1
|
Dokukin NV, Chudakova DA, Shkap MO, Kovalchuk AM, Kibirsky PD, Baklaushev VP. Direct Neural Reprogramming in situ: Existing Approaches and Their Optimization. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:214-230. [PMID: 40254400 DOI: 10.1134/s000629792460426x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025]
Abstract
Direct in situ neuronal reprogramming (transdifferentiation) of glial cells (astrocytes and microglia) has attracted a significant interest as a potential approach for the treatment of a wide range of neurodegenerative diseases and damages of the central nervous system (CNS). The nervous system of higher mammals has a very limited capacity for repair. Disruption of CNS functioning due to traumatic injuries or neurodegenerative processes can significantly affect the quality of patients' life, lead to motor and cognitive impairments, and result in disability and, in some cases, death. Restoration of lost neurons in situ via direct reprogramming of glial cells without the intermediate stage of pluripotency seems to be the most attractive approach from the viewpoint of translational biomedicine. The ability of astroglia to actively proliferate in response to the damage of neural tissue supports the idea that these neuron-like cells, which are already present at the lesion site, are good candidates for transdifferentiation into neurons, considering that the possibility of direct neuronal reprogramming of astrocytes both in vitro and in vivo have demonstrated in many independent studies. Overexpression of proneuronal transcription factors, e.g., neurogenic differentiation factors 1-4 (NeuroD1-4), Neurogenin 2 (NeuroG2), Ascl1 (Achaete-Scute homolog 1), and Dlx2 (distal-less homeobox 2), including pioneer transcription factors that recognize target sequences in the compacted chromatin and activate transcription of silent genes, has already been proven as a potential therapeutic strategy. Other strategies, such as microRNA-mediated suppression of activity of PTB and REST transcription factors and application of small molecules or various biomaterials, are also utilized in neuronal reprogramming. However, the efficiency of direct in situ reprogramming is limited by a number of factors, including cell specificity of transgene delivery systems and promoters, brain regions in which transdifferentiation occurs, factors affecting cell metabolism, microenvironment, etc. Reprogramming in situ, which takes place in the presence of a large number of different cell types, requires monitoring and precise phenotypic characterization of subpopulations of cells undergoing transdifferentiation in order to confirm the reprogramming of the astroglia into neurons and subsequent integration of these neurons into the CNS. Here, we discussed the most efficient strategies of neuronal reprogramming and technologies used to visualize the transdifferentiation process, with special focus on the obstacles to efficient neuronal conversion, as well as approaches to overcome them.
Collapse
Affiliation(s)
- Nikita V Dokukin
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Daria A Chudakova
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
- National Medical Research Center of Children's Health, Ministry of Health of the Russian Federation, Moscow, 119991, Russia
| | - Matvey O Shkap
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Anna M Kovalchuk
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Pavel D Kibirsky
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia.
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Research Institute of Pulmonology, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
4
|
Liu Y, Wei C, Yang Y, Zhu Z, Ren Y, Pi R. In situ chemical reprogramming of astrocytes into neurons: A new hope for the treatment of central neurodegenerative diseases? Eur J Pharmacol 2024; 982:176930. [PMID: 39179093 DOI: 10.1016/j.ejphar.2024.176930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Central neurodegenerative disorders (e.g. Alzheimer's disease (AD) and Parkinson's disease (PD)) are tightly associated with extensive neuron loss. Current therapeutic interventions merely mitigate the symptoms of these diseases, falling short of addressing the fundamental issue of neuron loss. Cell reprogramming, involving the transition of a cell from one gene expression profile to another, has made significant strides in the conversion between diverse somatic cell types. This advancement has been facilitated by gene editing techniques or the synergistic application of small molecules, enabling the conversion of glial cells into functional neurons. Despite this progress, the potential for in situ reprogramming of astrocytes in treating neurodegenerative disorders faces challenges such as immune rejection and genotoxicity. A novel avenue emerges through chemical reprogramming of astrocytes utilizing small molecules, circumventing genotoxic effects and unlocking substantial clinical utility. Recent studies have successfully demonstrated the in situ conversion of astrocytes into neurons using small molecules. Nonetheless, these findings have sparked debates, encompassing queries regarding the origin of newborn neurons, pivotal molecular targets, and alterations in metabolic pathways. This review succinctly delineates the background of astrocytes reprogramming, meticulously surveys the principal classes of small molecule combinations employed thus far, and examines the complex signaling pathways they activate. Finally, this article delves into the potential vistas awaiting exploration in the realm of astrocytes chemical reprogramming, heralding a promising future for advancing our understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zeyu Zhu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Ren
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Rongbiao Pi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Shenzhen, 518107, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Marichal N, Péron S, Beltrán Arranz A, Galante C, Franco Scarante F, Wiffen R, Schuurmans C, Karow M, Gascón S, Berninger B. Reprogramming astroglia into neurons with hallmarks of fast-spiking parvalbumin-positive interneurons by phospho-site-deficient Ascl1. SCIENCE ADVANCES 2024; 10:eadl5935. [PMID: 39454007 PMCID: PMC11506222 DOI: 10.1126/sciadv.adl5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Cellular reprogramming of mammalian glia to an induced neuronal fate holds the potential for restoring diseased brain circuits. While the proneural factor achaete-scute complex-like 1 (Ascl1) is widely used for neuronal reprogramming, in the early postnatal mouse cortex, Ascl1 fails to induce the glia-to-neuron conversion, instead promoting the proliferation of oligodendrocyte progenitor cells (OPC). Since Ascl1 activity is posttranslationally regulated, here, we investigated the consequences of mutating six serine phospho-acceptor sites to alanine (Ascl1SA6) on lineage reprogramming in vivo. Ascl1SA6 exhibited increased neurogenic activity in the glia of the early postnatal mouse cortex, an effect enhanced by coexpression of B cell lymphoma 2 (Bcl2). Genetic fate-mapping revealed that most induced neurons originated from astrocytes, while only a few derived from OPCs. Many Ascl1SA6/Bcl2-induced neurons expressed parvalbumin and were capable of high-frequency action potential firing. Our study demonstrates the authentic conversion of astroglia into neurons featuring subclass hallmarks of cortical interneurons, advancing our scope of engineering neuronal fates in the brain.
Collapse
Affiliation(s)
- Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sophie Péron
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Ana Beltrán Arranz
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Galante
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Franciele Franco Scarante
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebecca Wiffen
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sergio Gascón
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute – CSIC, Madrid, Spain
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The Francis Crick Institute, London, UK
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Talifu Z, Zhang C, Xu X, Pan Y, Ke H, Li Z, Liu W, Du H, Wang X, Gao F, Yang D, Jing Y, Yu Y, Du L, Li J. Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2. Biol Res 2024; 57:53. [PMID: 39135103 PMCID: PMC11318173 DOI: 10.1186/s40659-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-β (TGF-β) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-β protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-β pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Chunjia Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Han Ke
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Wubo Liu
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- University of Health and Rehabilitation Sciences, Shandong, 266113, China.
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China.
| |
Collapse
|
7
|
Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 2024; 12:1435546. [PMID: 39105169 PMCID: PMC11298428 DOI: 10.3389/fcell.2024.1435546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, Vestec, Czechia
| | | |
Collapse
|
8
|
Mseis-Jackson N, Sharma M, Li H. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome. Cells 2024; 13:1223. [PMID: 39056804 PMCID: PMC11274869 DOI: 10.3390/cells13141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.
Collapse
Affiliation(s)
- Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mehek Sharma
- Department of Biological Sciences, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA;
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
9
|
Xie Y, Chen B. Building the toolbox for in vivo glia-to-neuron reprogramming. Neural Regen Res 2024; 19:1171-1172. [PMID: 37905849 PMCID: PMC11467923 DOI: 10.4103/1673-5374.385869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Ye Xie
- Departments of Ophthalmology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Chen
- Departments of Ophthalmology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Cao P, Li J, Liu Z, Liang G. Current controversies in glia-to-neuron conversion therapy in neurodegenerative diseases. Neural Regen Res 2024; 19:723-724. [PMID: 37843203 PMCID: PMC10664116 DOI: 10.4103/1673-5374.382251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang, Liaoning Province, China
| | - Jianan Li
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang, Liaoning Province, China
| | - Zhuxi Liu
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of the Northern Theater Command of Chinese People’s Liberation Army, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Huang L, Lai X, Liang X, Chen J, Yang Y, Xu W, Qin Q, Qin R, Huang X, Xie M, Chen L. A promise for neuronal repair: reprogramming astrocytes into neurons in vivo. Biosci Rep 2024; 44:BSR20231717. [PMID: 38175538 PMCID: PMC10830445 DOI: 10.1042/bsr20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Massive loss of neurons following brain injury or disease is the primary cause of central nervous system dysfunction. Recently, much research has been conducted on how to compensate for neuronal loss in damaged parts of the nervous system and thus restore functional connectivity among neurons. Direct somatic cell differentiation into neurons using pro-neural transcription factors, small molecules, or microRNAs, individually or in association, is the most promising form of neural cell replacement therapy available. This method provides a potential remedy for cell loss in a variety of neurodegenerative illnesses, and the development of reprogramming technology has made this method feasible. This article provides a comprehensive review of reprogramming, including the selection and methods of reprogramming starting cell populations as well as the signaling methods involved in this process. Additionally, we thoroughly examine how reprogramming astrocytes into neurons can be applied to treat stroke and other neurodegenerative diseases. Finally, we discuss the challenges of neuronal reprogramming and offer insights about the field.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
12
|
Tai W, Zhang CL. In vivo cell fate reprogramming for spinal cord repair. Curr Opin Genet Dev 2023; 82:102090. [PMID: 37506560 PMCID: PMC11025462 DOI: 10.1016/j.gde.2023.102090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Spinal cord injury (SCI) can lead to the loss of motor, sensory, or autonomic function due to neuronal death. Unfortunately, the adult mammalian spinal cord has limited intrinsic regenerative capacity, making it difficult to rebuild the neural circuits necessary for functional recovery. However, recent evidence suggests that in vivo fate reprogramming of resident cells that are normally non-neurogenic can generate new neurons. This process also improves the pathological microenvironment, and the new neurons can integrate into the local neural network, resulting in better functional outcomes in SCI animal models. In this concise review, we focus on recent advances while also discussing the challenges, pitfalls, and opportunities in the field of in vivo cell fate reprogramming for spinal cord repair.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Alber S, Di Matteo P, Zdradzinski MD, Dalla Costa I, Medzihradszky KF, Kawaguchi R, Di Pizio A, Freund P, Panayotis N, Marvaldi L, Doron-Mandel E, Okladnikov N, Rishal I, Nevo R, Coppola G, Lee SJ, Sahoo PK, Burlingame AL, Twiss JL, Fainzilber M. PTBP1 regulates injury responses and sensory pathways in adult peripheral neurons. SCIENCE ADVANCES 2023; 9:eadi0286. [PMID: 37506203 PMCID: PMC10381954 DOI: 10.1126/sciadv.adi0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin β1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.
Collapse
Affiliation(s)
- Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew D. Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katalin F. Medzihradszky
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip Freund
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicolas Panayotis
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Letizia Marvaldi
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano 10043, Italy
| | - Ella Doron-Mandel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K. Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffery L. Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Wang LL, Zhang CL. Therapeutic Potential of PTBP1 Inhibition, If Any, Is Not Attributed to Glia-to-Neuron Conversion. Annu Rev Neurosci 2023; 46:1-15. [PMID: 36750409 PMCID: PMC10404630 DOI: 10.1146/annurev-neuro-092822-083410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A holy grail of regenerative medicine is to replenish the cells that are lost due to disease. The adult mammalian central nervous system (CNS) has, however, largely lost such a regenerative ability. An emerging strategy for the generation of new neurons is through glia-to-neuron (GtN) conversion in vivo, mainly accomplished by the regulation of fate-determining factors. When inhibited, PTBP1, a factor involved in RNA biology, was reported to induce rapid and efficient GtN conversion in multiple regions of the adult CNS. Remarkably, PTBP1 inhibition was also claimed to greatly improve behaviors of mice with neurological diseases or aging. These phenomenal claims, if confirmed, would constitute a significant advancement in regenerative medicine. Unfortunately, neither GtN conversion nor therapeutic potential via PTBP1 inhibition was validated by the results of multiple subsequent replication studies with stringent methods. Here we review these controversial studies and conclude with recommendations for examining GtN conversion in vivo and future investigations of PTBP1.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
15
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
16
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Li Y, Yang T, Cheng Y, Hou J, Liu Z, Zhao Y, Chen S, Qin Z, Wang C, Song W, Ge H, Li C, Liang L, Guo L, Sun H, Wu L, Zheng H. Low glutaminase and glycolysis correlate with a high transdifferentiation efficiency in mouse cortex. Cell Prolif 2023; 56:e13422. [PMID: 36786003 PMCID: PMC10212695 DOI: 10.1111/cpr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Both exogenous transcriptional factors and chemical-defined medium can transdifferentiate astrocytes into functional neurons. However, the regional preference for such transdifferentiation has not been fully studied. A previously reported 5C medium was infused into the mouse cortex and striatum to determine the regional preference for transdifferentiation from astrocytes to neurons. The numbers of NeuN+ GFAP+ EdU+ cells (intermediates) and NeuN+ EdU+ cells (end products) were determined by immunofluorescence to explore the regional preference of transdifferentiation. In addition, to optimize the delivery of the transdifferentiation medium, three key growth factors, insulin, bFGF and transferrin, were loaded onto chitosan nanoparticles, mixed with gelatin methacryloyl and tested in animals with motor cortex injury. A higher transdifferentiation efficiency was identified in the mouse cortex. Differences in cellular respiration and the balance between glutaminase (Gls) and glutamine synthetase were confirmed to be key regulators. In addition, the sustained drug release system induced transdifferentiation of cortex astrocytes both in vivo and in vitro, and partially facilitated the behaviour recovery of mice with motor cortex injury. We also applied this method in pigs and obtained consistent results. In summary, low Gls and glycolysis can be used to predict high transdifferentiation efficiency, which may be useful to identify better indications for the current transdifferentiation system. In addition, the current drug delivery system has the potential to treat diseases related to cortex injuries.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yingying Cheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jinfei Hou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Department of Plastic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zhaoming Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaohui Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenchen Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Department of Plastic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Weining Song
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haofei Ge
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Lin‐Ping Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH‐CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and HealthHong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
- Institutes for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
John MC, Quinn J, Hu ML, Cehajic-Kapetanovic J, Xue K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front Mol Neurosci 2023; 15:1068185. [PMID: 36710928 PMCID: PMC9881597 DOI: 10.3389/fnmol.2022.1068185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.
Collapse
Affiliation(s)
- Molly C. John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
20
|
Ahlenius H. Past, Present, and Future of Direct Cell Reprogramming. Cell Reprogram 2022; 24:205-211. [DOI: 10.1089/cell.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration, Division of Neurology, Department of Clinical Sciences Lund, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|