1
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Zheng L. Developmental Toxicity and Apoptosis in Zebrafish: The Impact of Lithium Hexafluorophosphate (LiPF 6) from Lithium-Ion Battery Electrolytes. Int J Mol Sci 2024; 25:9307. [PMID: 39273255 PMCID: PMC11395654 DOI: 10.3390/ijms25179307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
With the growing dependence on lithium-ion batteries, there is an urgent need to understand the potential developmental toxicity of LiPF6, a key component of these batteries. Although lithium's toxicity is well-established, the biological toxicity of LiPF6 has been minimally explored. This study leverages the zebrafish model to investigate the developmental impact of LiPF6 exposure. We observed morphological abnormalities, reduced spontaneous movement, and decreased hatching and swim bladder inflation rates in zebrafish embryos, effects that intensified with higher LiPF6 concentrations. Whole-mount in situ hybridization demonstrated that the specific expression of the swim bladder outer mesothelium marker anxa5b was suppressed in the swim bladder region under LiPF6 exposure. Transcriptomic analysis disclosed an upregulation of apoptosis-related gene sets. Acridine orange staining further supported significant induction of apoptosis. These findings underscore the environmental and health risks of LiPF6 exposure and highlight the necessity for improved waste management strategies for lithium-ion batteries.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
2
|
Han S, Liu X, Liu Y, Lu J. Parental exposure to Cypermethrin causes intergenerational toxicity in zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173456. [PMID: 38788937 DOI: 10.1016/j.scitotenv.2024.173456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid pesticide, has been detected in agriculture and aquaculture. However, there is limited knowledge about the transgenerational impacts. This study aimed to investigate the developmental toxicity of CYP on F1 larvae offspring of adult zebrafish exposed to various CYP concentrations (5, 10, and 20 μg/L) for 28 days. The results indicated that CYP accumulated in parental zebrafish, and CYP was below the limit of quantification in offspring. Paternal exposure impacted the hatching rate and heart rate of the F1 generation. Furthermore, CYP significantly impacted the development of swim bladders in progeny and dysregulated the genes relevant to swim bladder development. The neutrophil migrated to the swim bladder. The mRNA levels of the inflammatory factors were also significantly elevated. According to network toxicology, PI3-AKT may be the signaling pathway for CYP-influenced bladder development. Subsequent molecular docking and Western blot analysis showed CYP affected the PI3-AKT signaling pathway. Notably, MK-2206, a specific Akt inhibitor, rescued the CYP-induced damage of swim bladder development in offspring. The present study highlights the potential risks of CYP on the development of offspring and lasting impact in aquatic environments.
Collapse
Affiliation(s)
- Shuang Han
- Morphology and Spatial Multi-omics Technology Platform, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, 200031 Shanghai, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xi Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Li X, Li Y, Chernick M, Hinton DE, Zheng N, Du C, Dong W, Wang S, Hou S. Single and mixture toxicity of cadmium and copper to swim bladder in early life stages of Japanese medaka (Oryzias latipes). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:27. [PMID: 38225481 DOI: 10.1007/s10653-023-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024]
Abstract
Toxicity observed in aquatic ecosystems often cannot be explained by the action of a single pollutant. Likewise, evaluation standards formulated by a single effect cannot truly reflect the environmental quality requirements. The study of mixtures is needed to provide environmental relevance and knowledge of combined toxicity. In this study, the embryos of Japanese medaka (Oryzias latipes) were treated with individual and binary mixture of copper (Cu) and cadmium (Cd) until 12 days post-fertilization (dpf). Hatching, mortality, development, histology and gene expression were assessed. Our results showed that the highest concentration mixture of Cd (10 mg/L) and Cu (1 mg/L) affected survival, hatching time and hatching success. Occurrence of uninflated swim bladder was the highest (value) with exposure to 10 mg/L Cd. Swim bladder was commonly over-inflated in a mixture (0.1 mg/L Cd + 1.0 mg/L Cu) exposure. Individuals exposed to the mixture (0.1 Cd + 1.0 Cu mg/L) showed up to a 7.69% increase in swim bladder area compared to the control group. The mixtures containing 0.1 or 10 mg/L Cd, each with 1.0 mg/L Cu resulted in significantly increased of Pbx1b expression, higher than any Cd or Cu alone (p < 0.01). In the co-exposure group (0.1/10 Cd + 1.0 Cu mg/L), Pbx1b expression was found at 12 dpf but not 7 dpf in controls. Higher concentrations of Cd may progressively reduce Pbx1b expression, potentially explaining why 75% of individuals in the 10 mg/L Cd group failed to inflate their swim bladders. Additionally, the swim bladder proved to be a valuable bio-indicator for biological evaluation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China.
| | - Chenyang Du
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Inner Mongolia University for Nationalities, Hohhot, 028000, Inner Mongolia, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
5
|
Varshney S, Lundås M, Siriyappagouder P, Kristensen T, Olsvik PA. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115796. [PMID: 38061085 DOI: 10.1016/j.ecoenv.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Acid mine drainage (AMD) is widely acknowledged as a substantial threat to the biodiversity of aquatic ecosystems. The present study aimed to study the toxicological effects of Cu-rich AMD from the Sulitjelma mine in zebrafish larvae. The AMD from this mine was found to contain elevated levels of dissolved metals including Mg (46.7 mg/L), Al (20.2 mg/L), Cu (18.3 mg/L), Fe (19.8 mg/L) and Zn (10.6 mg/L). To investigate the toxicological effects, the study commenced by exposing zebrafish embryos to various concentrations of AMD (ranging from 0.75% to 9%) to determine the median lethal concentration (LC50). Results showed that 96 h LC50 for zebrafish larvae following AMD exposure was 2.86% (95% CI: 2.32-3.52%). Based on acute toxicity results, zebrafish embryos (<2 hpf) were exposed to 0.1% AMD (Cu: 21.7 µg/L) and 0.45% AMD (Cu: 85.7 µg/L) for 96 h to assess development, swimming behaviour, heart rate, respiration and transcriptional responses at 116 hpf. Light microscopy results showed that both 0.1% and 0.45% AMD reduced the body length, eye size and swim bladder area of zebrafish larvae and caused phenotypic abnormalities. Swimming behaviour results showed that 0.45% AMD significantly decreased the locomotion of zebrafish larvae. Heart rate was not affected by AMD exposure. Furthermore, exposure caused a significant increase in oxygen consumption indicating vascular stress in developing larvae. Taken altogether, the study shows that even heavily diluted AMD with environmentally relevant levels of Cu caused toxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mikkel Lundås
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
6
|
Cao S, Dong Z, Dong X, Jia W, Zhou F, Zhao Q. Zebrafish sox2 Is Required for the Swim Bladder Inflation by Controlling the Swim-Up Behavior. Zebrafish 2023; 20:10-18. [PMID: 36795618 PMCID: PMC9968866 DOI: 10.1089/zeb.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The swim bladder functions to maintain the fish balance at a certain position under water. Although the motoneuron-dependent swim-up behavior is important for swim bladder inflation, the underlying molecular mechanism remains largely unknown. We generated a sox2 KO zebrafish using TALEN and found that the posterior chamber of the swim bladder was uninflated. The tail flick and the swim-up behavior were absent in the mutant zebrafish embryos and the behavior could not be accomplished. As the tail flick behavior is absent, the mutant larvae therefore cannot reach the water surface to gulp air, ultimately leading to the uninflation of the swim bladder. To understand the mechanism underlying the swim-up defects, we crossed the sox2 null allele in the background of Tg(huc:eGFP) and Tg(hb9:GFP). The deficiency of sox2 in zebrafish resulted in abnormal motoneuron axons in the regions of trunk, tail, and swim bladder. To identify the downstream target gene of sox2 to control the motor neuron development, we performed RNA sequencing on the transcriber of mutant embryos versus wild type embryos and found that the axon guidance pathway was abnormal in the mutant embryos. RT-PCR demonstrated that the expression of sema3bl, ntn1b, and robo2 were decreased in the mutants.
Collapse
Affiliation(s)
- Shasha Cao
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhangji Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaohua Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wenshuang Jia
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Qingshun Zhao
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Gao Y, Yang P, Zhu J. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114363. [PMID: 36508826 DOI: 10.1016/j.ecoenv.2022.114363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag+) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag+ released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content. Furthermore, up-regulation and down-regulation of swim bladder development-related gene expression was not observed for pbx1a and anxa5, but up-regulation expression of shha and ihha was observed with no statistical significance. That 20-nm AgNPs were less toxic was attributed to their rapid elimination from larvae in comparison with the elimination of 40-, 60-, and 80-nm AgNPs; thus, less Ag+ was released in 20-nm AgNP-exposed larvae. Failed inflation of swim bladders was affected by released Ag+ rather than AgNPs themselves. Overall, we reveal the toxicity contribution of Ag+ underlying the observed size-dependent effects of AgNPs and provide a scientific basis for comprehensively assessing the ecological risk and biosafety of AgNPs.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin 130507, PR China
| | - Jingxue Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
8
|
Yang Y, Li Y, Fu J, Li Y, Li S, Ni R, Yang Q, Luo L. Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc Natl Acad Sci U S A 2022; 119:e2205110119. [PMID: 36396123 PMCID: PMC9659337 DOI: 10.1073/pnas.2205110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
During coordinated development of two neighboring organs from the same germ layer, how precursors of one organ resist the inductive signals of the other to avoid being misinduced to wrong cell fate remains a general question in developmental biology. The liver and anterior intestinal precursors located in close proximity along the gut axis represent a typical example. Here we identify a zebrafish leberwurst (lbw) mutant with a unique hepatized intestine phenotype, exhibiting replacement of anterior intestinal cells by liver cells. lbw encodes the Cdx1b homeoprotein, which is specifically expressed in the intestine, and its precursor cells. Mechanistically, in the intestinal precursors, Cdx1b binds to genomic DNA at the regulatory region of secreted frizzled related protein 5 (sfrp5) to activate sfrp5 transcription. Sfrp5 blocks the mesoderm-derived, liver-inductive Wnt2bb signal, thus conferring intestinal precursor cells resistance to Wnt2bb. These results demonstrate that the intestinal precursors avoid being misinduced toward hepatic lineages through the activation of the Cdx1b-Sfrp5 cascade, implicating Cdx/Sfrp5 as a potential pharmacological target for the manipulation of intestinal-hepatic bifurcations, and shedding light on the general question of how precursor cells resist incorrect inductive signals during embryonic development.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yuanyuan Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715 Chongqing, China
| |
Collapse
|
9
|
Zhang T, Zhang C, Zhang J, Lin J, Song D, Zhang P, Liu Y, Chen L, Zhang L. Cadmium impairs zebrafish swim bladder development via ROS mediated inhibition of the Wnt / Hedgehog pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106180. [PMID: 35490551 DOI: 10.1016/j.aquatox.2022.106180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The posterior swim bladder is an important organ in teleost fishes, that primarily maintains buoyancy and motility for swimming and survival. In this study, we examined the molecular mechanisms of the toxicity of cadmium (Cd) on the early development of the swim bladder in zebrafish. Embryonic Cd exposure resulted in the non-inflation of the swim bladder when the ambient Cd concentration was greater than or equal to 0.25 mg/L. Cd disturbed surfactant lipid distribution and inhibited the formation of all three tissue layers in the swim bladder. Additionally, excessive Cd down-regulated Wnt (fzd3, nkd1, fzd7 and axin2) and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Conversely, Wnt signaling activation partially neutralized Cd-induced swim bladder developmental defects. Moreover, ROS scavenger reduced Glutathione (GSH) effectively recovered Cd induced defects in swim bladder and Wnt/Hedgehog signaling. Taken together, our results first revealed that Cd caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways. These results herein provide important data for future toxicological studies and risk assessments of Cd.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Canchuan Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiangtian Lin
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Dongdong Song
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
10
|
Zhao Y, Che J, Tian A, Zhang G, Xu Y, Li S, Liu S, Wan Y. PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors. Curr Cancer Drug Targets 2022; 22:757-770. [PMID: 35422219 DOI: 10.2174/1568009622666220413084456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression. OBJECTIVE The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms. METHODS The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan-Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription. RESULTS PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells. CONCLUSION This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Songlin Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yinxu Wan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| |
Collapse
|
11
|
Huang T, Wang S, Souders CL, Ivantsova E, Wengrovitz A, Ganter J, Zhao YH, Cheng H, Martyniuk CJ. Exposure to acetochlor impairs swim bladder formation, induces heat shock protein expression, and promotes locomotor activity in zebrafish (Danio rerio) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112978. [PMID: 34794026 DOI: 10.1016/j.ecoenv.2021.112978] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Acetochlor is one of the most widely used herbicides in the world, however, there are few data on the sub-lethal effects of acetochlor on early developmental stages of fish. To address this, we measured survival, deformity, swim bladder formation, embryo oxygen consumption rates, reactive oxygen species (ROS) levels, transcripts (related to swim bladder formation, oxidative damage response, and apoptosis) and behavior responses following exposure to acetochlor (0.001 µM up to 125 µM). Exposure to acetochlor at concentrations 50 µM and above exerted 100% mortality after 3 dpf, and significantly reduced the size of the swim bladder (25 µM). In embryos, basal respiration, oligomycin-induced ATP production, and maximal respiration were decreased 30-60% following a 24 h exposure to 125 μM acetochlor. Acetochlor did not affect ROS levels up to 25 µM in larvae with acute exposure. Acetochlor at 25 µM increased mRNA levels of bax1, hsp70, and hsp90a by ~4-fold in larval zebrafish. In both the visual motor response and light-dark preference test, 25 µM acetochlor increased locomotor activity of larval fish. At lower exposure concentrations, 100 and 1000 nM acetochlor increased the mean time spent in the dark zone, suggesting promotion of anxiolytic behavior. This study presents a comprehensive evaluation of sublethal effects of acetochlor, spanning molecular responses to behavior, which can be used to refine risk assessment decisions for aquatic environments.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
12
|
Van Essen D, Devoy C, Miller J, Jones PD, Wiseman S. Effects of the brominated flame retardant, TBCO, on development of zebrafish (Danio rerio) embryos. CHEMOSPHERE 2021; 266:129195. [PMID: 33310513 DOI: 10.1016/j.chemosphere.2020.129195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs) can enter aquatic environments where they can have adverse effects on organisms. The BFR, 1,2,5,6-Tetrabromocyclooctane (TBCO), has been introduced as a potential replacement for the major use BRF, Hexabromocyclododecane (HBCD). However, little is known about effects of TBCO on aquatic organisms. Using zebrafish (Danio rerio) as a model species, objectives of this study were to determine whether TBCO has adverse effects on early life-stages and to investigate the molecular and biochemical mechanisms of any effects on development. Exposure to TBCO caused a concentration dependant increase in mortality, decrease in heart rate, and increase in incidences of spinal curvature and uninflated swim bladders. Neither peroxidation of lipids or mRNA abundances of genes important for the response to oxidative stress were greater in embryos exposed to TBCO suggesting effects were not caused by oxidative stress. The mRNA abundance of cytochrome p4501a was not greater in embryos exposed to TBCO suggesting that effects were not caused by activation of the aryl hydrocarbon receptor. Finally, mRNA abundances of genes important for development and inflation of the swim bladder were not affected by TBCO. Overall, TBCO causes adverse effects on early life-stages of zebrafish, but mechanisms of effects require further investigation.
Collapse
Affiliation(s)
- Darren Van Essen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Chloe Devoy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Justin Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
13
|
Everitt S, Fujita KK, MacPherson S, Brinkmann M, Pyle GG, Wiseman S. Toxicity of Weathered Sediment-Bound Dilbit to Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1721-1729. [PMID: 33449613 DOI: 10.1021/acs.est.0c06349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to high viscosity, bitumen extracted from the Alberta oil sands is diluted with natural gas condensates to form diluted bitumen (dilbit) to facilitate transport through pipelines. Dilbit that is spilled into or near a waterbody is subject to environmental weathering processes such as evaporation and interaction with sediments. This is the first study that assessed the toxicity of weathered sediment-bound dilbit (WSD) to fish early life stages. Exposure of zebrafish (Danio rerio) embryos to water-soluble fractions (WSFs) or water-accommodated fractions (WAFs) of WSD from 30 min to 120 h postfertilization resulted in pericardial edema, yolk sac edema, and incidences of uninflated swim bladder. The presence of oil-mineral aggregates (OMAs) in the WAFs greatly increased toxicity, despite all fractions having similar concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs). There were greater cyp1a mRNA abundances in larvae exposed to WAFs, suggesting that there were differences in bioavailability of PAHs between fractions. However, there was little evidence that embryotoxicity was caused by oxidative stress. Results suggest that evaporation and sediment interaction do not completely attenuate toxicity of dilbit to zebrafish early life stages, and OMAs in exposures exacerbate toxicity.
Collapse
Affiliation(s)
- Sean Everitt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Kaden K Fujita
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stephanie MacPherson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Water Institute for Sustainable Environment, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Water Institute for Sustainable Environment, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
14
|
Yang L, Huang T, Li R, Souders CL, Rheingold S, Tischuk C, Li N, Zhou B, Martyniuk CJ. Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116277. [PMID: 33360065 DOI: 10.1016/j.envpol.2020.116277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Strobilurin fungicides have been frequently detected in aquatic environments and can induce mitochondrial toxicity to non-target aquatic organisms. However, the derived toxicity and subsequent mechanisms related to their adverse effects are not fully elucidated. In the present study, we compared the mitochondrial and developmental toxicity of azoxystrobin, pyraclostrobin, and trifloxystrobin using zebrafish embryo/larvae. The results showed that all three strobilurins inhibited mitochondrial and non-mitochondrial respiration (the potency is pyraclostrobin ≈ trifloxystrobin > azoxystrobin). Behavioral changes indicated that sublethal doses of pyraclostrobin and azoxystrobin caused hyperactivity of zebrafish larvae in dark cycles, whereas trifloxystrobin resulted in hypoactivity of zebrafish larvae. In addition, pyraclostrobin exposure impaired the inflation of swim bladder, and caused down-regulation of annexin A5 (anxa5) mRNA levels, and up-regulated transcript levels of pre-B-cell leukemia homeobox 1a (pbx1a); conversely, azoxystrobin and trifloxystrobin did not cause detectable effects with swim bladder inflation. Molecular docking results indicated that azoxystrobin had higher interacting potency with iodotyrosine deiodinase (IYD), prolactin receptor (PRLR), antagonistic conformation of thyroid hormone receptor β (TRβ) and glucocorticoid receptor (GR) compared to pyraclostrobin and trifloxystrobin; pyraclostrobin and azoxystrobin were more likely to interact with the antagonistic conformation of TRβ and GR, respectively. These results may partially explain the different effects observed in behavior and swim bladder inflation, and also point to potential endocrine disruption induced by these strobilurins. Taken together, our study revealed that all three strobilurins alter mitochondrial bioenergetics and cause developmental toxicity. However, the toxic phenotypes and underlying mechanisms of each chemical may differ, and this requires further investigation. Pyraclostrobin showed higher mitochondrial toxicity at lethal doses and higher developmental toxicity at sublethal doses compared to the two other strobilurins tested. These results provide novel information for toxicological study as well as risk assessment of strobilurin fungicides.
Collapse
Affiliation(s)
- Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Tao Huang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan, 430014, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer Rheingold
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, PR China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Yang L, Ivantsova E, Souders CL, Martyniuk CJ. The agrochemical S-metolachlor disrupts molecular mediators and morphology of the swim bladder: Implications for locomotor activity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111641. [PMID: 33396161 DOI: 10.1016/j.ecoenv.2020.111641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
16
|
Wu Y, Li W, Yuan M, Liu X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134870. [PMID: 31726413 DOI: 10.1016/j.scitotenv.2019.134870] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) is a widely used insecticide and reveals neural, cardiovascular and reproductive toxicity to various aquatic organisms. It has been known that DM negatively affects motion of zebrafish (Danio rerio). However, little is known in relation to the impacts of DM on development of swim bladder, which is a key organ for motion. In the present study, zebrafish embryos were exposed to 20 and 40 µg/L DM. The changes of swim bladder morphology were observed and transcription levels of key genes were compared between DM treatments and the control. The results showed that DM treatments significantly blocked the formation of progenitor and tissue layers in swim bladder of zebrafish embryos, leading to failed inflation of swim bladder. Compared with the control, the key genes (pbx1, foxA3, mnx1, has2, anxa5b, hprt1l and elovl1a) responsible for swim bladder development also showed decreased levels in response to DM treatments, suggesting that DM might specifically affect swim bladder development. Moreover, transcription levels of genes in the Wnt (wnt5b, tcf3a, wnt1, wnt9b, fzd1, fzd3 and fzd5) and Hedgehog (ihhb, ptc1 and ptc2) signaling pathways all decreased significantly in response to DM treatments, compared with the control. Considering the importance of Wnt and Hedgehog pathways in development of swim bladder, these results suggested that DM might affect swim bladder development through inhibiting the Wnt and Hedgehog pathways. Overall, the present study reported that swim bladder might be a potential target organ of DM toxicity in zebrafish, which contributed more information to the evaluation of DM's environmental risks.
Collapse
Affiliation(s)
- Yaqin Wu
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenhua Li
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingrui Yuan
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Provincial Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Sun H, Chen M, Wang Z, Zhao G, Liu JX. Transcriptional profiles and copper stress responses in zebrafish cox17 mutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113364. [PMID: 31662245 DOI: 10.1016/j.envpol.2019.113364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
While Cox17 functions importantly in copper metalation of cytochrome c oxidase and integral mitochondrial architecture in vertebrates, rare studies have been performed regarding the developmental and physiological characters of vertebrate cox17 mutants. In this study, normal-like developmental phenotype was observed in both cox17Δ6-/- and cox17Δ4-/- homozygous zebrafish mutants, while gene ontology term and pathway analysis of the differentially expressed genes in both mutants showed enrichment in oxidoreductase activity, ion transport, histone methylation, MICOS complex, Wnt signaling, etc. This implied the occurrence of damage to the integral function of Cox17 and change of transcriptomes in the two mutants. Further qRT-PCR and WISH assays revealed the down-regulated expression of Wnt signaling and reduced expression of swim bladder marker genes in the two mutants. Moreover, copper stimulation induced no obvious increase in reactive oxygen species (ROS) or in the expression of hemoglobin marker genes, but further reduced the expression of swim bladder marker genes in the mutants. The integral data in this study suggest that: (1) cox17 mutants cannot activate the response of oxidoreductase to copper stimulation; (2) copper depends on the integral function of Cox17 to induce developmental defects in hemoglobin rather than swim bladder and (3) Wnt signaling but not ROS might mediate copper-induced swim bladder developmental defects in fish.
Collapse
Affiliation(s)
- HaoJie Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Wang J, Shi G, Yao J, Sheng N, Cui R, Su Z, Guo Y, Dai J. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. ENVIRONMENT INTERNATIONAL 2020; 134:105317. [PMID: 31733528 DOI: 10.1016/j.envint.2019.105317] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 05/26/2023]
Abstract
Perfluoropolyether carboxylic acids (PFECAs, CF3(OCF2)nCOO-, n = 2-5) are novel alternatives to perfluorooctanoic acid (PFOA) and are widely used in industrial production. However, although they have been detected in surface water and human blood, their toxicities on aquatic organisms remain unknown. We used zebrafish embryos to compare the developmental toxicities of various PFECAs (e.g., perfluoro (3,5,7-trioxaoctanoic) acid (PFO3OA), perfluoro (3,5,7,9-tetraoxadecanoic) acid (PFO4DA), and perfluoro (3,5,7,9,11-pentaoxadodecanoic) acid (PFO5DoDA)) with that of PFOA and to further reveal the key events related to toxicity caused by these chemicals. Results showed that, based on half maximal effective concentrations (EC50), toxicity increased in the order: PFO5DoDA > PFO4DA > PFOA > PFO3OA, with uninflated posterior swim bladders the most frequently observed malformation. Similar to PFOA, PFECA exposure significantly lowered thyroid hormone (TH) levels (e.g., T3 (3,5,3'-L-triiodothyronine) and T4 (L-thyroxine)) in the whole body of larvae at 5 d post-fertilization following disrupted TH metabolism. In addition, the transcription of UDP glucuronosyltransferase 1 family a, b (ugt1ab), a gene related to TH metabolism, increased dose-dependently. Exogeneous T3 or T4 supplementation partly rescued PFECA-induced posterior swim bladder malformation. Our results further suggested that PFECAs primarily damaged the swim bladder mesothelium during early development. This study is the first to report on novel emerging PFECAs as thyroid disruptors causing swim bladder malformation. Furthermore, given that PFECA toxicity increased with backbone OCF2 moieties, they may not be safer alternatives to PFOA.
Collapse
Affiliation(s)
- Jinxing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzhi Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoben Su
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Xu J, Zhang R, Zhang T, Zhao G, Huang Y, Wang H, Liu JX. Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:155-164. [PMID: 28957717 DOI: 10.1016/j.aquatox.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Copper nanoparticles (CuNPs) are used widely in different fields due to their attractive and effective abilities in inhibiting bacteria and fungi, but little information is available about their biological effects and potential molecular mechanisms on fish development. Here, CuNPs and copper (II) ions (Cu2+) were revealed to inhibit the specification and formation of three layers of zebrafish embryonic posterior swimbladder and impair its inflation in a stage-specific manner. CuNPs and Cu2+ were also revealed to down-regulate Wnt signaling in embryos. Furthermore, Wnt agonist 6-Bromoindirubin-3'-oxime (BIO) was found to neutralize the inhibiting effects of CuNPs or Cu2+ or both on zebrafish swimbladder development. The integrated data here provide the first evidence that both CuNPs and Cu2+ act on the specification and growth of the three layers of swimbladder and inhibit its inflation by down-regulating Wnt signaling in a stage-specific manner during embryogenesis.
Collapse
Affiliation(s)
- JiangPing Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - RuiTao Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Huang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HuanLing Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
20
|
Okuda KS, Tan PJ, Patel V. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop. Zebrafish 2016; 13:138-41. [PMID: 26771561 DOI: 10.1089/zeb.2015.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.
Collapse
Affiliation(s)
| | - Pei Jean Tan
- Drug Discovery Team, Cancer Research Malaysia , Subang Jaya, Malaysia
| | - Vyomesh Patel
- Drug Discovery Team, Cancer Research Malaysia , Subang Jaya, Malaysia
| |
Collapse
|
21
|
Uribe RA, Bronner ME. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development. Mol Biol Cell 2015; 26:3728-40. [PMID: 26354419 PMCID: PMC4626059 DOI: 10.1091/mbc.e15-02-0112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of Meis3 leads to defects in enteric neural crest cell migration, number, and proliferation during colonization of the gut. This leads to colonic aganglionosis, in which the hindgut is devoid of neurons, identifying it as a novel candidate factor in the etiology of Hirschsprung’s disease during enteric nervous system development. During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung’s disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
22
|
Villeneuve D, Volz DC, Embry MR, Ankley GT, Belanger SE, Léonard M, Schirmer K, Tanguay R, Truong L, Wehmas L. Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:158-69. [PMID: 24115264 PMCID: PMC4119008 DOI: 10.1002/etc.2403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 05/17/2023]
Abstract
The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to the FELS test, there is a need to identify and describe potential adverse outcome pathways (AOPs) relevant to FELS toxicity. To support this endeavor, the authors outline and illustrate an overall strategy for the discovery and annotation of FELS AOPs. Key events represented by major developmental landmarks were organized into a preliminary conceptual model of fish development. Using swim bladder inflation as an example, a weight-of-evidence-based approach was used to support linkage of key molecular initiating events to adverse phenotypic outcomes and reduced young-of-year survival. Based on an iterative approach, the feasibility of using key events as the foundation for expanding a network of plausible linkages and AOP knowledge was explored and, in the process, important knowledge gaps were identified. Given the scope and scale of the task, prioritization of AOP development was recommended and key research objectives were defined relative to factors such as current animal-use restrictions in the European Union and increased demands for fish toxicity data in chemical management programs globally. The example and strategy described are intended to guide collective efforts to define FELS-related AOPs and develop resource-efficient predictive assays that address the toxicological domain of the OECD 210 test.
Collapse
Affiliation(s)
| | - David C Volz
- Arnold School of Public Health, University of South CarolinaColumbia, South Carolina, USA
| | - Michelle R Embry
- International Life Sciences Institute, Health and Environmental Sciences InstituteWashington, DC, USA
| | | | | | - Marc Léonard
- Research and Innovation, L'OréalAulnay-sous-Bois, France
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf; EPF Lausanne, School of Architecture, Civil and Environmental EngineeringLausanne; ETH Zürich, Institute of Biogeochemistry and Pollutant DynamicsZürich, Switzerland
| | | | - Lisa Truong
- Oregon State UniversityCorvallis, Oregon, USA
| | - Leah Wehmas
- Oregon State UniversityCorvallis, Oregon, USA
| |
Collapse
|
23
|
Cass AN, Servetnick MD, McCune AR. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol Dev 2013; 15:119-32. [DOI: 10.1111/ede.12022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amanda N. Cass
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| | - Marc D. Servetnick
- Science and Technology Program; University of Washington; Bothell, WA; 98011; USA
| | - Amy R. McCune
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY; 14853; USA
| |
Collapse
|
24
|
Li J, Liang Y, Zhang X, Lu J, Zhang J, Ruan T, Zhou Q, Jiang G. Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9750-9757. [PMID: 21961643 DOI: 10.1021/es202420g] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The teleost gas bladder is a gas-filled internal organ that processes gas exchange and controls buoyancy. Here we report that an emerging heterocyclic brominated flame retardant, tris(2,3-dibromopropyl) isocyanurate (TBC), causes defects in the inflation of the gas bladder of zebrafish larvae. This could cause impaired motility, which can ultimately lead to their death. Exposure to zebrafish embryos revealed that TBC had the most significant influence on the larvae at 72-96 h postfertilization, which coincided with the time that the gas bladder first inflates. Critical factors involved in early zebrafish gas bladder development remained at normal levels, which indicated that TBC caused defects in the inflation of the gas bladder without disrupting early organogenesis. However, the ultrastructure of the gas bladder was altered in the TBC-treated groups: the electron density of cytoplasmic vesicles was changed and the mitochondria were damaged. We deduce that TBC causes damage to mitochondria that influences the secretion of mucus-like material, resulting in defects in gas bladder inflation. For the first time, we report that the gas bladder could be a primary target organ for TBC, and assessment of the gas bladder should be included in toxicity testing protocols of zebrafish embryos.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Subtropical Agriculture and Environment, Ministry of Agriculture, Huazhong Agricultural Universit y, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Shin D, Lee Y, Poss KD, Stainier DYR. Restriction of hepatic competence by Fgf signaling. Development 2011; 138:1339-48. [PMID: 21385764 DOI: 10.1242/dev.054395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatic competence, or the ability to respond to hepatic-inducing signals, is regulated by a number of transcription factors broadly expressed in the endoderm. However, extrinsic signals might also regulate hepatic competence, as suggested by tissue explant studies. Here, we present genetic evidence that Fgf signaling regulates hepatic competence in zebrafish. We first show that the endoderm posterior to the liver-forming region retains hepatic competence: using transgenic lines that overexpress hepatic inducing signals following heat-shock, we found that at late somitogenesis stages Wnt8a, but not Bmp2b, overexpression could induce liver gene expression in pancreatic and intestinal bulb cells. These manipulations resulted in the appearance of ectopic hepatocytes in the intestinal bulb. Second, by overexpressing Wnt8a at various stages, we found that as embryos develop, the extent of the endodermal region retaining hepatic competence is gradually reduced. Most significantly, we found, using gain- and loss-of-function approaches, that Fgf10a signaling regulates this gradual reduction of the hepatic-competent domain. These data provide in vivo evidence that endodermal cells outside the liver-forming region retain hepatic competence and show that an extrinsic signal, Fgf10a, negatively regulates hepatic competence.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Liver Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
26
|
Wnt signaling is required for early development of zebrafish swimbladder. PLoS One 2011; 6:e18431. [PMID: 21479192 PMCID: PMC3068184 DOI: 10.1371/journal.pone.0018431] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/07/2011] [Indexed: 01/15/2023] Open
Abstract
Background Wnt signaling plays critical roles in mammalian lung development. However, Wnt signaling in the development of the zebrafish swimbladder, which is considered as a counterpart of mammalian lungs, have not been explored. To investigate the potential conservation of signaling events in early development of the lung and swimbladder, we wish to address the question whether Wnt signaling plays a role in swimbladder development. Methodology/Principal Findings For analysis of zebrafish swimbladder development, we first identified, by whole-mount in situ hybridization (WISH), has2 as a mesenchymal marker, sox2 as the earliest epithelial marker, as well as hprt1l and elovl1a as the earliest mesothelial markers. We also demonstrated that genes encoding Wnt signaling members Wnt5b, Fz2, Fz7b, Lef1, Tcf3 were expressed in different layers of swimbladder. Then we utilized the heat-shock inducible transgenic lines hs:Dkk1-GFP and hs:ΔTcf-GFP to temporarily block canonical Wnt signaling. Inhibition of canonical Wnt signaling at various time points disturbed precursor cells specification, organization, anterioposterior patterning, and smooth muscle differentiation in all three tissue layers of swimbladder. These observations were also confirmed by using a chemical inhibitor (IWR-1) of Wnt signaling. In addition, we found that Hedgehog (Hh) signaling was activated by canonical Wnt signaling and imposed a negative feedback on the latter. Significance/Conclusion We first provided a new set of gene markers for the three tissue layers of swimbladder in zebrafish and demonstrated the expression of several key genes of Wnt signaling pathway in developing swimbladder. Our functional analysis data indicated that Wnt/β-catenin signaling is required for swimbladder early development and we also provided evidence for the crosstalk between Wnt and Hh signaling in early swimbladder development.
Collapse
|