1
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
3
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
5
|
Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, Gensemer C, Beck T, Morningstar J, Stairley R, Norris RA. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis 2021; 8:28. [PMID: 33805717 PMCID: PMC7999759 DOI: 10.3390/jcdd8030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Suite 601 Basic Science Building, 173 Ashley Avenue, Charleston, SC 29425, USA; (K.M.); (D.F.); (L.G.); (N.K.); (J.G.); (R.M.); (C.G.); (T.B.); (J.M.); (R.S.)
| |
Collapse
|
6
|
Gourronc FA, Markan KR, Kulhankova K, Zhu Z, Sheehy R, Quelle DE, Zingman LV, Kurago ZB, Ankrum JA, Klingelhutz AJ. Pdgfrα-Cre mediated knockout of the aryl hydrocarbon receptor protects mice from high-fat diet induced obesity and hepatic steatosis. PLoS One 2020; 15:e0236741. [PMID: 32730300 PMCID: PMC7392206 DOI: 10.1371/journal.pone.0236741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) agonists such as dioxin have been associated with obesity and the development of diabetes. Whole-body Ahr knockout mice on high-fat diet (HFD) have been shown to resist obesity and hepatic steatosis. Tissue-specific knockout of Ahr in mature adipocytes via adiponectin-Cre exacerbates obesity while knockout in liver increases steatosis without having significant effects on obesity. Our previous studies demonstrated that treatment of subcutaneous preadipocytes with exogenous or endogenous AHR agonists disrupts maturation into functional adipocytes in vitro. Here, we used platelet-derived growth factor receptor alpha (Pdgfrα)-Cre mice, a Cre model previously established to knock out genes in preadipocyte lineages and other cell types, but not liver cells, to further define AHR's role in obesity. We demonstrate that Pdgfrα-Cre Ahr-floxed (Ahrfl/fl) knockout mice are protected from HFD-induced obesity compared to non-knockout Ahrfl/fl mice (control mice). The Pdgfrα-Cre Ahrfl/fl knockout mice were also protected from increased adiposity, enlargement of adipocyte size, and liver steatosis while on the HFD compared to control mice. On a regular control diet, knockout and non-knockout mice showed no differences in weight gain, indicating the protective phenotype arises only when animals are challenged by a HFD. At the cellular level, cultured cells from brown adipose tissue (BAT) of Pdgfrα-Cre Ahrfl/fl mice were more responsive than cells from controls to transcriptional activation of the thermogenic uncoupling protein 1 (Ucp1) gene by norepinephrine, suggesting an ability to burn more energy under certain conditions. Collectively, our results show that knockout of Ahr mediated by Pdgfrα-Cre is protective against diet-induced obesity and suggest a mechanism by which enhanced UCP1 activity within BAT might confer these effects.
Collapse
Affiliation(s)
- Francoise A. Gourronc
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Kathleen R. Markan
- Department of Neuroscience and Pharmacology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Katarina Kulhankova
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Ryan Sheehy
- Department of Pharmacology, Kansas City University, Kansas City, KS, United States of America
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Leonid V. Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Zoya B. Kurago
- Department of Oral Biology and Diagnostic Sciences, Department of Pathology, Augusta University, Augusta, GA, United States of America
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
7
|
White SJ, Chong JJH. Growth factor therapy for cardiac repair: an overview of recent advances and future directions. Biophys Rev 2020; 12:805-815. [PMID: 32691300 DOI: 10.1007/s12551-020-00734-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Heart disease represents a significant public health burden and is associated with considerable morbidity and mortality at the level of the individual. Current therapies for pathologies such as myocardial infarction, cardiomyopathy and heart failure are unable to repair damaged tissue to an extent that provides restoration of function approaching that of the pre-diseased state. Novel approaches to repair and regenerate the injured heart include cell therapy and the use of exogenous factors. Improved understanding of the role of growth factors in endogenous cardiac repair processes has motivated the investigation of their potential as therapeutic agents for cardiac pathology. Despite the disappointing performance of other growth factors in historical clinical trials, insulin-like growth factor 1 (IGF-1), neuregulin and platelet-derived growth factor (PDGF) have recently emerged as new candidate therapies. These growth factors elicit tissue repair through anti-apoptotic, pro-angiogenic and fibrosis-modulating mechanisms and have produced clinically significant functional improvement in preclinical studies. Early human trials suggest that IGF-1 and neuregulin are well tolerated and yield dose-dependent benefit, warranting progression to later phase studies. However, outstanding challenges such as short growth factor serum half-life and insufficient target-organ specificity currently necessitate the development of novel delivery strategies.
Collapse
Affiliation(s)
- Samuel J White
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
8
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
9
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
10
|
Zuppo DA, Tsang M. Zebrafish heart regeneration: Factors that stimulate cardiomyocyte proliferation. Semin Cell Dev Biol 2019; 100:3-10. [PMID: 31563389 DOI: 10.1016/j.semcdb.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Myocardial infarctions (MI) remain a leading cause of global morbidity and mortality, and a reason for this is the inability of adult, mammalian cardiomyocytes to divide post-MI. Recent studies demonstrate a limited population of cardiomyocytes retain their proliferative capacity and understanding how endogenous cardiomyocytes can be stimulated to re-enter the cell cycle is a focus of current research. In this review we discuss the history of zebrafish cardiac regeneration and highlight how different models reveal the molecular pathways important in driving cardiomyocyte proliferation after injury. Understanding the molecules that regulate cell cycle re-entry can provide insights into promoting cardiac repair in humans.
Collapse
Affiliation(s)
- D A Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - M Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 2019; 7:diseases7030052. [PMID: 31480510 PMCID: PMC6787645 DOI: 10.3390/diseases7030052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
: Congenital heart disease (CHD) is the most common birth defect worldwide and the number one killer of live-born infants in the United States. Heart development occurs early in embryogenesis and involves complex interactions between multiple cell populations, limiting the understanding and consequent treatment of CHD. Furthermore, genome sequencing has largely failed to predict or yield therapeutics for CHD. In addition to the underlying genome, epigenetics and mechanobiology both drive heart development. A growing body of evidence implicates the aberrant regulation of these two extra-genomic systems in the pathogenesis of CHD. In this review, we describe the stages of human heart development and the heart defects known to manifest at each stage. Next, we discuss the distinct and overlapping roles of epigenetics and mechanobiology in normal development and in the pathogenesis of CHD. Finally, we highlight recent advances in the identification of novel epigenetic biomarkers and environmental risk factors that may be useful for improved diagnosis and further elucidation of CHD etiology.
Collapse
|
12
|
Ivey MJ, Kuwabara JT, Riggsbee KL, Tallquist MD. Platelet-derived growth factor receptor-α is essential for cardiac fibroblast survival. Am J Physiol Heart Circ Physiol 2019; 317:H330-H344. [PMID: 31125253 PMCID: PMC6732481 DOI: 10.1152/ajpheart.00054.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023]
Abstract
Platelet-derived growth factor receptor α (PDGFRα), a receptor tyrosine kinase required for cardiac fibroblast development, is uniquely expressed by fibroblasts in the adult heart. Despite the consensus that PDGFRα is expressed in adult cardiac fibroblasts, we know little about its function when these cells are at rest. Here, we demonstrate that loss of PDGFRα in cardiac fibroblasts resulted in a rapid reduction of resident fibroblasts. Furthermore, we observe that phosphatidylinositol 3-kinase signaling was required for PDGFRα-dependent fibroblast maintenance. Interestingly, this reduced number of fibroblasts was maintained long-term, suggesting that there is no homeostatic mechanism to monitor fibroblast numbers and restore hearts to wild-type levels. Although we did not observe any systolic functional changes in hearts with depleted fibroblasts, the basement membrane and microvasculature of these hearts were perturbed. Through in vitro analyses, we showed that PDGFRα signaling inhibition resulted in an increase in fibroblast cell death, and PDGFRα stimulation led to increased levels of the cell survival factor activating transcription factor 3. Our data reveal a unique role for PDGFRα signaling in fibroblast maintenance and illustrate that a 50% loss in cardiac fibroblasts does not result in lethality.NEW & NOTEWORTHY Platelet-derived growth factor receptor α (PDGFRα) is required in developing cardiac fibroblasts, but a functional role in adult, quiescent fibroblasts has not been identified. Here, we demonstrate that PDGFRα signaling is essential for cardiac fibroblast maintenance and that there are no homeostatic mechanisms to regulate fibroblast numbers in the heart. PDGFR signaling is generally considered mitogenic in fibroblasts, but these data suggest that this receptor may direct different cellular processes depending on the cell's maturation and activation status.
Collapse
Affiliation(s)
- Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Kara L Riggsbee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
13
|
Tao C, Zhang X. Retinal Proteoglycans Act as Cellular Receptors for Basement Membrane Assembly to Control Astrocyte Migration and Angiogenesis. Cell Rep 2017; 17:1832-1844. [PMID: 27829154 DOI: 10.1016/j.celrep.2016.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
The basement membrane is crucial for cell polarity, adhesion, and motility, but how it is assembled on the cell surface remains unclear. Here, we find that ablation of glycosaminoglycan (GAG) side chains of proteoglycans in the neuroretina disrupts the retinal basement membrane, leading to arrested astrocyte migration and reduced angiogenesis. Using genetic deletion and time-lapse imaging, we show that retinal astrocytes require neuronal-derived PDGF as a chemoattractive cue and the retinal basement membrane as a migratory substrate. Genetic ablation of heparan sulfates does not produce the same defects as GAG null mutants. In contrast, enzymatic removal of heparan sulfates and chondroitin sulfates together inhibits de novo laminin network assembly. These results indicate that both heparan and chondroitin sulfate proteoglycans participate in retinal basement membrane assembly, thus promoting astrocyte migration and angiogenesis.
Collapse
Affiliation(s)
- Chenqi Tao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Szumska D, Cioroch M, Keeling A, Prat A, Seidah NG, Bhattacharya S. Pcsk5 is required in the early cranio-cardiac mesoderm for heart development. BMC DEVELOPMENTAL BIOLOGY 2017; 17:6. [PMID: 28446132 PMCID: PMC5407003 DOI: 10.1186/s12861-017-0148-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
Background Loss of proprotein convertase subtilisin/kexin type 5 (Pcsk5) results in multiple developmental anomalies including cardiac malformations, caudal regression, pre-sacral mass, renal agenesis, anteroposterior patterning defects, and tracheo-oesophageal and anorectal malformations, and is a model for VACTERL/caudal regression/Currarino syndromes (VACTERL association - Vertebral anomalies, Anal atresia, Cardiac defects, Tracheoesophageal fistula and/or Esophageal atresia, Renal & Radial anomalies and Limb defects). Results Using magnetic resonance imaging (MRI), we examined heart development in mouse embryos with zygotic and cardiac specific deletion of Pcsk5. We show that conditional deletion of Pcsk5 in all epiblastic lineages recapitulates all developmental malformations except for tracheo-esophageal malformations. Using a conditional deletion strategy, we find that there is an essential and specific requirement for Pcsk5 in the cranio-cardiac mesoderm for cardiogenesis, but not for conotruncal septation or any other aspect of embryonic development. Surprisingly, deletion of Pcsk5 in cardiogenic or pharyngeal mesodermal progenitors that form later from the cranio-cardiac mesoderm does not affect heart development. Neither is Pcsk5 essential in the neural crest, which drives conotruncal septation. Conclusions Our results suggest that Pcsk5 may have an essential and early role in the cranio-cardiac mesoderm for heart development. Alternatively, it is possible that Pcsk5 may still play a critical role in Nkx2.5-expressing cardiac progenitors, with persistence of mRNA or protein accounting for the lack of effect of deletion on heart development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Szumska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Milena Cioroch
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Angela Keeling
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
15
|
Duffey OJ, Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Glob Cardiol Sci Pract 2016; 2016:e201628. [PMID: 28979901 PMCID: PMC5624183 DOI: 10.21542/gcsp.2016.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/15/2016] [Indexed: 11/05/2022] Open
Abstract
Survival rates following myocardial infarction have increased in recent years but current treatments for post-infarction recovery are inadequate and cannot induce regeneration of damaged hearts. Regenerative medicine could provide disease-reversing treatments by harnessing modern concepts in cell and developmental biology. A recently-established paradigm in regenerative medicine is that regeneration of a tissue can be achieved by reactivation of the coordinated developmental processes that originally formed the tissue. In the heart, the epicardium has emerged as an important regulator of cardiac development and reactivation of epicardial developmental processes may provide a means to enable cardiac regeneration. Indeed, in adult mouse hearts, treatment with thymosin β4 and other drug-like molecules reactivates the epicardium and improves outcomes after myocardial infarction by inducing regenerative paracrine signalling, neovascularisation and de novo cardiomyocyte production. However, there are considerable limitations to current methods of epicardial reactivation that prevent direct translation into clinical practice. Here, we describe the rationale for targeting the epicardium and the successes and limitations of this approach. We consider how several recent advances in epicardial biology could be used to overcome these limitations. These advances include insight into epicardial signalling and heterogeneity, epicardial modulation of inflammation and epicardial remodelling of extracellular matrix.
Collapse
Affiliation(s)
- Owen J. Duffey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res 2016; 349:282-290. [PMID: 27816607 DOI: 10.1016/j.yexcr.2016.10.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) contribute to normal heart development. Deficient or abnormal expression of Pdgf and Pdgfr genes have a negative impact on cardiac development and function. The cellular effects of PDGFs in the hearts of Pdgf/Pdgfr mutants and the pathogenesis of the resulting abnormalities are poorly understood, but different PDGF isoforms induce varying effects. Here, we generated three new transgenic mouse types which complete a set of studies, where all different PDGF ligands have been expressed under the same heart specific alpha-myosin heavy chain promoter. Transgenic expression of the natural isoforms of Pdgfa and Pdgfb resulted in isoform specific fibrotic reactions and cardiac hypertrophy. Pdgfa overexpression resulted in a severe fibrotic reaction with up to 8-fold increase in cardiac size, leading to lethal cardiac failure within a few weeks after birth. In contrast, Pdgfb overexpression led to focal fibrosis and moderate cardiac hypertrophy. As PDGF-A and PDGF-B have different affinity for the two PDGF receptors, we analyzed the expression of the receptors and the histology of the fibrotic hearts. Our data suggest that the stronger fibrotic effect generated by Pdgfa overexpression was mediated by Pdgfrα in cardiac interstitial mesenchymal cells, i.e. the likely source of extracellular matrix depostion and fibrotic reaction. The apparent sensitivity of the heart to ectopic PDGFRα agonists supports a role for endogenous PDGFRα agonists in the pathogenesis of cardiac fibrosis.
Collapse
|
17
|
Abstract
Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury, multiple cell types have been implicated as the source for extracellular matrix-producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. (Circ J 2016; 80: 2269-2276).
Collapse
Affiliation(s)
- Malina J Ivey
- Department of Cell and Molecular Biology, Center for Cardiovascular Research, University of Hawaii
| | | |
Collapse
|
18
|
Krejci E, Pesevski Z, Nanka O, Sedmera D. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system. Physiol Res 2016; 65:425-35. [PMID: 27070743 DOI: 10.33549/physiolres.933216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart.
Collapse
Affiliation(s)
- E Krejci
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep 2016; 6:19832. [PMID: 26821812 PMCID: PMC4731764 DOI: 10.1038/srep19832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development.
Collapse
|
20
|
Tandon P, Wilczewski CM, Williams CE, Conlon FL. The Lhx9-integrin pathway is essential for positioning of the proepicardial organ. Development 2016; 143:831-40. [PMID: 26811386 DOI: 10.1242/dev.129551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Biology, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Caralynn M Wilczewski
- Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Clara E Williams
- Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Frank L Conlon
- Department of Biology, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA University of North Carolina McAllister Heart Institute, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
21
|
Garriock RJ, Mikawa T, Yamaguchi TP. Isolation and culture of mouse proepicardium using serum-free conditions. Methods 2014; 66:365-9. [PMID: 23816793 PMCID: PMC4034734 DOI: 10.1016/j.ymeth.2013.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/21/2013] [Accepted: 06/21/2013] [Indexed: 01/14/2023] Open
Abstract
The proepicardium (PE) is an embryonic tissue that gives rise to multipotent vascular progenitors. Most notably the PE gives rise to the epicardium, cardiac fibroblasts, myocardium, and coronary vessels including both vascular smooth muscle and vascular endothelium. Much attention has been given to epicardial-derived cells that show the capacity to differentiate into a wide variety of vascular progenitors including cardiomyocytes. However, it is the PE itself that possesses the greatest potential as a source of multipotent vascular progenitors. We show here a simple method to manually isolate mouse PE at the ninth day of mouse embryonic development and culture highly pure PE tissue in serum-free conditions. This PE culture method allows for the ex vivo analysis of specific growth factors on PE and epicardial development with greater efficiency and precision than existing epicardial culture methods.
Collapse
Affiliation(s)
- Robert J Garriock
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
22
|
Sullivan KE, Black LD. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J Biomech Eng 2014; 135:71001. [PMID: 23720014 DOI: 10.1115/1.4024349] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 01/18/2023]
Abstract
The extracellular matrix is no longer considered a static support structure for cells but a dynamic signaling network with the power to influence cell, tissue, and whole organ physiology. In the myocardium, cardiac fibroblasts are the primary cell type responsible for the synthesis, deposition, and degradation of matrix proteins, and they therefore play a critical role in the development and maintenance of functional heart tissue. This review will summarize the extensive research conducted in vivo and in vitro, demonstrating the influence of both physical and chemical stimuli on cardiac fibroblasts and how these interactions impact both the extracellular matrix and, by extension, cardiomyocytes. This work is of considerable significance, given that cardiovascular diseases are marked by extensive remodeling of the extracellular matrix, which ultimately impairs the functional capacity of the heart. We seek to summarize the unique role of cardiac fibroblasts in normal cardiac development and the most prevalent cardiac pathologies, including congenital heart defects, hypertension, hypertrophy, and the remodeled heart following myocardial infarction. We will conclude by identifying existing holes in the research that, if answered, have the potential to dramatically improve current therapeutic strategies for the repair and regeneration of damaged myocardium via mechanotransductive signaling.
Collapse
|
23
|
Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organogenesis 2013; 10:108-25. [PMID: 24345806 DOI: 10.4161/org.27483] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.
Collapse
Affiliation(s)
- Karen Koefoed
- Department of Biology; University of Copenhagen; Copenhagen, Denmark; Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | - Iben Rønn Veland
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | | | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen, Denmark
| | | |
Collapse
|
24
|
Mercer SE, Odelberg SJ, Simon HG. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol 2013; 382:457-69. [PMID: 23939298 DOI: 10.1016/j.ydbio.2013.08.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023]
Abstract
Unlike humans, certain adult vertebrates such as newts and zebrafish possess extraordinary abilities to functionally regenerate lost appendages and injured organs, including cardiac muscle. Here, we present new evidence that a remodeled extracellular matrix (ECM) directs cell activities essential for cardiac muscle regeneration. Comprehensive mining of DNA microarrays and Gene Ontology term enrichment analyses for regenerating newt and zebrafish hearts revealed that distinct ECM components and ECM-modifying proteases are among the most significantly enriched genes in response to local injury. In contrast, data analyses for mammalian cardiac injury models indicated that inflammation and metabolic processes are the most significantly activated gene groups. In the regenerating newt heart, we show dynamic spatial and temporal changes in tenascin-C, hyaluronic acid, and fibronectin ECM distribution as early as 3 days postamputation. Linked to distinct matrix remodeling, we demonstrate a myocardium-wide proliferative response and radial migration of progenitor cells. In particular, we report dramatic upregulation of a regeneration-specific matrix in the epicardium that precedes the accumulation and migration of progenitor cells. For the first time, we show that the regenerative ECM component tenascin-C significantly increases newt cardiomyocyte cell cycle reentry in vitro. Thus, the engineering of nature-tested extracellular matrices may provide new strategic opportunities for the enhancement of regenerative responses in mammals.
Collapse
Affiliation(s)
- Sarah E Mercer
- Department of Pediatrics and Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | | | | |
Collapse
|
25
|
Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL. Tcf21 regulates the specification and maturation of proepicardial cells. Development 2013; 140:2409-21. [PMID: 23637334 DOI: 10.1242/dev.093385] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The epicardium is a mesothelial cell layer essential for vertebrate heart development and pertinent for cardiac repair post-injury in the adult. The epicardium initially forms from a dynamic precursor structure, the proepicardial organ, from which cells migrate onto the heart surface. During the initial stage of epicardial development crucial epicardial-derived cell lineages are thought to be determined. Here, we define an essential requirement for transcription factor Tcf21 during early stages of epicardial development in Xenopus, and show that depletion of Tcf21 results in a disruption in proepicardial cell specification and failure to form a mature epithelial epicardium. Using a mass spectrometry-based approach we defined Tcf21 interactions and established its association with proteins that function as transcriptional co-repressors. Furthermore, using an in vivo systems-based approach, we identified a panel of previously unreported proepicardial precursor genes that are persistently expressed in the epicardial layer upon Tcf21 depletion, thereby confirming a primary role for Tcf21 in the correct determination of the proepicardial lineage. Collectively, these studies lead us to propose that Tcf21 functions as a transcriptional repressor to regulate proepicardial cell specification and the correct formation of a mature epithelial epicardium.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | |
Collapse
|
26
|
Chong JJH, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE. Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 2013; 22:1932-43. [PMID: 23391309 DOI: 10.1089/scd.2012.0542] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors play instrumental roles in embryonic organogenesis and diseases of adult organs. In particular, platelet-derived growth factor receptor-alpha (PDGFRα) is expressed by multipotent cardiovascular progenitors in mouse and human embryonic stem cell systems. Although cardiac PDGFRα expression has been studied in multiple species, little is known about its expression in the human heart. Using immunofluorescence, we analyzed PDGFRα expression in both human fetal and diseased adult hearts, finding strong expression in the interstitial cells of the epicardium, myocardium, and endocardium, as well as the coronary smooth muscle. Only rare endothelial cells and cardiomyocytes expressed PDGFRα. This pattern was consistent for both the fetal and adult diseased hearts, although more PDGFRα+ cardiomyocytes were noted in the latter. In vitro differentiation assays were then performed on the PDGFRα+ cell fraction isolated from the cardiomyocyte-depleted human fetal hearts. Protocols previously reported to direct differentiation to a cardiomyocyte (5-azacytidine), smooth muscle (PDGF-BB), or endothelial cell fates (vascular endothelial growth factor [VEGF]) were used. Although no significant cardiomyocyte differentiation was observed, PDGFRα+ cells generated significant numbers of smooth muscle cells (smooth muscle-α-actin+ and smooth muscle myosin+) and endothelial cells (CD31+). These data suggest that a subfraction of the cardiac PDGFRα+ populations are progenitors contributing predominantly to the vascular and mesenchymal compartments of the human heart. It may be possible to control the fate of these progenitors to promote vascularization or limit fibrosis in the injured heart.
Collapse
Affiliation(s)
- James J H Chong
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schlueter J, Brand T. Epicardial progenitor cells in cardiac development and regeneration. J Cardiovasc Transl Res 2012; 5:641-53. [PMID: 22653801 DOI: 10.1007/s12265-012-9377-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/15/2012] [Indexed: 01/25/2023]
Abstract
The epicardium forms an epithelial layer on the surface of the heart. It is derived from a cluster of mesothelial cells, which is termed the proepicardium. The proepicardium gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells, fibroblast, and possibly endothelial cells. In this review, the formation of the proepicardium is discussed. Marker genes, suitable to identify these cells in the embryo and in the adult, are introduced. Recent evidence suggests that the PE is made up of distinct cell populations. These cell lineages can be distinguished on the basis of marker gene expression and differ in their differentiation potential. The role of the epicardium as a resource for cardiac stem cells and its importance in cardiac regeneration is also discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UK
| | | |
Collapse
|
28
|
Abstract
Activation of platelet derived growth factor (PDGF) receptors causes context-dependent cellular responses, including proliferation and migration, and studies in model organisms have demonstrated that this receptor family (PDGFRα and PDGFRβ) is required in many mesenchymal and migratory cell populations during embryonic development. One of these migratory cell populations is the neural crest, which forms cranial bone and mesenchyme, sympathetic neurons and ganglia, melanocytes, and smooth muscle. Mice with disruption of PDGF signaling exhibit defects in some of these neural crest derivatives including the palate, aortic arch, salivary gland, and thymus. Although many of these neural crest defects were identified many years ago, the mechanism of action of PDGF in neural crest remains controversial. In this review, we examine the current knowledge of PDGF function during neural crest cell (NCC) development, focusing on its role in the formation of different neural crest-derived tissues and the implications for PDGF receptors in NCC-related human birth defects.
Collapse
Affiliation(s)
- Christopher L Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
29
|
Abstract
Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the preseptation period and then gradually decreasing toward birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling by means of growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease.
Collapse
Affiliation(s)
- David Sedmera
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | |
Collapse
|
30
|
Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 2011; 108:e15-26. [PMID: 21512159 DOI: 10.1161/circresaha.110.235531] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RATIONALE In early heart development, platelet-derived growth factor (PDGF) receptor expression in the heart ventricles is restricted to the epicardium. Previously, we showed that PDGFRβ is required for coronary vascular smooth muscle cell (cVSMC) development, but a role for PDGFRα has not been identified. Therefore, we investigated the combined and independent roles of these receptors in epicardial development. OBJECTIVE To understand the contribution of PDGF receptors in epicardial development and epicardial-derived cell fate determination. METHODS AND RESULTS By generating mice with epicardial-specific deletion of the PDGF receptors, we found that epicardial epithelial-to-mesenchymal transition (EMT) was defective. Sox9, an SRY-related transcription factor, was reduced in PDGF receptor-deficient epicardial cells, and overexpression of Sox9 restored epicardial migration, actin reorganization, and EMT gene expression profiles. The failure of epicardial EMT resulted in hearts that lacked epicardial-derived cardiac fibroblasts and cVSMC. Loss of PDGFRα resulted in a specific disruption of cardiac fibroblast development, whereas cVSMC development was unperturbed. CONCLUSIONS Signaling through both PDGF receptors is necessary for epicardial EMT and formation of epicardial-mesenchymal derivatives. PDGF receptors also have independent functions in the development of specific epicardial-derived cell fates.
Collapse
Affiliation(s)
- Christopher L Smith
- Department of Molecular Biology, MC9148, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
31
|
Li P, Cavallero S, Gu Y, Chen THP, Hughes J, Hassan AB, Brüning JC, Pashmforoush M, Sucov HM. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 2011; 138:1795-805. [PMID: 21429986 DOI: 10.1242/dev.054338] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secreted factors from the epicardium are believed to be important in directing heart ventricular cardiomyocyte proliferation and morphogenesis, although the specific factors involved have not been identified or characterized adequately. We found that IGF2 is the most prominent mitogen made by primary mouse embryonic epicardial cells and by a newly derived immortalized mouse embryonic epicardial cell line called MEC1. In vivo, Igf2 is expressed in the embryonic mouse epicardium during midgestation heart development. Using a whole embryo culture assay in the presence of inhibitors, we confirmed that IGF signaling is required to activate the ERK proliferation pathway in the developing heart, and that the epicardium is required for this response. Global disruption of the Igf2 gene, or conditional disruption of the two IGF receptor genes Igf1r and Insr together in the myocardium, each resulted in a significant decrease in ventricular wall proliferation and in ventricular wall hypoplasia. Ventricular cardiomyocyte proliferation in mutant embryos was restored to normal at E14.5, concurrent with the establishment of coronary circulation. Our results define IGF2 as a previously unexplored epicardial mitogen that is required for normal ventricular chamber development.
Collapse
Affiliation(s)
- Peng Li
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guadix JA, Ruiz-Villalba A, Lettice L, Velecela V, Muñoz-Chápuli R, Hastie ND, Pérez-Pomares JM, Martínez-Estrada OM. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 2011; 138:1093-7. [PMID: 21343363 PMCID: PMC3042868 DOI: 10.1242/dev.044594] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
Abstract
Epicardial-derived signals are key regulators of cardiac embryonic development. An important part of these signals is known to relate to a retinoic acid (RA) receptor-dependent mechanism. RA is a potent morphogen synthesised by Raldh enzymes, Raldh2 being the predominant one in mesodermal tissues. Despite the importance of epicardial retinoid signalling in the heart, the molecular mechanisms controlling cardiac Raldh2 transcription remain unknown. In the current study, we show that Wt1-null epicardial cells display decreased expression of Raldh2 both in vivo and in vitro. Using a RA-responsive reporter, we have confirmed that Wt1-null epicardial cells actually show reduced synthesis of RA. We also demonstrate that Raldh2 is a direct transcriptional target of Wt1 in epicardial cells. A secondary objective of this study was to identify the status of RA-related receptors previously reported to be critical to epicardial biology (PDGFRα,β; RXRα). PDGFRα and PDGFRβ mRNA and protein levels are downregulated in the absence of Wt1, but only Pdgfra expression is rescued by the addition of RA to Wt1-null epicardial cells. RXRα mRNA levels are not affected in Wt1-null epicardial cells. Taken together, our results indicate that Wt1 critically regulates epicardial RA signalling via direct activation of the Raldh2 gene, and identify a role for Wt1 in the regulation of morphogen receptors involved in the proliferation, migration, and differentiation of epicardial and epicardially-derived cells (EPDC).
Collapse
Affiliation(s)
| | | | - Laura Lettice
- Department of Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Victor Velecela
- Department of Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | - Nicholas D. Hastie
- Department of Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | - Ofelia M. Martínez-Estrada
- Department of Comparative and Developmental Genetics, MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
33
|
The epicardium in cardiac repair: From the stem cell view. Pharmacol Ther 2011; 129:82-96. [DOI: 10.1016/j.pharmthera.2010.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022]
|
34
|
Revealing new mouse epicardial cell markers through transcriptomics. PLoS One 2010; 5:e11429. [PMID: 20596535 PMCID: PMC2893200 DOI: 10.1371/journal.pone.0011429] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 05/24/2010] [Indexed: 12/29/2022] Open
Abstract
Background The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available. Methodology Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays. Principal Findings Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury. Conclusion This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer.
Collapse
|
35
|
Carmona R, Guadix JA, Cano E, Ruiz-Villalba A, Portillo-Sánchez V, Pérez-Pomares JM, Muñoz-Chápuli R. The embryonic epicardium: an essential element of cardiac development. J Cell Mol Med 2010; 14:2066-72. [PMID: 20477903 PMCID: PMC3822997 DOI: 10.1111/j.1582-4934.2010.01088.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epicardium has recently been identified as an active and essential element of cardiac development. Recent reports have unveiled a variety of functions performed by the embryonic epicardium, as well as the cellular and molecular mechanisms regulating them. However, despite its developmental importance, a number of unsolved issues related to embryonic epicardial biology persist. In this review, we will summarize our current knowledge about (i) the ontogeny and evolution of the epicardium, including a discussion on the evolutionary origins of the proepicardium (the epicardial primordium), (ii) the nature of epicardial–myocardial interactions during development, known to be essential for myocardial growth and maturation, and (iii) the contribution of epicardially derived cells to the vascular and connective tissue of the heart. We will finish with a note on the relationships existing between the primordia of the viscera and their coelomic epithelial lining. We would like to suggest that at least a part of the properties of the embryonic epicardium are shared by many other coelomic cell types, such that the role of epicardium in cardiac development is a particular example of a more general mechanism for the contribution of coelomic and coelomic-derived cells to the morphogenesis of organs such as the liver, kidneys, gonads or spleen.
Collapse
Affiliation(s)
- R Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Sedmera D. Factors in ventricular and atrioventricular valve growth: An embryologist's perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Bax NAM, Lie-Venema H, Vicente-Steijn R, Bleyl SB, Van Den Akker NMS, Maas S, Poelmann RE, Gittenberger-de Groot AC. Platelet-derived growth factor is involved in the differentiation of second heart field-derived cardiac structures in chicken embryos. Dev Dyn 2010; 238:2658-69. [PMID: 19705434 DOI: 10.1002/dvdy.22073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
For the establishment of a fully functional septated heart, addition of myocardium from second heart field-derived structures is important. Platelet-derived growth factors (PDGFs) are known for their role in cardiovascular development. In this study, we aim to elucidate this role of PDGF-A, PDGF-C, and their receptor PDGFR-alpha. We analyzed the expression patterns of PDGF-A, -C, and their receptor PDGFR-alpha during avian heart development. A spatiotemporal pattern of ligands was seen with colocalization of the PDGFR-alpha. This was found in second heart field-derived myocardium as well as the proepicardial organ (PEO) and epicardium. Mechanical inhibition of epicardial outgrowth as well as chemical disturbance of PDGFR-alpha support a functional role of the ligands and the receptor in cardiac development.
Collapse
Affiliation(s)
- Noortje A M Bax
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Sucov HM, Gu Y, Thomas S, Li P, Pashmforoush M. Epicardial control of myocardial proliferation and morphogenesis. Pediatr Cardiol 2009; 30:617-25. [PMID: 19277768 DOI: 10.1007/s00246-009-9391-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/19/2009] [Indexed: 11/30/2022]
Abstract
The epicardium is a critical tissue that directs several aspects of heart development, particularly via the secretion of soluble factors. This review summarizes recent approaches that implicate the epicardium as the source of mitogenic factors promoting cardiomyocyte proliferation, as the source of instructive signals that direct compact zone organization (morphogenesis), and as the tissue that directs formation of the coronary vasculature.
Collapse
Affiliation(s)
- Henry M Sucov
- Institute for Genetic Medicine, University of Southern California Keck School of Medicine, 2250 Alcazar St., IGM240, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
40
|
Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick. Cardiol Young 2009; 19:159-69. [PMID: 19195417 DOI: 10.1017/s1047951109003552] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing heart increases its mass predominantly by increasing the number of contained cells through proliferation. We hypothesized that addition of fibroblast growth factor-2, a factor previously shown to stimulate division of the embryonic myocytes, to the left ventricular myocardium in an experimental model of left heart hypoplasia created in the chicken would attenuate phenotypic severity by increasing cellular proliferation. We have established an effective mode of delivery of fibroblast growth factor-2 to the chick embryonic left ventricular myocardium by using adenovirus vectors, which was more efficient and better tolerated than direct injection of recombinant fibroblast growth factor-2 protein. Injection of control adenovirus expressing green fluorescent protein did not result in significant alterations in myocytic proliferation or cell death compared with intact, uninjected, controls. Co-injection of adenoviruses expressing green fluorescent protein and fibroblast growth factor-2 was used for verification of positive injection, and induction of proliferation, respectively. Treatment of both normal and hypoplastic left ventricles with fibroblast growth factor-2 expressing adenovirus resulted in to 2 to 3-fold overexpression of fibroblast growth factor-2, as verified by immunostaining. An increase by 45% in myocytic proliferation was observed following injection of normal hearts, and an increase of 39% was observed in hypoplastic hearts. There was a significant increase in anti-myosin immunostaining in the hypoplastic, but not the normal hearts. We have shown, therefore, that expression of exogenous fibroblast growth factor-2 in the late embryonic heart can exert direct effects on cardiac myocytes, inducing both their proliferation and differentiation. These data suggest potential for a novel therapeutic option in selected cases of congenital cardiac disease, such as hypoplastic left heart syndrome.
Collapse
|
41
|
Noseda M, Schneider MD. Fibroblasts Inform the Heart: Control of Cardiomyocyte Cycling and Size by Age-Dependent Paracrine Signals. Dev Cell 2009; 16:161-2. [DOI: 10.1016/j.devcel.2009.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, Kazi MN, Ruiz FR, Pu WT, Tallquist MD. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res 2008; 103:1393-401. [PMID: 18948621 DOI: 10.1161/circresaha.108.176768] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The epicardium plays an essential role in coronary artery formation and myocardial development, but signals controlling the development and differentiation of this tissue are not well understood. To investigate the role of platelet-derived growth factor receptor (PDGFR)beta in development of epicardial-derived vascular smooth muscle cells (VSMCs), we examined PDGFRbeta(-/-) and PDGFRbeta epicardial mutant hearts. We found that PDGFRbeta(-/-) hearts failed to form dominant coronary vessels on the ventral heart surface, had a thinned myocardium, and completely lacked coronary VSMCs (cVSMCs). This constellation of defects was consistent with a primary defect in the epicardium. To verify that these defects were specific to epicardial derivatives, we generated mice with an epicardial deletion of PDGFRbeta that resulted in reduced cVSMCs distal to the aorta. The regional absence of cVSMCs suggested that cVSMCs could arise from 2 sources, epicardial and nonepicardial, and that both were dependent on PDGFRbeta. In the absence of PDGFRbeta signaling, epicardial cells adopted an irregular actin cytoskeleton, leading to aberrant migration of epicardial cells into the myocardium in vivo. In addition, PDGF receptor stimulation promoted epicardial cell migration, and PDGFRbeta-driven phosphoinositide 3'-kinase signaling was critical for this process. Our data demonstrate that PDGFRbeta is required for the formation of 2 distinct cVSMC populations and that loss of PDGFRbeta-PI3K signaling disrupts epicardial cell migration.
Collapse
MESH Headings
- Animals
- Cell Movement/physiology
- Cells, Cultured
- Coronary Vessels/cytology
- Coronary Vessels/metabolism
- Coronary Vessels/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Pericardium/cytology
- Pericardium/metabolism
- Pericardium/physiology
- Phosphatidylinositol 3-Kinases/deficiency
- Phosphatidylinositol 3-Kinases/physiology
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Amy M Mellgren
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D. Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia. Anat Rec (Hoboken) 2008; 291:1187-99. [DOI: 10.1002/ar.20738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Platelet-derived growth factor receptors direct vascular development independent of vascular smooth muscle cell function. Mol Cell Biol 2008; 28:5646-57. [PMID: 18606782 PMCID: PMC2546924 DOI: 10.1128/mcb.00441-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Complete loss of platelet-derived growth factor (PDGF) receptor signaling results in embryonic lethality around embryonic day 9.5, but the cause of this lethality has not been identified. Because cardiovascular failure often results in embryonic lethality at this time point, we hypothesized that a failure in cardiovascular development could be the cause. To assess the combined role of PDGF receptor alpha (PDGFRalpha) and PDGFRbeta, we generated embryos that lacked these receptors in cardiomyocytes and vascular smooth muscle cells (VSMC) using conditional gene ablation. Deletion of either PDGFRalpha or PDGFRbeta caused no overt vascular defects, but loss of both receptors using an SM22alpha-Cre transgenic mouse line led to a disruption in yolk sac blood vessel development. The cell population responsible for this vascular defect was the yolk sac mesothelial cells, not the cardiomyocytes or the VSMC. Coincident with loss of PDGF receptor signaling, we found a reduction in collagen deposition and an increase in MMP-2 activity. Finally, in vitro allantois cultures demonstrated a requirement for PDGF signaling in vessel growth. Together, these data demonstrate that PDGF receptors cooperate in the yolk sac mesothelium to direct blood vessel maturation and suggest that these effects are independent of their role in VSMC development.
Collapse
|