1
|
Yano-Sakamoto K, Kitai Y, Toriu N, Yamamoto S, Mizuta K, Saitou M, Tsukiyama T, Taniuchi I, Osato M, Yanagita M. Expression pattern of Runt-related transcription factor (RUNX) family members and the role of RUNX1 during kidney development. Biochem Biophys Res Commun 2024; 722:150155. [PMID: 38795454 DOI: 10.1016/j.bbrc.2024.150155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.
Collapse
Affiliation(s)
- Keiko Yano-Sakamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yuichiro Kitai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| | - Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8397, Japan.
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Lee H, Kim SY, Kwon NJ, Jo SJ, Kwon O, Kim JI. Single-Cell and Spatial Transcriptome Analysis of Dermal Fibroblast Development in Perinatal Mouse Skin: Dynamic Lineage Differentiation and Key Driver Genes. J Invest Dermatol 2024; 144:1238-1250.e11. [PMID: 38072389 DOI: 10.1016/j.jid.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
Several single-cell RNA studies of developing mouse skin have elucidated the molecular and cellular processes involved in skin development. However, they have primarily focused on either the fetal or early postnatal period, leaving a gap in our understanding of skin development. In this study, we conducted a comprehensive time-series analysis by combining single-cell RNA-sequencing datasets collected at different stages of development (embryonic days 13.5, 14.5, and 16.5 and postnatal days 0, 2, and 4) and validated our findings through multipanel in situ spatial transcriptomics. Our analysis indicated that embryonic fibroblasts exhibit heterogeneity from a very early stage and that the rapid determination of each lineage occurs within days after birth. The expression of putative key driver genes, including Hey1, Ebf1, Runx3, and Sox11 for the dermal papilla trajectory; Lrrc15 for the dermal sheath trajectory; Zfp536 and Nrn1 for the papillary fibroblast trajectory; and Lrrn4cl and Mfap5 for the fascia fibroblast trajectory, was detected in the corresponding, spatially identified cell types. Finally, cell-to-cell interaction analysis indicated that the dermal papilla lineage is the primary source of the noncanonical Wnt pathway during skin development. Together, our study provides a transcriptomic reference for future research in the field of skin development and regeneration.
Collapse
Affiliation(s)
- Hanjae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Lv X, He M, Zhou H, Wang S, Cao X, Yuan Z, Getachew T, Li Y, Sun W. SP1 and KROX20 Regulate the Proliferation of Dermal Papilla Cells and Target the CUX1 Gene. Animals (Basel) 2024; 14:429. [PMID: 38338072 PMCID: PMC10854491 DOI: 10.3390/ani14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Jiao Y, Chen X, Nong B, Luo M, Niu Y, Huang S, Zhang J, Wei A, Huang J. Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive® Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats. J Mater Chem B 2022; 10:8330-8346. [PMID: 36168995 DOI: 10.1039/d2tb01649d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic cutaneous ulcers (DCU) are a complication for diabetes patients, mostly occurring in the foot and causing non-healing diabetic foot ulcers. Mesenchymal stem cell (MSC)-based therapy is currently being investigated as a therapeutic avenue for chronic diabetic ulcers. However, poor engraftment, short retention, and low survival still limit the treatment effectiveness. Hydroactive® Gel is a sterile transparent gel made of natural hydrocolloid, which has been widely used for wound management. Whether transplantation of Wharton's jelly mesenchymal stem cells (WJMSCs) encapsulated with Hydroactive® Gel is helpful to diabetic ulcers wound healing remains to be explored. The biocompatibility experiments showed that WJMSCs embedded in Hydroactive® Gel did not influence the cell viability, survival, proliferation, and apoptosis of WJMSCs in vitro. RNA-seq results also implied that Hydroactive® Gel + WJMSCs transplantation activated the "cytokine-cytokine receptor interaction", "mononuclear cell differentiation", "regulation of cell-cell adhesion", and "chemokine receptor activity" to accelerate the inflammatory reaction and epidermis regeneration in diabetic wounds. Histological analysis results demonstrated that Hydroactive® Gel encapsulated WJMSCs transplantation promoted diabetic wound healing and regeneration, indicating improved dermis regeneration, sebaceous gland formation, and type III collagen fiber deposition. Besides, immunohistochemical analysis results showed that Hydroactive® Gel + WJMSCs transplantation also facilitated the transformation of pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, cell proliferation, and neovascularization at the wound site. Hydroactive® Gel encapsulation further prolonged the retention time of WJMSCs at the diabetic wound site. Above all, Hydroactive® Gel accelerates WJMSCs-mediated diabetic wound healing by promoting macrophage transformation, facilitating cell proliferation and angiogenesis, and prolonging cell retention time. Our findings may potentially provide a useful therapeutic strategy based on the combination of WJMSCs and biomedical materials for patients with diabetic cutaneous ulcers.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Baoting Nong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jue Zhang
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Aisheng Wei
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Slavney AJ, Kawakami T, Jensen MK, Nelson TC, Sams AJ, Boyko AR. Five genetic variants explain over 70% of hair coat pheomelanin intensity variation in purebred and mixed breed domestic dogs. PLoS One 2021; 16:e0250579. [PMID: 34043658 PMCID: PMC8158882 DOI: 10.1371/journal.pone.0250579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the pigment molecule pheomelanin confers red and yellow color to hair, and the intensity of this coloration is caused by variation in the amount of pheomelanin. Domestic dogs exhibit a wide range of pheomelanin intensity, ranging from the white coat of the Samoyed to the deep red coat of the Irish Setter. While several genetic variants have been associated with specific coat intensity phenotypes in certain dog breeds, they do not explain the majority of phenotypic variation across breeds. In order to gain further insight into the extent of multigenicity and epistatic interactions underlying coat pheomelanin intensity in dogs, we leveraged a large dataset obtained via a direct-to-consumer canine genetic testing service. This consisted of genome-wide single nucleotide polymorphism (SNP) genotype data and owner-provided photos for 3,057 pheomelanic mixed breed and purebred dogs from 63 breeds and varieties spanning the full range of canine coat pheomelanin intensity. We first performed a genome-wide association study (GWAS) on 2,149 of these dogs to search for additional genetic variants that underlie intensity variation. GWAS identified five loci significantly associated with intensity, of which two (CFA15 29.8 Mb and CFA20 55.8 Mb) replicate previous findings and three (CFA2 74.7 Mb, CFA18 12.9 Mb, CFA21 10.9 Mb) have not previously been reported. In order to assess the combined predictive power of these loci across dog breeds, we used our GWAS data set to fit a linear model, which explained over 70% of variation in coat pheomelanin intensity in an independent validation dataset of 908 dogs. These results introduce three novel pheomelanin intensity loci, and further demonstrate the multigenic nature of coat pheomelanin intensity determination in domestic dogs.
Collapse
Affiliation(s)
- Andrea J. Slavney
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Takeshi Kawakami
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Meghan K. Jensen
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Thomas C. Nelson
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Aaron J. Sams
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Adam R. Boyko
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Identification of potential key genes and pathways associated with the Pashmina fiber initiation using RNA-Seq and integrated bioinformatics analysis. Sci Rep 2021; 11:1766. [PMID: 33469142 PMCID: PMC7815713 DOI: 10.1038/s41598-021-81471-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023] Open
Abstract
Pashmina goat (Capra hircus) is an economically important livestock species, which habitats the cold arid desert of the Ladakh region (India), and produces a princely animal fiber called Pashmina. The Pashmina goat has a double coat fleece as an adaptation to the very harsh cold winters the outer long coarse hair (guard hair) produced from primary hair follicles and the inner fine Pashmina fiber produced from secondary hair follicles. Pashmina fiber undergoes a circannual and synchronized growth cycle. In the present study, we analyzed transcriptome profiles from 10 different Pashmina goats during anagen and telogen to delineate genes and signaling pathways regulating active (anagen) and regressive (telogen) phases of the follicle growth. During anagen, 150 genes were expressed at significantly higher levels with log (FC) > 2 and padj < 0.05. The RNA seq results were subjected to qRT-PCR validation. Among the nine genes selected, the expression of HAS1, TRIB2, P2RX1. PRG4, CNR2, and MMP25 were significantly higher (p < 0.05) in the anagen phase, whereas MC4R, GIPC2, and CDO1 were significantly expressed (p < 0.05) in the telogen phase which supports and validates the gene expression pattern from the RNA-sequencing. Differentially expressed genes revealed that Pashmina fiber initiation is largely controlled by signaling pathways like Wnt, NF-Kappa, JAK-STAT, Hippo, MAPK, Calcium, and PI3K-Akt. Expression of genes from the Integrin family, Cell adhesion molecules, and ECM-receptors were observed to be at much higher levels during anagen. We identified key genes (IL36RN, IGF2, ITGAV, ITGA5, ITCCR7, CXCL5, C3, CCL19, and CXCR3) and a collagen cluster which might be tightly correlated with anagen-induction. The regulatory network suggests the potential role of RUNX3, NR2F1/2, and GATA family transcription factors in anagen-initiation and maintaining fiber quality in Pashmina goats.
Collapse
|
7
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
8
|
Westgate GE, Ginger RS, Green MR. The biology and genetics of curly hair. Exp Dermatol 2018; 26:483-490. [PMID: 28370528 DOI: 10.1111/exd.13347] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races. The creation of the highly complex biomaterials in hair follicle and how these confer mechanical functions on the fibre so formed is a topic that remains relatively unexplained thus far. We review the current understanding on how hair fibres are formed into a nonlinear coiled form and which genetic and biological factors are thought to be responsible for hair shape. We report on a new GWAS comparing low and high curl individuals in South Africa, revealing strong links to polymorphic variation in trichohyalin, a copper transporter protein CUTC and the inner root sheath component keratin 74. This builds onto the growing knowledge base describing the control of curly hair formation.
Collapse
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Rebecca S Ginger
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Martin R Green
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
9
|
Chuang LSH, Ito K, Ito Y. Roles of RUNX in Solid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:299-320. [PMID: 28299665 DOI: 10.1007/978-981-10-3233-2_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All RUNX genes have been implicated in the development of solid tumors, but the role each RUNX gene plays in the different tumor types is complicated by multiple interactions with major signaling pathways and tumor heterogeneity. Moreover, for a given tissue type, the specific role of each RUNX protein is distinct at different stages of differentiation. A regulatory function for RUNX in tissue stem cells points sharply to a causal effect in tumorigenesis. Understanding how RUNX dysregulation in cancer impinges on normal biological processes is important for identifying the molecular mechanisms that lead to malignancy. It will also indicate whether restoration of proper RUNX function to redirect cell fate is a feasible treatment for cancer. With the recent advances in RUNX research, it is time to revisit the many mechanisms/pathways that RUNX engage to regulate cell fate and decide whether cells proliferate, differentiate or die.
Collapse
Affiliation(s)
- Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore
| | - Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore.
| |
Collapse
|
10
|
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, Levanon D, Groner Y. An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev 2017; 30:2607-2622. [PMID: 28007784 PMCID: PMC5204353 DOI: 10.1101/gad.291484.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Appel et al. defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Then, using transgenic mice expressing BAC reporters spanning the Runx3 locus, they discovered three REs that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs—dubbed R1, R2, and R3—that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs’ ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Collapse
Affiliation(s)
- Elena Appel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarit Weissmann
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Salzberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kira Orlovsky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orit Wolstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
11
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
12
|
Abstract
In this chapter we summarize the pros and cons of the notion that Runx3 is a major tumor suppressor gene (TSG). Inactivation of TSGs in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago it was suggested that RUNX3 is involved in gastric cancer development, a postulate extended later to other epithelial cancers portraying RUNX3 as a major TSG. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. In contrast, RUNX3 is overexpressed in a significant fraction of tumor cells in various human epithelial cancers and its overexpression in pancreatic cancer cells promotes their migration, anchorage-independent growth and metastatic potential. Moreover, recent high-throughput quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models have unequivocally demonstrated that RUNX3 is not a bona fide cell-autonomous TSG. Importantly, accumulating data demonstrated that RUNX3 functions in control of immunity and inflammation, thereby indirectly influencing epithelial tumor development.
Collapse
|
13
|
Lotem J, Levanon D, Negreanu V, Bauer O, Hantisteanu S, Dicken J, Groner Y. Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:131-43. [PMID: 25641675 DOI: 10.1016/j.bbcan.2015.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development.
Collapse
Affiliation(s)
- Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omri Bauer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joseph Dicken
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
A guide for building biological pathways along with two case studies: hair and breast development. Methods 2014; 74:16-35. [PMID: 25449898 DOI: 10.1016/j.ymeth.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway.
Collapse
|
15
|
Carcinogen-Induced Skin Tumor Development Requires Leukocytic Expression of the Transcription Factor Runx3. Cancer Prev Res (Phila) 2014; 7:913-26. [DOI: 10.1158/1940-6207.capr-14-0098-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Jin M, Liu N, Yuan S, Piao J, Zhao F, Qu Y, Zhang T, Wang Y. Construction of a cDNA library and identification of genes from Liaoning cashmere goat. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
18
|
Voronov D, Gromova A, Liu D, Zoukhri D, Medvinsky A, Meech R, Makarenkova HP. Transcription factors Runx1 to 3 are expressed in the lacrimal gland epithelium and are involved in regulation of gland morphogenesis and regeneration. Invest Ophthalmol Vis Sci 2013; 54:3115-25. [PMID: 23532528 DOI: 10.1167/iovs.13-11791] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Lacrimal gland (LG) morphogenesis and repair are regulated by a complex interplay of intrinsic factors (e.g., transcription factors) and extrinsic signals (e.g., soluble growth/signaling factors). Many of these interconnections remain poorly characterized. Runt-related (Runx) factors belong to a small family of heterodimeric transcription factors known to regulate lineage-specific proliferation and differentiation of stem cells. The purpose of this study was to define the expression pattern and the role of Runx proteins in LG development and regeneration. METHODS Expression of epithelial-restricted transcription factors in murine LG was examined using immunostaining, qRT-PCR, and RT(2)Profiler PCR microarrays. The role of Runx transcription factors in LG morphogenesis was studied using siRNA and ex vivo LG cultures. Expression of Runx transcription factors during LG regeneration was assessed using in vivo model of LG regeneration. RESULTS We found that Runx factors are expressed in the epithelial compartment of the LG; in particular, Runx1 was restricted to the epithelium with highest level of expression in ductal and centroacinar cells. Downregulation of Runx1 to 3 expression using Runx-specific siRNAs abolished LG growth and branching and our data suggest that Runx1, 2, and 3 are partially redundant in LG development. In siRNA-treated LG, reduction of branching correlated with reduction of epithelial proliferation, as well as expression of cyclin D1 and the putative epithelial progenitor cell marker cytokeratin-5. Runx1, Runx3, and cytokeratin-5 expression increased significantly in regenerating LG and there was modest increase in Runx2 expression during LG differentiation. CONCLUSIONS Runx1 and 2 are new markers of the LG epithelial lineage and Runx factors are important for normal LG morphogenesis and regeneration.
Collapse
Affiliation(s)
- Dmitry Voronov
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Gorkin DU, Lee D, Reed X, Fletez-Brant C, Bessling SL, Loftus SK, Beer MA, Pavan WJ, McCallion AS. Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Res 2012; 22:2290-301. [PMID: 23019145 PMCID: PMC3483558 DOI: 10.1101/gr.139360.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.
Collapse
Affiliation(s)
- David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Author reply to: RUNX3 is expressed in the epithelium of the gastrointestinal tract. EMBO Mol Med 2012. [PMCID: PMC3407941 DOI: 10.1002/emmm.201200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
|
22
|
Wang CQ, Jacob B, Nah GSS, Osato M. Runx family genes, niche, and stem cell quiescence. Blood Cells Mol Dis 2010; 44:275-86. [PMID: 20144877 DOI: 10.1016/j.bcmd.2010.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
23
|
Duverger O, Morasso MI. Epidermal patterning and induction of different hair types during mouse embryonic development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:263-72. [PMID: 19750518 PMCID: PMC2995294 DOI: 10.1002/bdrc.20158] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the "mini organs" that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning.
Collapse
Affiliation(s)
- Olivier Duverger
- Developmental Skin Biology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
24
|
Abstract
Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal-mesodermal interactions. After birth, mature and actively growing hair follicles eventually become anchored in the subcutis, and periodically regenerate by spontaneously undergoing repetitive cycles of growth (anagen), apoptosis-driven regression (catagen), and relative quiescence (telogen). Our molecular understanding of hair follicle biology relies heavily on mouse mutants with abnormalities in hair structure, growth, and/or pigmentation. These mice have allowed novel insights into important general molecular and cellular processes beyond skin and hair biology, ranging from organ induction, morphogenesis and regeneration, to pigment and stem cell biology, cell proliferation, migration and apoptosis. In this review, we present basic concepts of hair follicle biology and summarize important recent advances in the field.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | | | | |
Collapse
|
25
|
Li SW, Ouyang HS, Rogers GE, Bawden CS. Characterization of the structural and molecular defects in fibres and follicles of the Merino felting lustre mutant. Exp Dermatol 2008; 18:134-42. [PMID: 18637126 DOI: 10.1111/j.1600-0625.2008.00774.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The felting lustre (FL) mutation found in Merino sheep results in a fleece that has a lustrous appearance and readily felts. This phenotype was described 50 years ago to result from the mutation of a single gene, but the molecular and cellular changes in the wool are not well understood. In this study, follicle and fibre material of FL mutant (n = 3) and normal control (n = 5) Merino ewes was compared using histological analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), real-time polymerase chain reaction (qPCR) and electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)]. Histological examination suggested that follicle structure in FL mutants is essentially normal, while SDS-PAGE analysis found that some low molecular weight keratin-associated proteins (KAP) were present at much lower levels in FL wool. Examination of transcript prevalence revealed that the KAP6.1, KAP7 and KAP8 genes in FL mutant follicles are downregulated, while the KAP2.12 and KAP4.2 genes are upregulated. TEM analysis indicated that there is only one type of cortical cell, the paracortical cell, in the fibre of FL mutants, while there are paracortical and orthocortical cells in fibres of normal Merino sheep. In contrast, SEM suggested the surface topography of FL wool fibres is normal. The evidence presented here strongly suggests that the properties of FL wool can be ascribed, at least in part, to the lower content of high glycine/tyrosine proteins and the reduction in orthocortical cells in mutant wool fibres.
Collapse
Affiliation(s)
- Shu Wei Li
- College of Animal Science & Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | |
Collapse
|
26
|
Abstract
Smads are a group of signaling mediators and antagonists of the transforming growth factor-beta (TGF-beta) superfamily, responding but not limited to signaling from TGF-beta, Activin, and bone morphogenetic proteins (BMPs). As all of these three signaling pathways play important roles in skin development, we have been actively pursuing studies assessing the role of Smads in skin development. Our studies revealed that Smad-4 affects hair follicle differentiation primarily by mediating BMP signaling. Smad-7 significantly affects hair follicle development and differentiation by blocking the TGFbeta/Activin/BMP pathway and by inhibiting WNT/beta-catenin signaling via ubiquitin-mediated beta-catenin degradation. In contrast, other Smads may have redundant or dispensable functions in skin development. Here, we review the work that shows the emergence of Smad functions in skin development via traditional and novel signaling pathways.
Collapse
|
27
|
Glotzer DJ, Zelzer E, Olsen BR. Impaired skin and hair follicle development in Runx2 deficient mice. Dev Biol 2008; 315:459-73. [PMID: 18262513 PMCID: PMC2280036 DOI: 10.1016/j.ydbio.2008.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/11/2007] [Accepted: 01/03/2008] [Indexed: 11/20/2022]
Abstract
The transcription factor, Runx2, is known to play crucial roles in skeletal and tooth morphogenesis. Here we document that Runx2 has a regulatory role in skin and hair follicle development. The expression of Runx2 is restricted to hair follicles and is dynamic, pari passu with follicle development. Follicle maturation is delayed in the absence of Runx2 and overall skin and epidermal thickness of Runx2 null embryos is significantly reduced. The Runx2 null epidermis is hypoplastic, displaying reduced expression of Keratin 14, Keratin 1 and markers of proliferation. The expression pattern of Runx2 in the bulb epithelium of mature hair follicles is asymmetric and strikingly similar to that of Sonic hedgehog. This suggests that Runx2 may be a regulator of hedgehog signaling in skin as it is in bones and teeth. Supporting this possibility, we demonstrate that Sonic hedgehog, Patched1 and Gli1 transcripts are reduced in the skin of Runx2 null embryos. Moreover, we document Patched1 expression in epidermal basal cells and show that the skin of Sonic(+/-) embryos is thinner than that of wild-type littermates. These observations suggest that Runx2 and hedgehog signaling are involved in the well known, but unexplained, coupling of skin thickness to hair follicle development.
Collapse
Affiliation(s)
- Donald J. Glotzer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot. Israel
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
28
|
Suh KS, Mutoh M, Mutoh T, Li L, Ryscavage A, Crutchley JM, Dumont RA, Cheng C, Yuspa SH. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J Cell Sci 2007; 120:2631-40. [PMID: 17636002 DOI: 10.1242/jcs.002741] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratinocyte differentiation requires integrating signaling among intracellular ionic changes, kinase cascades, sequential gene expression, cell cycle arrest, and programmed cell death. We now show that Cl(-) intracellular channel 4 (CLIC4) expression is increased in both mouse and human keratinocytes undergoing differentiation induced by Ca(2+), serum and the protein kinase C (PKC)-activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Elevation of CLIC4 is associated with signaling by PKCdelta, and knockdown of CLIC4 protein by antisense or shRNA prevents Ca(2+)-induced keratin 1, keratin 10 and filaggrin expression and cell cycle arrest in differentiating keratinocytes. CLIC4 is cytoplasmic in actively proliferating keratinocytes in vitro, but the cytoplasmic CLIC4 translocates to the nucleus in keratinocytes undergoing growth arrest by differentiation, senescence or transforming growth factor beta (TGFbeta) treatment. Targeting CLIC4 to the nucleus of keratinocytes via adenoviral transduction increases nuclear Cl(-) content and enhances expression of differentiation markers in the absence of elevated Ca(2+). In vivo, CLIC4 is localized to the epidermis in mouse and human skin, where it is predominantly nuclear in quiescent cells. These results suggest that CLIC4 participates in epidermal homeostasis through both alterations in the level of expression and subcellular localization. Nuclear CLIC4, possibly by altering the Cl(-) and pH of the nucleus, contributes to cell cycle arrest and the specific gene expression program associated with keratinocyte terminal differentiation.
Collapse
Affiliation(s)
- Kwang S Suh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marmigère F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007; 8:114-27. [PMID: 17237804 DOI: 10.1038/nrn2057] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Section of Molecular Neurobiology, Karolinska Institutet, MBB, Scheeles vg 1, S17 177 Stockholm, Sweden
| | | |
Collapse
|
30
|
Woolf E, Brenner O, Goldenberg D, Levanon D, Groner Y. Runx3 regulates dendritic epidermal T cell development. Dev Biol 2006; 303:703-14. [PMID: 17222403 DOI: 10.1016/j.ydbio.2006.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/22/2006] [Accepted: 12/05/2006] [Indexed: 01/19/2023]
Abstract
The Runx3 transcription factor regulates development of T cells during thymopoiesis and TrkC sensory neurons during dorsal root ganglia neurogenesis. It also mediates transforming growth factor-beta signaling in dendritic cells and is essential for development of skin Langerhans cells. Here, we report that Runx3 is involved in the development of skin dendritic epidermal T cells (DETCs); an important component of tissue immunoregulation. In developing DETCs, Runx3 regulates expression of the alphaEbeta7 integrin CD103, known to affect migration and epithelial retention of DETCs. It also regulates expression of IL-2 receptor beta (IL-2Rbeta) that mediates cell proliferation in response to IL-2 or IL-15. In the absence of Runx3, the reduction in CD103 and IL-2Rbeta expression on Runx3(-/-) DETC precursors resulted in impaired cell proliferation and maturation, leading to complete lack of skin DETCs in Runx3(-/-) mice. The data demonstrate the requirement of Runx3 for DETCs development and underscore the importance of CD103 and IL-2Rbeta in this process. Of note, while Runx3(-/-) mice lack both DETCs and Langerhans cells, the two most important components of skin immune surveillance, the mice did not develop skin lesions under pathogen-free (SPF) conditions.
Collapse
Affiliation(s)
- Eilon Woolf
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
31
|
Raveh E, Cohen S, Levanon D, Negreanu V, Groner Y, Gat U. Dynamic expression of Runx1 in skin affects hair structure. Mech Dev 2006; 123:842-50. [PMID: 17011173 DOI: 10.1016/j.mod.2006.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/01/2006] [Accepted: 08/03/2006] [Indexed: 12/17/2022]
Abstract
The three mammalian Runx transcription factors, some of which are known to be involved in human genetic diseases and cancer, are pivotal players in embryo development and function as key regulators of cell fate determination and organogenesis. Here, we report the expression of Runx1 during the development of hair and other skin appendages in the mouse and describe the effect of Runx1 on the structural hair output. In hair follicles, where the three Runx proteins are expressed, Runx1 expression is most prominent in both mesenchymal and epithelial compartments. The epithelial expression includes the hair keratin forming layers of the hair shaft and the bulge, where interestingly, Runx1 is co-expressed with keratin 15, a putative hair follicle stem cell marker. In the hair mesenchyme, during early stages of hair morphogenesis, Runx1 is expressed in a discrete dermal sub-epithelial layer, while at later stages it is found in a hair cycle dependent pattern in the dermal papilla. To elucidate the function of Runx1 in the hair follicle we have generated a Runx1 epidermal conditional knockout and found that the mutant mice display a remarkable structural deformation of the zigzag hair type. The data delineate Runx1 as a novel specific marker of several hair follicle cell types and sheds light on its role in hair morphogenesis and differentiation.
Collapse
Affiliation(s)
- Eli Raveh
- Department of Cell and Animal Biology, Silberman Life Sciences Institute, Edmond Safra Campus at Givat-Ram, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Soma T, Ishimatsu-Tsuji Y, Tajima M, Kishimoto J. Runx1 transcription factor is involved in the regulation of KAP5 gene expression in human hair follicles. J Dermatol Sci 2006; 41:221-4. [PMID: 16442267 DOI: 10.1016/j.jdermsci.2005.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/14/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
|