1
|
Li L, Chen G, Qiao N, Li J, Wang Z, Lyu Y, Guo Y. Rare T-box variants in adult pulmonary arterial hypertension with congenital heart disease. J Appl Genet 2025:10.1007/s13353-025-00958-4. [PMID: 40126773 DOI: 10.1007/s13353-025-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
We report the clinical and genetic features of three adult patients with congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH) carrying rare T-box variants. All three patients had weakness and cyanosis. Two patients had chest tightness, dry cough, and hemoptysis, and one patient had lower limb edema. Besides meeting the diagnostic criteria of CHD-PAH, three patients respectively presented the clinical features of specific syndromes. Specifically, patient 1 presented with clinical features consistent with tetralogy of Fallot, patient 2 presented with characteristics associated with small patella syndrome, and the patient 3 exhibited features consistent with Holt-Oram syndrome. Exome sequencing revealed that the TBX1 (c.820 T > C) variant was identified in patient 1, the TBX4 (c.251del) variant was detected in patient 2 and the TBX5 (c.486del) variant was found in patient 3. Our study for the first time found that CHD-PAH patients carry T-box gene variants, which has added new clues to understanding the pathogenesis of CHD-PAH and is expected to provide new targets and ideas for the diagnosis and treatment of CHD-PAH.
Collapse
Affiliation(s)
- Li Li
- Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Guoliang Chen
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Nating Qiao
- Department of Cardiology, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Jianwei Li
- Central Laboratory, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Zhixin Wang
- Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Yaxuan Lyu
- Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China
| | - Yanqing Guo
- Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China.
- Department of Cardiology, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Wang C, Yin Z, Wang Y, Liu Y, Zhao S, Dai X, Wang R, Su L, Chen H, Zheng L, Zhai Y. The Selection and Validation of Reference Genes for RT-qPCR Analysis of the Predatory Natural Enemy Orius nagaii (Hemiptera: Anthocoridae). INSECTS 2024; 15:936. [PMID: 39769538 PMCID: PMC11678729 DOI: 10.3390/insects15120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Orius nagaii is a highly effective natural enemy for controlling thrips, tetranychids, aphids, and various Lepidoptera pests. Nevertheless, the molecular mechanisms underlying its interactions with host pests remain unclear. Screening for optimal reference genes is a prerequisite for using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to investigate the interrelationship. Here, ten commonly used reference genes (Act, GAPDH, β-Tub, EF1-α, RPS10, RPS15, RPL6, RPL13, RPL32, and HSP90) were selected, and their expression stability across developmental stages, tissues, temperatures, and host conditions were evaluated using RefFinder, which uses multiple analytical approaches (NormFinder, geNorm, the ΔCt method, and BestKeeper). The findings suggested that the most reliable normalization can be achieved by selecting the two reference genes for all conditions, with the optimal pairs being RPS10 and RPL32 for the developmental stage, RPS10 and RPS15 for tissue, RPS10 and RPS15 for the host, and EF1-α and RPL13 for temperature. Also, the best and least stable reference genes were chosen to compare the relative transcript levels of the TBX1 in various tissues, which exhibited considerable variation. Our findings will significantly enhance the reliability of RT-qPCR and provide a foundation for further research on the expression patterns of crucial genes that are implicated in the interaction between O. nagaii and its host pests.
Collapse
Affiliation(s)
- Chengxing Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yu Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| |
Collapse
|
3
|
Zhan R, Zhou F, Liu C, Chen C, Li M, Huang D, Zheng N, Lin T, Zuo Z, He C, Chen X. Resveratrol ameliorates cyprodinil-induced zebrafish cardiac developmental defects as an aryl hydrocarbon receptor antagonist. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44789-44799. [PMID: 38954331 DOI: 10.1007/s11356-024-34024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 μg/L) in the presence or absence of RSV (1 μM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.
Collapse
Affiliation(s)
- Ruyu Zhan
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Fushan Zhou
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chaoyang Liu
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chuanchang Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Mingmei Li
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Dongqin Huang
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Xintan Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China.
| |
Collapse
|
4
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
Philipp K, Anja Q, Boris S, Johanna K, Susanne W, Adam S, Philipp MM, Henning S. Epidemiological and clinical evaluation of patients with a cleft in lower saxony Germany: a mono-center analysis. Clin Oral Investig 2023; 27:5661-5670. [PMID: 37542681 PMCID: PMC10492882 DOI: 10.1007/s00784-023-05187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE The aim was to provide epidemiological and clinical data on patients with orofacial clefts in Lower Saxony in Germany. MATERIALS AND METHODS The records of 404 patients with orofacial clefts treated surgically at the University Medical Center Goettingen from 2001 to 2019 were analyzed in this retrospective study. Prevalence of orofacial clefts in general, orofacial clefts as manifestation of a syndrome, sex distribution, and prevalence of different cleft types was evaluated and associated with the need for corrective surgery, family history, pregnancy complications, and comorbidities. RESULTS The prevalence of orofacial clefts for Goettingen in Lower Saxony was 1:890. 231 patients were male and 173 were female. CLP was most common (39.1%) followed by CP (34.7%), CL (14.4%), CLA (9.9%), and facial clefts (2%). The left side was more frequently affected and unilateral cleft forms occurred more often than bilateral ones. Almost 10% of the population displayed syndromic CL/P. 10.9% of all patients had a positive family history regarding CL/P, predominantly from the maternal side. Pregnancy abnormalities were found in 11.4%, most often in the form of preterm birth. Comorbidities, especially of the cardiovascular system, were found in 30.2% of the sample. 2.2% of patients treated according to the University Medical Center Goettingen protocol corrective surgery was performed in form of a velopharyngoplasty or residual hole closure. CONCLUSIONS The epidemiological and clinical profile of the study population resembled the expected distributions in Western populations. The large number of syndromic CL/P and associated comorbidities supports the need for specialized cleft centers and interdisciplinary cleft care.
Collapse
Affiliation(s)
- Kauffmann Philipp
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Straße 40, D-37099, Göttingen, Germany.
| | - Quast Anja
- Department of Orthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Schminke Boris
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Straße 40, D-37099, Göttingen, Germany
| | - Kolle Johanna
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Straße 40, D-37099, Göttingen, Germany
| | - Wolfer Susanne
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Straße 40, D-37099, Göttingen, Germany
| | - Stepniewski Adam
- Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center of Göttingen, Göttingen, Germany
| | | | - Schliephake Henning
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, Robert-Koch-Straße 40, D-37099, Göttingen, Germany
| |
Collapse
|
6
|
Li N, Li YJ, Guo XJ, Wu SH, Jiang WF, Zhang DL, Wang KW, Li L, Sun YM, Xu YJ, Yang YQ, Qiu XB. Discovery of TBX20 as a Novel Gene Underlying Atrial Fibrillation. BIOLOGY 2023; 12:1186. [PMID: 37759586 PMCID: PMC10525918 DOI: 10.3390/biology12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Atrial fibrillation (AF), the most prevalent type of sustained cardiac dysrhythmia globally, confers strikingly enhanced risks for cognitive dysfunction, stroke, chronic cardiac failure, and sudden cardiovascular demise. Aggregating studies underscore the crucial roles of inherited determinants in the occurrence and perpetuation of AF. However, due to conspicuous genetic heterogeneity, the inherited defects accounting for AF remain largely indefinite. Here, via whole-genome genotyping with genetic markers and a linkage assay in a family suffering from AF, a new AF-causative locus was located at human chromosome 7p14.2-p14.3, a ~4.89 cM (~4.43-Mb) interval between the markers D7S526 and D7S2250. An exome-wide sequencing assay unveiled that, at the defined locus, the mutation in the TBX20 gene, NM_001077653.2: c.695A>G; p.(His232Arg), was solely co-segregated with AF in the family. Additionally, a Sanger sequencing assay of TBX20 in another family suffering from AF uncovered a novel mutation, NM_001077653.2: c.862G>C; p.(Asp288His). Neither of the two mutations were observed in 600 unrelated control individuals. Functional investigations demonstrated that the two mutations both significantly reduced the transactivation of the target gene KCNH2 (a well-established AF-causing gene) and the ability to bind the promoter of KCNH2, while they had no effect on the nuclear distribution of TBX20. Conclusively, these findings reveal a new AF-causative locus at human chromosome 7p14.2-p14.3 and strongly indicate TBX20 as a novel AF-predisposing gene, shedding light on the mechanism underlying AF and suggesting clinical significance for the allele-specific treatment of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Dao-Liang Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China;
| | - Kun-Wei Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| |
Collapse
|
7
|
Chen Y, Tang B, Jiang W, Sun M, Zhang H, Tao Y, Wang H, Xiang D, Bai H, Guo M, Zhao P, Yan W, Huang X, Chen T, Lian C, Zhang J. miR-486-5p Attenuates Steroid-Induced Adipogenesis and Osteonecrosis of the Femoral Head Via TBX2/P21 Axis. Stem Cells 2023; 41:711-723. [PMID: 37210668 DOI: 10.1093/stmcls/sxad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Weiqian Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuzhang Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongwei Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haobo Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Gao X, Yan B. The mechanism and diagnostic value of Tbx20 in cardiovascular diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
11
|
Shah V, Shah J. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Front Cardiovasc Med 2022; 9:835138. [PMID: 35224063 PMCID: PMC8866653 DOI: 10.3389/fcvm.2022.835138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Human heart development is a complex and tightly regulated process, conserving proliferation, and multipotency of embryonic cardiovascular progenitors. At terminal stage, progenitor cell type gets suppressed for terminal differentiation and maturation. In the human heart, most cardiomyocytes are terminally differentiated and so have limited proliferation capacity. MicroRNAs (miRNAs) are non-coding single-stranded RNA that regulate gene expression and mRNA silencing at the post-transcriptional level. These miRNAs play a crucial role in numerous biological events, including cardiac development, and cardiomyocyte proliferation. Several cardiac cells specific miRNAs have been discovered. Inhibition or overexpression of these miRNAs could induce cardiac regeneration, cardiac stem cell proliferation and cardiomyocyte proliferation. Clinical application of miRNAs extends to heart failure, wherein the cell cycle arrest of terminally differentiated cardiac cells inhibits the heart regeneration. The regenerative capacity of the myocardium can be enhanced by cardiomyocyte specific miRNAs controlling the cell cycle. In this review, we focus on cardiac-specific miRNAs involved in cardiac regeneration and cardiomyocyte proliferation, and their potential as a new clinical therapy for heart regeneration.
Collapse
|
12
|
Duan M, Zhang J, Liu J, Qian L, Chen X, Zhao F, Zhao W, Zhong Z, Yang Y, Wang C. Toxic effects of broflanilide exposure on development of zebrafish (Danio rerio) embryos and its potential cardiotoxicity mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117481. [PMID: 34126520 DOI: 10.1016/j.envpol.2021.117481] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Diamide insecticides are a threat to aquatic organisms but the toxicity of broflanilide remains largely undefined. In this study, to clarify the risk of broflanilide to aquatic organisms and explore its possible mechanism, lethal and sub-lethal exposure of zebrafish embryos were performed. The acute toxicity LC50 (50% lethal concentration) (96 h) of broflanilide to zebrafish embryos and larvae were 3.72 mg/L and 1.28 mg/L, respectively. It also caused toxic symptoms including reduced heart rate, pericardial edema, yolk sac edema and shortened larval body length at ≥ 0.2 mg/L. Understanding the cellular and molecular changes underlying developmental toxicity in early stages of zebrafish may be very important to further improvement of this study. Here, we found cell apoptosis in embryonic heart, significant up-regulation in expression of genes associated with apoptosis and increased activity of caspase-9. In particular, we detected the levels of genes and TBX5 (T-box protein 5) related to cardiac development, which were significantly increased in this study and may be contribution to the cardiotoxicity of embryos. In general, our results identified the aquatic toxicity of broflanilide to the early stage of zebrafish and provide insights into the underlying mechanism in developmental toxicity especially cardiotoxicity of embryos.
Collapse
Affiliation(s)
- Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
14
|
Chen Y, Xiao D, Zhang L, Cai CL, Li BY, Liu Y. The Role of Tbx20 in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:638542. [PMID: 33585493 PMCID: PMC7876368 DOI: 10.3389/fcell.2021.638542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tbx20 is a member of the Tbx1 subfamily of T-box-containing genes and is known to play a variety of fundamental roles in cardiovascular development and homeostasis as well as cardiac remodeling in response to pathophysiological stresses. Mutations in TBX20 are widely associated with the complex spectrum of congenital heart defects (CHDs) in humans, which includes defects in chamber septation, chamber growth, and valvulogenesis. In addition, genetic variants of TBX20 have been found to be associated with dilated cardiomyopathy and heart arrhythmia. This broad spectrum of cardiac morphogenetic and functional defects is likely due to its broad expression pattern in multiple cardiogenic cell lineages and its critical regulation of transcriptional networks during cardiac development. In this review, we summarize recent findings in our general understanding of the role of Tbx20 in regulating several important aspects of cardiac development and homeostasis and heart function.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Deyong Xiao
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Lu Zhang
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Chen-Leng Cai
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| |
Collapse
|
15
|
Pan CM, Chan KH, Chen CH, Jan CI, Liu MC, Lin CM, Cho DY, Tsai WC, Chu YT, Cheng CH, Chuang HY, Chiu SC. MicroRNA-7 targets T-Box 2 to inhibit epithelial-mesenchymal transition and invasiveness in glioblastoma multiforme. Cancer Lett 2020; 493:133-142. [PMID: 32861705 DOI: 10.1016/j.canlet.2020.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
The dysregulation of microRNA expression in cancer has been associated with the epithelial-mesenchymal transition (EMT) that triggers invasive ability and increases therapeutic resistance. Here, we determined the microRNA expression profile of seven tumor tissues from patients with glioblastoma multiforme (GBM) by use of microRNA array analysis. We discovered that microRNA-7 (miR-7) is consistently downregulated in all tumor samples. Using the microRNA.org algorithm, the T-box 2 gene (TBX2) was identified as a candidate gene targeted by miR-7. In contrast to miR-7, TBX2 had an increased expression in GBM tumors and was linked to poor prognosis. We confirmed that TBX2 mRNA and protein production are significantly repressed by overexpressing miR-7 in GBM cells in vitro. The reporter assay showed that miR-7 significantly represses the signal from luciferase with the 3' UTR of TBX2. Furthermore, TBX2 overexpression decreased E-cadherin expression and increased Vimentin expression, causing an increasing number of invaded cells in the invasion assay, as well as pulmonary metastasis in vivo. Our findings demonstrated that overexpression of TBX2 in GBM tumors via the downregulation of miR-7 leads to EMT induction and increased cell invasion.
Collapse
Affiliation(s)
- Chih-Ming Pan
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Kai-Hsiang Chan
- Cell Therapy Center, An Nan Hospital, China Medical University, Tainan, 70967, Taiwan; Department of Radiation Oncology, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, 70967, Taiwan
| | - Chao-Hsuan Chen
- Department of Neurosurgery, Neuropsychiatric Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Ing Jan
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, 40447, Taiwan; Division of Molecular Pathology, Department of Pathology, China Medical University and Hospital, Taichung, 40447, Taiwan; Department of Medicine, China Medical University, Taichung, 40447, Taiwan; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Ming-Chao Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Chien-Min Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Neurosurgery, Neuropsychiatric Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan; Drug Development Center, China Medical University, Taichung, 40402, Taiwan
| | - Wan-Chen Tsai
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yen-Tse Chu
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan, 70967, Taiwan
| | - Cheng-Hsin Cheng
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan, 70967, Taiwan
| | - Hao-Yu Chuang
- Cell Therapy Center, An Nan Hospital, China Medical University, Tainan, 70967, Taiwan; Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan, 70967, Taiwan; Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin County, 65152, Taiwan.
| | - Shao-Chih Chiu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan; Drug Development Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
16
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
17
|
Pang JKS, Phua QH, Soh BS. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res Ther 2019; 10:336. [PMID: 31752983 PMCID: PMC6868784 DOI: 10.1186/s13287-019-1451-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Development of the complex human heart is tightly regulated at multiple levels, maintaining multipotency and proliferative state in the embryonic cardiovascular progenitors and thereafter suppressing progenitor characteristics to allow for terminal differentiation and maturation. Small regulatory microRNAs (miRNAs) are at the level of post-transcriptional gene suppressors, which enhance the degradation or decay of their target protein-coding mRNAs. These miRNAs are known to play roles in a large number of biological events, cardiovascular development being no exception. A number of critical cardiac-specific miRNAs have been identified, of which structural developmental defects have been linked to dysregulation of miRNAs in the proliferating cardiac stem cells. These miRNAs present in the stem cell niche are lost when the cardiac progenitors terminally differentiate, resulting in the postnatal mitotic arrest of the heart. Therapeutic applications of these miRNAs extend to the realm of heart failure, whereby the death of heart cells in the ageing heart cannot be replaced due to the arrest of cell division. By utilizing miRNA therapy to control cell cycling, the regenerative potential of matured myocardium can be restored. This review will address the various cardiac progenitor-related miRNAs that control the development and proliferative potential of the heart.
Collapse
Affiliation(s)
- Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
18
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
19
|
Assenza MR, Barbagallo F, Barrios F, Cornacchione M, Campolo F, Vivarelli E, Gianfrilli D, Auletta L, Soricelli A, Isidori AM, Lenzi A, Pellegrini M, Naro F. Critical role of phosphodiesterase 2A in mouse congenital heart defects. Cardiovasc Res 2019; 114:830-845. [PMID: 29409032 DOI: 10.1093/cvr/cvy030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Phosphodiesterase 2 A (Pde2A), a cAMP-hydrolysing enzyme, is essential for mouse development; however, the cause of Pde2A knockout embryonic lethality is unknown. To understand whether Pde2A plays a role in cardiac development, hearts of Pde2A deficient embryos were analysed at different stage of development. Methods and results At the stage of four chambers, Pde2A deficient hearts were enlarged compared to the hearts of Pde2A heterozygous and wild-type. Pde2A knockout embryos revealed cardiac defects such as absence of atrial trabeculation, interventricular septum (IVS) defects, hypertrabeculation and thinning of the myocardial wall and in rare cases they had overriding aorta and valves defects. E14.5 Pde2A knockouts showed reduced cardiomyocyte proliferation and increased apoptosis in the IVS and increased proliferation in the ventricular trabeculae. Analyses of E9.5 Pde2A knockout embryos revealed defects in cardiac progenitor and neural crest markers, increase of Islet1 positive and AP2 positive apoptotic cells. The expression of early cTnI and late Mef2c cardiomyocyte differentiation markers was strongly reduced in Pde2A knockout hearts. The master transcription factors of cardiac development, Tbx, were down-regulated in E14.5 Pde2A knockout hearts. Absence of Pde2A caused an increase of intracellular cAMP level, followed by an up-regulation of the inducible cAMP early repressor, Icer in fetal hearts. In vitro experiments on wild-type fetal cardiomyocytes showed that Tbx gene expression is down-regulated by cAMP inducers. Furthermore, Pde2A inhibition in vivo recapitulated the heart defects observed in Pde2A knockout embryos, affecting cardiac progenitor cells. Interestingly, the expression of Pde2A itself was dramatically affected by Pde2A inhibition, suggesting a potential autoregulatory loop. Conclusions We demonstrated for the first time a direct relationship between Pde2A impairment and the onset of mouse congenital heart defects, highlighting a novel role for cAMP in cardiac development regulation.
Collapse
Affiliation(s)
- Maria Rita Assenza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Florencia Barrios
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Vivarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Andrea Soricelli
- IRCCS SDN, 80143 Naples, Italy.,Department of Motor Science and Wellness, Parthenope University, 80133 Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Institute of Cell Biology and Neurobiology, IBCN-CNR, 00015 Monterotondo, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
20
|
Xie H, Hong N, Zhang E, Li F, Sun K, Yu Y. Identification of Rare Copy Number Variants Associated With Pulmonary Atresia With Ventricular Septal Defect. Front Genet 2019; 10:15. [PMID: 30745907 PMCID: PMC6360179 DOI: 10.3389/fgene.2019.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Copy number variants (CNVs) are major variations contributing to the gene heterogeneity of congenital heart diseases (CHD). pulmonary atresia with ventricular septal defect (PA-VSD) is a rare form of cyanotic CHD characterized by complex manifestations and the genetic determinants underlying PA-VSD are still largely unknown. We investigated rare CNVs in a recruited cohort of 100 unrelated patients with PA-VSD, PA-IVS, or TOF and a population-matched control cohort of 100 healthy children using whole-exome sequencing. Comparing rare CNVs in PA-VSD cases and that in PA-IVS or TOF positive controls, we observed twenty-two rare CNVs only in PA-VSD, five rare CNVs only in PA-VSD and TOF as well as thirteen rare CNVs only in PA-VSD and PA-IVS. Six of these CNVs were considered pathogenic or potentially pathogenic to PA-VSD: 16p11.2 del (PPP4C and TBX6), 5q35.3 del (FLT4), 5p13.1 del (RICTOR), 6p21.33 dup (TNXB), 7p15.2 del (HNRNPA2B1), and 19p13.3 dup (FGF22). The gene networks showed that four putative candidate genes for PA-VSD, PPP4C, FLT4, RICTOR, and FGF22 had strong interaction with well-known cardiac genes relevant to heart or blood vessel development. Meanwhile, the analysis of transcriptome array revealed that PPP4C and RICTOR were also significantly expressed in human embryonic heart. In conclusion, three rare novel CNVs were identified only in PA-VSD: 16p11.2 del (PPP4C), 5q35.3 del (FLT4) and 5p13.1 del (RICTOR), implicating novel candidate genes of interest for PA-VSD. Our study provided new insights into understanding for the pathogenesis of PA-VSD and helped elucidate critical genes for PA-VSD.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Erge Zhang
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
22
|
Haneef K, Ali A, Khan I, Naeem N, Jamall S, Salim A. Role of interleukin-7 in fusion of rat bone marrow mesenchymal stem cells with cardiomyocytes in vitro and improvement of cardiac function in vivo. Cardiovasc Ther 2018; 36:e12479. [PMID: 30451388 DOI: 10.1111/1755-5922.12479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023] Open
Abstract
AIMS Mesenchymal stem cells (MSCs) hold significant promise as potential therapeutic candidates following cardiac injury. However, to ensure survival of transplanted cells in ischemic environment, it is beneficial to precondition them with growth factors that play important role in cell survival and proliferation. Aim of this study is to use interleukin-7 (IL-7), a cell survival growth factor, to enhance the potential of rat bone marrow MSCs in terms of cell fusion in vitro and cardiac function in vivo. METHODS Mesenchymal stem cells were transfected with IL-7 gene through retroviral vector. Normal and transfected MSCs were co-cultured with neonatal cardiomyocytes (CMs) and cell fusion was analyzed by flow cytometry and fluorescence microscopy. These MSCs were also transplanted in rat model of myocardial infarction (MI) and changes at tissue level and cardiac function were assessed by histological analysis and echocardiography, respectively. RESULTS Co-culture of IL-7 transfected MSCs and CMs showed significantly higher (P < 0.01) number of fused cells as compared to normal MSCs. Histological analysis of hearts transplanted with IL-7 transfected MSCs showed significant reduction (P < 0.001) in infarct size and better preservation (P < 0.001) of left ventricular wall thickness as compared to normal MSCs. Presence of cardiac-specific proteins, α-actinin, and troponin-T showed that the transplanted MSCs were differentiated into cardiomyocytes. Echocardiographic recordings of the experimental group transplanted with transfected MSCs showed significant increase in the ejection fraction and fractional shortening (P < 0.01), and decrease in diastolic and systolic left ventricular internal diameters (P < 0.001) and end systolic and diastolic volumes (P < 0.01 and P < 0.001, respectively). CONCLUSION Interleukin-7 is able to enhance the fusogenic properties of MSCs and improve cardiac function. This improvement may be attributed to the supportive action of IL-7 on cell proliferation and cell survival contributing to the regeneration of damaged myocardium.
Collapse
Affiliation(s)
- Kanwal Haneef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anwar Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Siddiqua Jamall
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
23
|
Xie H, Zhang E, Hong N, Fu Q, Li F, Chen S, Yu Y, Sun K. Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum Genomics 2018; 12:44. [PMID: 30223900 PMCID: PMC6142335 DOI: 10.1186/s40246-018-0176-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Conotruncal heart defects (CTDs) are heterogeneous congenital heart malformations that result from outflow tract dysplasia; however, the genetic determinants underlying CTDs remain unclear. Increasing evidence demonstrates that dysfunctional TBX2 and TBX3 result in outflow tract malformations, implying that both of them are involved in CTD pathogenesis. We screened for TBX2 and TBX3 variants in a large cohort of CTD patients (n = 588) and population-matched healthy controls (n = 300) by target sequencing and genetically analyzed the expression and function of these variants. Results The probably damaging variants p.R608W, p.T249I, and p.R616Q of TBX2 and p.A192T, p.M65L, and p.A562V of TBX3 were identified in CTD patients, but none in controls. All altered amino acids were highly conserved evolutionarily. Moreover, our data suggested that mRNA and protein expressions of TBX2 and TBX3 variants were altered compared with those of the wild-type. We screened PEA3 and MEF2C as novel downstream genes of TBX2 and TBX3, respectively. Functional analysis revealed that TBX2R608W and TBX2R616Q variant proteins further activated HAS2 promoter but failed to activate PEA3 promoter and that TBX3A192T and TBX3A562V variant proteins showed a reduced transcriptional activity over MEF2C promoter. Conclusions Our results indicate that the R608W and R616Q variants of TBX2 as well as the A192T and A562V variants of TBX3 contribute to CTD etiology; this was the first association of variants of TBX2 and TBX3 to CTDs based on a large population. Electronic supplementary material The online version of this article (10.1186/s40246-018-0176-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Erge Zhang
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
24
|
Baio J, Martinez AF, Silva I, Hoehn CV, Countryman S, Bailey L, Hasaniya N, Pecaut MJ, Kearns-Jonker M. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity 2018; 4:13. [PMID: 30062101 PMCID: PMC6062551 DOI: 10.1038/s41526-018-0048-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
The heart and its cellular components are profoundly altered by missions to space and injury on Earth. Further research, however, is needed to characterize and address the molecular substrates of such changes. For this reason, neonatal and adult human cardiovascular progenitor cells (CPCs) were cultured aboard the International Space Station. Upon return to Earth, we measured changes in the expression of microRNAs and of genes related to mechanotransduction, cardiogenesis, cell cycling, DNA repair, and paracrine signaling. We additionally assessed endothelial-like tube formation, cell cycling, and migratory capacity of CPCs. Changes in microRNA expression were predicted to target extracellular matrix interactions and Hippo signaling in both neonatal and adult CPCs. Genes related to mechanotransduction (YAP1, RHOA) were downregulated, while the expression of cytoskeletal genes (VIM, NES, DES, LMNB2, LMNA), non-canonical Wnt ligands (WNT5A, WNT9A), and Wnt/calcium signaling molecules (PLCG1, PRKCA) was significantly elevated in neonatal CPCs. Increased mesendodermal gene expression along with decreased expression of mesodermal derivative markers (TNNT2, VWF, and RUNX2), reduced readiness to form endothelial-like tubes, and elevated expression of Bmp and Tbx genes, were observed in neonatal CPCs. Both neonatal and adult CPCs exhibited increased expression of DNA repair genes and paracrine factors, which was supported by enhanced migration. While spaceflight affects cytoskeletal organization and migration in neonatal and adult CPCs, only neonatal CPCs experienced increased expression of early developmental markers and an enhanced proliferative potential. Efforts to recapitulate the effects of spaceflight on Earth by regulating processes described herein may be a promising avenue for cardiac repair.
Collapse
Affiliation(s)
- Jonathan Baio
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Aida F Martinez
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Ivan Silva
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| | - Carla V Hoehn
- 2BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | | | - Leonard Bailey
- 3Department of Cardiovascular and Thoracic Surgery, Loma Linda University, Loma Linda, CA USA
| | - Nahidh Hasaniya
- 3Department of Cardiovascular and Thoracic Surgery, Loma Linda University, Loma Linda, CA USA
| | - Michael J Pecaut
- 4Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University, Loma Linda, CA USA
| | - Mary Kearns-Jonker
- 1Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA USA
| |
Collapse
|
25
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
26
|
Polley A, Sen P, Sengupta A, Chakraborty S. β-Catenin stabilization promotes proliferation and increase in cardiomyocyte number in chick embryonic epicardial explant culture. In Vitro Cell Dev Biol Anim 2017; 53:922-939. [PMID: 28842809 DOI: 10.1007/s11626-017-0191-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
Cardiomyocyte (CM) differentiation from proepicardial organ- (PEO) and embryonic epicardium (eEpi)-derived cells or EPDCs in a developing heart emerges as a wide interest in purview of cardiac repair and regenerative medicine. eEpi originates from the precursor PEO and EPDCs, which contribute to several cardiac cell types including smooth muscle cells, fibroblasts, endothelial cells, and CMs during cardiogenesis. Here in this report, we have analyzed several cardiac lineage-specific marker gene expressions between PEO and eEpi cells. We have found that PEO-derived cells show increased level of CM lineage-specific marker gene expression compared to eEpi cells. Moreover, Wnt signaling activation results in increased level of CM-specific marker gene expression in both PEO and eEpi cells in culture. Interestingly, Wnt signaling activation also increases the number of proliferating and sarcomeric myosin (Mf20)-positive cells in eEpi explant culture. Together, this data suggests that eEpi cells as a source for CM differentiation and Wnt signaling mediator, β-catenin, might play an important role in CM differentiation from eEpi cells in culture.
Collapse
Affiliation(s)
- Anisha Polley
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, 700073, India
| | - Puja Sen
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, 700073, India
| | - Arunima Sengupta
- The Department of Life sciences and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, 700073, India.
| |
Collapse
|
27
|
Hill JT, Demarest B, Gorsi B, Smith M, Yost HJ. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis. Development 2017; 144:3487-3498. [PMID: 28807900 DOI: 10.1242/dev.154146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5, and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation.
Collapse
Affiliation(s)
- Jonathon T Hill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA .,Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley Demarest
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Bushra Gorsi
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Megan Smith
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Ma R, Yang Y, Tu Q, Hu K. Overexpression of T-box Transcription Factor 5 (TBX5) Inhibits Proliferation and Invasion in Non-Small Cell Lung Carcinoma Cells. Oncol Res 2017; 25:1495-1504. [PMID: 28276311 PMCID: PMC7841191 DOI: 10.3727/096504017x14883287513729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
T-box transcription factor 5 (TBX5), a member of the conserved T-box transcription factor family that functions in organogenesis and embryogenesis, has recently been identified as a critical player in cancer development. The aim of this study was to determine the role of TBX5 in non-small cell lung carcinoma (NSCLC). Immunohistochemistry was used to detect the correlation between levels of TBX5 and clinicopathological features of NSCLC patients in tissue microarray. Expression of TBX5 in NSCLC tissues and cell lines was evaluated by quantitative PCR and Western blot. The role of TBX5 in regulating proliferation, colony formation, invasion, and apoptosis of NSCLC cells was evaluated in vitro. Finally, a tumorigenicity assay was performed to determine the effect of TBX5 on tumor growth in vivo. The levels of TBX5 in NSCLC tissues were significantly correlated with the TNM stage (p = 0.016), histopathologic type (p = 0.029), and lymph node status (p = 0.035) of NSCLC. TBX5 overexpression markedly suppressed in vitro NSCLC cell proliferation, colony formation, and invasion and induced apoptosis. In vivo tumor growth was significantly suppressed by TBX5. TBX5 has a tumor-suppressing effect in NSCLC and may serve as a therapeutic target for diagnoses and treatment of NSCLC.
Collapse
|
29
|
Wang D, Zhai G, Ji Y, Jing H. microRNA-10a Targets T-box 5 to Inhibit the Development of Cardiac Hypertrophy. Int Heart J 2017; 58:100-106. [PMID: 28100873 DOI: 10.1536/ihj.16-020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of cardiac hypertrophy involving microRNAs (miRNAs) is attracting increasing attention. Our study aimed to investigate the role of miR-10a in cardiac hypertrophy development and the underlying regulatory mechanism.Transverse abdominal aortic constriction (TAAC) surgery was performed to establish a cardiac hypertrophy rat model, and angiotensin II (AngII) was used to induce cardiac hypertrophy in cultured neonatal rat cardiomyocytes. Expression of T-box 5 (TBX5) and miR-10a was altered by cell transfection of siRNA or miRNA mimic/inhibitor. Leucine incorporation assay, histological and cytological examination, quantitative real-time PCR (qRT-PCR), and Western blot were performed to detect the effects of miR-10a and TBX5 on cardiac hypertrophy. Dual-luciferase reporter assay was conducted to verify the regulation of TBX5 by miR-10a.miR-10a was down-regulated, and TBX5 was up-regulated in the rat model and AngII-stimulated cardiomyocytes. miR-10a inhibited TBX5 expression by directly targeting the binding site in Tbx5 3'UTR. Overexpression of miR-10a in AngII-treated cardiomyocytes decreased relative cell area, and significantly reduced the mRNA levels of natriuretic peptide A (Nppa), myosin heavy chain 7 cardiac muscle beta (Myh7), and leucine incorporation (P < 0.01 or P < 0.001). Knockdown of Tbx5 had similar effects on AngII-induced cardiomyocytes.Our findings indicate that miR-10a may inhibit cardiac hypertrophy via targeting Tbx5. Thus, miR-10a provides promising therapeutic strategies for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Dan Wang
- Fifth Department of Cardiology, Zhengzhou Central Hospital
| | | | | | | |
Collapse
|
30
|
Daughters RS, Keirstead SA, Slack JMW. Transformation of jaw muscle satellite cells to cardiomyocytes. Differentiation 2017; 93:58-65. [PMID: 27918914 PMCID: PMC5285469 DOI: 10.1016/j.diff.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
In the embryo a population of progenitor cells known as the second heart field forms not just parts of the heart but also the jaw muscles of the head. Here we show that it is possible to take skeletal muscle satellite cells from jaw muscles of the adult mouse and to direct their differentiation to become heart muscle cells (cardiomyocytes). This is done by exposing the cells to extracellular factors similar to those which heart progenitors would experience during normal embryonic development. By contrast, cardiac differentiation does not occur at all from satellite cells isolated from trunk and limb muscles, which originate from the somites of the embryo. The cardiomyocytes arising from jaw muscle satellite cells express a range of specific marker proteins, beat spontaneously, display long action potentials with appropriate responses to nifedipine, norepinephrine and carbachol, and show synchronized calcium transients. Our results show the existence of a persistent cardiac developmental competence in satellite cells of the adult jaw muscles, associated with their origin from the second heart field of the embryo, and suggest a possible method of obtaining cardiomyocytes from individual patients without the need for a heart biopsy.
Collapse
Affiliation(s)
- Randall S Daughters
- Stem Cell Institute, University of Minnesota, MTRF, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | - Susan A Keirstead
- Stem Cell Institute, University of Minnesota, MTRF, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | - Jonathan M W Slack
- Stem Cell Institute, University of Minnesota, MTRF, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016; 3:eN-NWR-0169-16. [PMID: 27957530 PMCID: PMC5136615 DOI: 10.1523/eneuro.0169-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing availability of transcriptomic technologies within the last decade has facilitated high-throughput identification of gene expression differences that define distinct cell types as well as the molecular pathways that drive their specification. The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we present a method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting. Through microarray analysis, we uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with more than 300 genes differentially expressed within these two cell populations. Among the differentially expressed genes confirmed through in vivo expression validation, several genes that mark “immaturity” are expressed within postmitotic ipsilateral RGCs. Moreover, at least one complementary pair, Igf1 and Igfbp5, is upregulated in contralateral or ipsilateral RGCs, respectively, and may represent signaling pathways that determine ipsilateral versus contralateral RGC identity. Importantly, the cell cycle regulator cyclin D2 is highly expressed in peripheral ventral retina with a dynamic expression pattern that peaks during the period of ipsilateral RGC production. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.
Collapse
|
32
|
Just S, Raphel L, Berger IM, Bühler A, Keßler M, Rottbauer W. Tbx20 Is an Essential Regulator of Embryonic Heart Growth in Zebrafish. PLoS One 2016; 11:e0167306. [PMID: 27907103 PMCID: PMC5132222 DOI: 10.1371/journal.pone.0167306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that regulate cardiomyocyte proliferation during embryonic heart growth are not completely deciphered yet. In a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified the recessive embryonic-lethal zebrafish mutant line weiches herz (whz). Homozygous mutant whz embryos display impaired heart growth due to diminished embryonic cardiomyocyte proliferation resulting in cardiac hypoplasia and weak cardiac contraction. By positional cloning, we found in whz mutant zebrafish a missense mutation within the T-box 20 (Tbx20) transcription factor gene leading to destabilization of Tbx20 protein. Morpholino-mediated knock-down of Tbx20 in wild-type zebrafish embryos phenocopies whz, indicating that the whz phenotype is due to loss of Tbx20 function, thereby leading to significantly reduced cardiomyocyte numbers by impaired proliferation of heart muscle cells. Ectopic overexpression of wild-type Tbx20 in whz mutant embryos restored cardiomyocyte proliferation and heart growth. Interestingly, ectopic overexpression of Tbx20 in wild-type zebrafish embryos resulted, similar to the situation in the embryonic mouse heart, in significantly reduced proliferation rates of ventricular cardiomyocytes, suggesting that Tbx20 activity needs to be tightly fine-tuned to guarantee regular cardiomyocyte proliferation and embryonic heart growth in vivo.
Collapse
Affiliation(s)
- Steffen Just
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| | - Linda Raphel
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Ina M. Berger
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Anja Bühler
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
| | - Mirjam Keßler
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Wolfgang Rottbauer
- Molecular Cardiology, Department of Medicine II, University of Ulm, Ulm, Germany
- Department of Medicine II, University of Ulm, Ulm, Germany
- * E-mail: (SJ); (WR)
| |
Collapse
|
33
|
The "Dead-End Tract" and Its Role in Arrhythmogenesis. J Cardiovasc Dev Dis 2016; 3:jcdd3020011. [PMID: 29367562 PMCID: PMC5715688 DOI: 10.3390/jcdd3020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 11/17/2022] Open
Abstract
Idiopathic outflow tract ventricular arrhythmias (VAs) represent a significant proportion of all VAs. The mechanism is thought to be catecholamine-mediated delayed after depolarizations and triggered activity, although other etiologies should be considered. In the adult cardiac conduction system it has been demonstrated that sometimes an embryonic branch, the so-called "dead-end tract", persists beyond the bifurcation of the right and left bundle branch (LBB). Several findings suggest an involvement of this tract in idiopathic VAs (IVAs). The aim of this review is to summarize our current knowledge and the possible clinical significance of this tract.
Collapse
|
34
|
Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial Epithelial-to-Mesenchymal Transition in Heart Development and Disease. J Clin Med 2016; 5:jcm5020027. [PMID: 26907357 PMCID: PMC4773783 DOI: 10.3390/jcm5020027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
The epicardium is an epithelial monolayer that plays a central role in heart development and the myocardial response to injury. Recent developments in our understanding of epicardial cell biology have revealed this layer to be a dynamic participant in fundamental processes underlying the development of the embryonic ventricles, the coronary vasculature, and the cardiac valves. Likewise, recent data have identified the epicardium as an important contributor to reparative and regenerative processes in the injured myocardium. These essential functions of the epicardium rely on both non-cell autonomous and cell-autonomous mechanisms, with the latter featuring the process of epicardial Epithelial-to-Mesenchymal Transition (EMT). This review will focus on the induction and regulation of epicardial EMT, as it pertains to both cardiogenesis and the response of the myocardium to injury.
Collapse
Affiliation(s)
- Michael Krainock
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Omar Toubat
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Soula Danopoulos
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Allison Beckham
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - David Warburton
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Richard Kim
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
35
|
Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang YQ, Qiu XB. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int J Mol Med 2015; 36:282-8. [PMID: 25963046 DOI: 10.3892/ijmm.2015.2206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) represents the most prevalent form of primary cardiomyopathy, and is the most common reason for heart transplantation and a major cause of congestive heart failure. Aggregating evidence demonstrates that genetic defects are associated with DCM, and a great number of mutations in >50 genes have been linked to DCM. However, DCM is a genetically heterogeneous disorder and the genetic components underpinning DCM in a significant proportion of patients remain unknown. In the present study, the coding exons and flanking exon‑intron boundaries of the T-Box 5 (TBX5) gene, which encodes a T‑box transcription factor required for normal cardiac development, were sequenced in 146 unrelated patients with sporadic DCM. The functional characteristics of the mutant TBX5 were assayed in contrast to its wild‑type counterpart by using a dual‑luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.A143T, was identified in a patient with sporadic DCM. The missense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily among species. Biological analyses revealed that the A143T mutation of TBX5 was associated with significantly decreased transcriptional activity on the promoter of the target gene atrial natriuretic factor (ANF), when compared to its wild‑type counterpart. Furthermore, the A143T mutation abolished the synergistic activation of the ANF promoter between TBX5 and GATA binding protein 4 (GATA4), another crucial transcriptional factor for heart development. To the best of our knowledge, this is the first report on the association of a TBX5 loss‑of‑function mutation with an enhanced susceptibility to sporadic DCM, providing novel insight into the molecular mechanisms of the pathogenesis of DCM and suggesting potential implications for the prenatal prophylaxis and personalized treatment of this commonest primary myocardial disease.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Jin-Qi Jiang
- Department of Emergency Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
36
|
Novel mutations in the transcriptional activator domain of the human TBX20 in patients with atrial septal defect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:718786. [PMID: 25834824 PMCID: PMC4365367 DOI: 10.1155/2015/718786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up.
Collapse
|
37
|
Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, Xu L, Xu YJ, Shi HY, Hou XM, Qu XK, Xu YW, Yang YQ. TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 2015; 459:166-71. [DOI: 10.1016/j.bbrc.2015.02.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
|
38
|
Vermillion KL, Anderson KJ, Hampton M, Andrews MT. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genomics 2015; 47:58-74. [PMID: 25572546 PMCID: PMC4346737 DOI: 10.1152/physiolgenomics.00108.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/05/2015] [Indexed: 01/12/2023] Open
Abstract
Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation.
Collapse
Affiliation(s)
- Katie L Vermillion
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Kyle J Anderson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| |
Collapse
|
39
|
PAN YUN, GENG RUI, ZHOU NING, ZHENG GUIFEN, ZHAO HONG, WANG JUAN, ZHAO CUIMEI, QIU XINGBIAO, YANG YIQING, LIU XINGYUAN. TBX20 loss-of-function mutation contributes to double outlet right ventricle. Int J Mol Med 2015; 35:1058-66. [DOI: 10.3892/ijmm.2015.2077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
|
40
|
Bogarapu S, Bleyl SB, Calhoun A, Viskochil D, Saarel EV, Everitt MD, Frank DU. Phenotype of a patient with contiguous deletion ofTBX5andTBX3: Expanding the disease spectrum. Am J Med Genet A 2014; 164A:1304-9. [DOI: 10.1002/ajmg.a.36447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/30/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Soujanya Bogarapu
- Division of Pediatric Cardiology; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Steven B. Bleyl
- Division of Pediatric Cardiology; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Amy Calhoun
- Division of Pediatric Genetics and Metabolism; Department of Pediatrics; University of Minnesota Medical School; Minneapolis Minnesota
| | - David Viskochil
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Elizabeth V. Saarel
- Division of Pediatric Cardiology; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Melanie D. Everitt
- Division of Pediatric Cardiology; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Deborah U. Frank
- Division of Pediatric Cardiology; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
- Division of Pediatric Critical Care Medicine; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| |
Collapse
|
41
|
Alghamdi AA, Van Arsdell GS. Replacement of aortic root and ascending aorta in adult congenital heart disease. Expert Rev Cardiovasc Ther 2014; 5:1087-94. [DOI: 10.1586/14779072.5.6.1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Thi Thu HN, Haw Tien SF, Loh SL, Bok Yan JS, Korzh V. Tbx2a is required for specification of endodermal pouches during development of the pharyngeal arches. PLoS One 2013; 8:e77171. [PMID: 24130849 PMCID: PMC3795029 DOI: 10.1371/journal.pone.0077171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/01/2013] [Indexed: 11/21/2022] Open
Abstract
Tbx2 is a member of the T-box family of transcription factors essential for embryo- and organogenesis. A deficiency in the zebrafish paralogue tbx2a causes abnormalities of the pharyngeal arches in a p53-independent manner. The pharyngeal arches are formed by derivatives of all three embryonic germ layers: endodermal pouches, mesenchymal condensations and neural crest cells. While tbx2a expression is restricted to the endodermal pouches, its function is required for the normal morphogenesis of the entire pharyngeal arches. Given the similar function of Tbx1 in craniofacial development, we explored the possibility of an interaction between Tbx1 and Tbx2a. The use of bimolecular fluorescence complementation revealed the interaction between Tbx2a and Tbx1, thus providing support for the idea that functional interaction between different, co-expressed Tbx proteins could be a common theme across developmental processes in cell lineages and tissues. Together, this work provides mechanistic insight into the role of TBX2 in human disorders affecting the face and neck.
Collapse
Affiliation(s)
- Hang Nguyen Thi Thu
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Siau Lin Loh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jimmy So Bok Yan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Trowe MO, Zhao L, Weiss AC, Christoffels V, Epstein DJ, Kispert A. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 2013; 140:2299-309. [PMID: 23674600 DOI: 10.1242/dev.094524] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tbx2 and Tbx3 are two highly related members of the T-box transcription factor gene family that regulate patterning and differentiation of a number of tissue rudiments in the mouse. Both genes are partially co-expressed in the ventral diencephalon and the infundibulum; however, a functional requirement in murine pituitary development has not been reported. Here, we show by genetic lineage tracing that Tbx2(+) cells constitute the precursor population of the neurohypophysis. However, Tbx2 is dispensable for neurohypophysis development as revealed by normal formation of this organ in Tbx2-deficient mice. By contrast, loss of Tbx3 from the ventral diencephalon results in a failure to establish the Tbx2(+) domain in this region, and a lack of evagination of the infundibulum and formation of the neurohypophysis. Rathke's pouch is severely hypoplastic, exhibits defects in dorsoventral patterning, and degenerates after E12.5. In Tbx3-deficient embryos, the ventral diencephalon is hyperproliferative and displays an abnormal cellular architecture, probably resulting from a failure to repress transcription of Shh. We further show that Tbx3 and Tbx2 repress Shh by sequestering the SRY box-containing transcription factor Sox2 away from a Shh forebrain enhancer (SBE2), thus preventing its activation. These data suggest that Tbx3 is required in the ventral diencephalon to establish a Shh(-) domain to allow formation of the infundibulum.
Collapse
Affiliation(s)
- Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
Collapse
|
45
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Parrie LE, Renfrew EM, Wal AV, Mueller RL, Garrity DM. Zebrafishtbx5paralogs demonstrate independent essential requirements in cardiac and pectoral fin development. Dev Dyn 2013; 242:485-502. [DOI: 10.1002/dvdy.23953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/31/2013] [Accepted: 02/16/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lindsay E. Parrie
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | - Erin M. Renfrew
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | - Aimee Vander Wal
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| | | | - Deborah M. Garrity
- Colorado State University (CSU); Department of Biology; Fort Collins; Colorado
| |
Collapse
|
47
|
Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y. The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 2013; 8:e57829. [PMID: 23469079 PMCID: PMC3585213 DOI: 10.1371/journal.pone.0057829] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023] Open
Abstract
During cardiac development, a subpopulation of epicardial cells migrates into the heart as part of the epicardial epithelial-mesenchymal transition (EMT) and differentiates into smooth muscle cells and fibroblasts. However, the roles of transcription factors in the epicardial EMT are poorly understood. Here, we show that two transcription factors expressed in the developing epicardium, T-box18 (Tbx18) and Wilms’ tumor 1 homolog (Wt1), bi-directionally control the epicardial EMT through their effects on Slug expression in murine primary epicardial cells. Knockdown of Wt1 induced the epicardial EMT, which was accompanied by an increase in the migration and expression of N-cadherin and a decrease in the expression of ZO-1 as an epithelial marker. By contrast, knockdown of Tbx18 inhibited the mesenchymal transition induced by TGFβ1 treatment and Wt1 knockdown. The expression of Slug but not Snail decreased as a result of Tbx18 knockdown, but Slug expression increased following knockdown of Wt1. Knockdown of Slug also attenuated the epicardial EMT induced by TGFβ1 treatment and Wt1 knockdown. Furthermore, in normal murine mammary gland-C7 (NMuMG-C7) cells, Tbx18 acted to increase Slug expression, while Wt1 acted to decrease Slug expression. Chromatin immunoprecipitation and promoter assay revealed that Tbx18 and Wt1 directly bound to the Slug promoter region and regulated Slug expression. These results provide new insights into the regulatory mechanisms that control the epicardial EMT.
Collapse
Affiliation(s)
- Makiko Takeichi
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Hironori Nakagami
- Division of Vascular Medicine and Epigenetics, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| |
Collapse
|
48
|
The transcription factors TBX2 and TBX3 interact with human papillomavirus 16 (HPV16) L2 and repress the long control region of HPVs. J Virol 2013; 87:4461-74. [PMID: 23388722 DOI: 10.1128/jvi.01803-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control region (LCR). In promoter-reporter gene assays, we observed that TBX2 and TBX3 repress transcription from the LCR and that this effect is enhanced by L2. Repression of the HPV LCR by TBX2/3 seems to be a conserved mechanism, as it was also observed with the LCRs of different HPV types. Finally, interaction of TBX2 with the LCR was detected by chromatin immunoprecipitation, and we found a strong colocalization of L2 and TBX2 in HPV16-positive cervical intraepithelial neoplasia (CIN) I-II tissue sections. These results suggest that TBX2/3 might play a role in the regulation of HPV gene expression during the viral life cycle.
Collapse
|
49
|
Hartung S, Schwanke K, Haase A, David R, Franz WM, Martin U, Zweigerdt R. Directing cardiomyogenic differentiation of human pluripotent stem cells by plasmid-based transient overexpression of cardiac transcription factors. Stem Cells Dev 2013; 22:1112-25. [PMID: 23157212 DOI: 10.1089/scd.2012.0351] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) possess a high potential for regenerative medicine. Previous publications suggested that viral transduction of a defined set of transcription factors (TFs) known to play pivotal roles in heart development also increases cardiomyogenesis in vitro upon overexpression in mouse or human ES cells. To circumvent issues associated with viral approaches such as insertional mutagenesis, we have established a transient transfection system for straightforward testing of TF combinations. Applying this method, the transfection efficiency and the temporal pattern of transgene expression were extensively assessed in hPSCs by quantitative real time-polymerase chain reaction (qRT-PCR), TF-specific immunofluorescence analysis, and flow cytometry. Testing TF combinations in our approach revealed that BAF60C, GATA4, and MESP1 (BGM) were most effective for cardiac forward programming in human induced pluripotent stem cell lines and human ES cells as well. Removal of BAF60C slightly diminished formation of CM-like cells, whereas depletion of GATA4 or MESP1 abolished cardiomyogenesis. Each of these TFs alone had no inductive effect. In addition, we have noted sensitivity of CM formation to cell density effects, which highlights the necessity for cautious analysis when interpreting TF-directed lineage induction. In summary, this is the first report on TF-induced cardiomyogenesis of hPSCs applying a transient, nonintegrating method of cell transfection.
Collapse
Affiliation(s)
- Susann Hartung
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Embryonic stem (ES) cell-derived cardiomyocytes: A good candidate for cell therapy applications. Cell Biol Int 2013; 33:325-36. [DOI: 10.1016/j.cellbi.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 10/24/2008] [Accepted: 12/05/2008] [Indexed: 01/31/2023]
|