false negatives. This hurdle can be addressed either by improving the accuracy of gene selection or by providing a method to rank candidate genes effectively, or both. Prioritization of candidate genes should consider the goals or context of the knockout experiment. As of now, there are no tools designed for both selecting and prioritizing genes from the mouse knockout data. Hence, the necessity of a new tool arises. RESULTS In this study, we present CLIP-GENE, a web service that selects gene markers by utilizing differentially expressed genes, mouse transcription factor (TF) network, and single nucleotide variant information. Then, protein-protein interaction network and literature information are utilized to find genes that are relevant to the phenotypic differences. One of the novel features is to allow researchers to specify their contexts or hypotheses in a set of keywords to rank genes according to the contexts that the user specify. We believe that CLIP-GENE will be useful in characterizing functions of TFs in mouse experiments. AVAILABILITY http://epigenomics.snu.ac.kr/CLIP-GENE REVIEWERS: This article was reviewed by Dr. Lee and Dr. Pongor.
Collapse
|
27
|
Smith JA, Holden KR, Friez MJ, Jones JR, Lyons MJ. A novel familial autosomal dominant mutation in ARID1B causing neurodevelopmental delays, short stature, and dysmorphic features. Am J Med Genet A 2016; 170:3313-3318. [PMID: 27570168 DOI: 10.1002/ajmg.a.37945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/10/2016] [Indexed: 11/11/2022]
Abstract
Recent studies have identified mutations in the ARID1B gene responsible for neurodevelopmental delays, intellectual disability, growth delay, and dysmorphic features. ARID1B encodes a subunit of the BAF chromatin-remodeling complex, and mutations in multiple components of the BAF complex have been implicated as causes of Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, and non-syndromic intellectual disability. The majority of documented pathogenic ARID1B mutations to date have arisen in a sporadic, de novo manner with no reports of inheritance of a pathogenic mutation from an affected parent. We describe here two patients (a 21-year-old female and her 21-month-old son) with a novel frameshift mutation in ARID1B inherited in an autosomal dominant fashion in the affected offspring. Both patients presented with neurodevelopmental delays, growth delay, and dysmorphic features including prominent nose with full nasal tip, long philtrum, and high-arched palate. Exome sequencing analysis in the female patient demonstrated a heterozygous deletion of nucleotide 1259 of the ARID1B gene (c.1259delA) resulting in a frameshift and creation of a premature stop codon. Further family testing by targeted Sanger sequencing confirmed that this arose as a de novo mutation in the mother and was passed on to her affected son. The clinical features of both patients are felt to be consistent with an ARID1B-related disorder. To our knowledge, this is the first report of a pathogenic mutation in ARID1B being passed from an affected parent to their offspring. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua A Smith
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kenton R Holden
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Clinical Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Michael J Friez
- Clinical Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Julie R Jones
- Clinical Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Michael J Lyons
- Clinical Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| |
Collapse
|
28
|
Sim JCH, White SM, Lockhart PJ. ARID1B-mediated disorders: Mutations and possible mechanisms. Intractable Rare Dis Res 2015; 4:17-23. [PMID: 25674384 PMCID: PMC4322591 DOI: 10.5582/irdr.2014.01021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding AT-rich interactive domain-containing protein 1B (ARID1B) were recently associated with multiple syndromes characterized by developmental delay and intellectual disability, in addition to nonsyndromic intellectual disability. While the majority of ARID1B mutations identified to date are predicted to result in haploinsufficiency, the underlying pathogenic mechanisms have yet to be fully understood. ARID1B is a DNA-binding subunit of the Brahma-associated factor chromatin remodelling complexes, which play a key role in the regulation of gene activity. The function of remodelling complexes can be regulated by their subunit composition, and there is some evidence that ARID1B is a component of the neuron-specific chromatin remodelling complex. This complex is involved in the regulation of stem/progenitor cells exiting the cell cycle and differentiating into postmitotic neurons. Recent research has indicated that alterations in the cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency in fibroblasts derived from affected individuals. This review describes studies linking ARID1B to neurodevelopmental disorders and it summarizes the function of ARID1B to provide insights into the pathogenic mechanisms underlying ARID1B-mediated disorders. In conclusion, ARID1B is likely to play a key role in neurodevelopment and reduced levels of wild-type protein compromise normal brain development. Additional studies are required to determine the mechanisms by which impaired neural development contributes to the intellectual disability and speech impairment that are consistently observed in individuals with ARID1B haploinsufficiency.
Collapse
Affiliation(s)
- Joe C. H. Sim
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Susan M White
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Address correspondence to: Dr. Paul J. Lockhart, Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road Parkville, Victoria 3052, Australia. E-mail:
| |
Collapse
|
29
|
Messina G, Celauro E, Atterrato MT, Giordano E, Iwashita S, Dimitri P. The Bucentaur (BCNT) protein family: a long-neglected class of essential proteins required for chromatin/chromosome organization and function. Chromosoma 2014; 124:153-62. [DOI: 10.1007/s00412-014-0503-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
30
|
Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 2014; 48:583-611. [PMID: 25292356 DOI: 10.1146/annurev-genet-120213-092208] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado 80045;
| | | | | |
Collapse
|
31
|
Patterson ES, Waller LE, Kroll KL. Geminin loss causes neural tube defects through disrupted progenitor specification and neuronal differentiation. Dev Biol 2014; 393:44-56. [PMID: 24995796 DOI: 10.1016/j.ydbio.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023]
Abstract
Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
Collapse
Affiliation(s)
- Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|