1
|
Duan LJ, Jiang Y, Fong GH. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling. Development 2024; 151:dev202802. [PMID: 38770916 PMCID: PMC11190433 DOI: 10.1242/dev.202802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.
Collapse
Affiliation(s)
- Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Redgrave RE, Singh E, Tual-Chalot S, Park C, Hall D, Bennaceur K, Smyth DJ, Maizels RM, Spyridopoulos I, Arthur HM. Exogenous Transforming Growth Factor-β1 and Its Helminth-Derived Mimic Attenuate the Heart's Inflammatory Response to Ischemic Injury and Reduce Mature Scar Size. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:562-573. [PMID: 37832870 DOI: 10.1016/j.ajpath.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-β1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-β1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-β1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-β1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-β1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1β and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-β1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-β signaling in the vascular endothelium.
Collapse
Affiliation(s)
- Rachael E Redgrave
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Esha Singh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Simon Tual-Chalot
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Catherine Park
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Darroch Hall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Karim Bennaceur
- Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Ioakim Spyridopoulos
- Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Helen M Arthur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom.
| |
Collapse
|
3
|
Wu B, Wu B, Benkaci S, Shi L, Lu P, Park T, Morrow BE, Wang Y, Zhou B. Crk and Crkl Are Required in the Endocardial Lineage for Heart Valve Development. J Am Heart Assoc 2023; 12:e029683. [PMID: 37702066 PMCID: PMC10547300 DOI: 10.1161/jaha.123.029683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Background Endocardial cells are a major progenitor population that gives rise to heart valves through endocardial cushion formation by endocardial to mesenchymal transformation and the subsequent endocardial cushion remodeling. Genetic variants that affect these developmental processes can lead to congenital heart valve defects. Crk and Crkl are ubiquitously expressed genes encoding cytoplasmic adaptors essential for cell signaling. This study aims to explore the specific role of Crk and Crkl in the endocardial lineage during heart valve development. Methods and Results We deleted Crk and Crkl specifically in the endocardial lineage. The resultant heart valve morphology was evaluated by histological analysis, and the underlying cellular and molecular mechanisms were investigated by immunostaining and quantitative reverse transcription polymerase chain reaction. We found that the targeted deletion of Crk and Crkl impeded the remodeling of endocardial cushions at the atrioventricular canal into the atrioventricular valves. We showed that apoptosis was temporally increased in the remodeling atrioventricular endocardial cushions, and this developmentally upregulated apoptosis was repressed by deletion of Crk and Crkl. Loss of Crk and Crkl also resulted in altered extracellular matrix production and organization in the remodeling atrioventricular endocardial cushions. These morphogenic defects were associated with altered expression of genes in BMP (bone morphogenetic protein), connective tissue growth factor, and WNT signaling pathways, and reduced extracellular signal-regulated kinase signaling activities. Conclusions Our findings support that Crk and Crkl have shared functions in the endocardial lineage that critically regulate atrioventricular valve development; together, they likely coordinate the morphogenic signals involved in the remodeling of the atrioventricular endocardial cushions.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Brian Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Sonia Benkaci
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Lijie Shi
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Pengfei Lu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri‐Kansas City School of MedicineKansas CityMO
| | | | - Yidong Wang
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Cardiovascular Research Center, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Bin Zhou
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
4
|
Park SH, Lu Y, Shao Y, Prophete C, Horton L, Sisco M, Lee HW, Kluz T, Sun H, Costa M, Zelikoff J, Chen LC, Gorr MW, Wold LE, Cohen MD. Longitudinal Impact of WTC Dust Inhalation on Rat Cardiac Tissue Transcriptomic Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020919. [PMID: 35055737 PMCID: PMC8776213 DOI: 10.3390/ijerph19020919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
First responders (FR) exposed to the World Trade Center (WTC) Ground Zero air over the first week after the 9/11 disaster have an increased heart disease incidence compared to unexposed FR and the general population. To test if WTC dusts were causative agents, rats were exposed to WTC dusts (under isoflurane [ISO] anesthesia) 2 h/day on 2 consecutive days; controls received air/ISO or air only. Hearts were collected 1, 30, 240, and 360 d post-exposure, left ventricle total RNA was extracted, and transcription profiles were obtained. The data showed that differentially expressed genes (DEG) for WTC vs. ISO rats did not reach any significance with a false discovery rate (FDR) < 0.05 at days 1, 30, and 240, indicating that the dusts did not impart effects beyond any from ISO. However, at day 360, 14 DEG with a low FDR were identified, reflecting potential long-term effects from WTC dust alone, and the majority of these DEG have been implicated as having an impact on heart functions. Furthermore, the functional gene set enrichment analysis (GSEA) data at day 360 showed that WTC dust could potentially impact the myocardial energy metabolism via PPAR signaling and heart valve development. This is the first study showing that WTC dust could significantly affect some genes that are associated with the heart/CV system, in the long term. Even > 20 years after the 9/11 disaster, this has potentially important implications for those FR exposed repeatedly at Ground Zero over the first week after the buildings collapsed.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
- Correspondence:
| | - Yuting Lu
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Yongzhao Shao
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Colette Prophete
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lori Horton
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Maureen Sisco
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Judith Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Matthew W. Gorr
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Mitchell D. Cohen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| |
Collapse
|
5
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
6
|
Abstract
Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bailey Dye
- Biomedical Sciences Graduate Program at The Ohio State University, Columbus, Ohio 43210, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
7
|
Abstract
The field of vascular biology has gained enormous insight from the use of Cre and inducible Cre mouse models to temporally and spatially manipulate gene expression within the endothelium. Models are available to constitutively or inducibly modulate gene expression in all or a specified subset of endothelial cells. However, caution should be applied to both the selection of allele and the analysis of resultant phenotype: many similarly named Cre models have divergent activity patterns while ectopic or inconsistent Cre or inducible Cre expression can dramatically affect results. In an effort to disambiguate previous data and to provide a resource to aid appropriate experimental design, here we summarize what is known about Cre recombinase activity in the most widely used endothelial-specific Cre and Cre/ERT2 mouse models.
Collapse
Affiliation(s)
- Sophie Payne
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom
| | - Sarah De Val
- From the Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine (S.P., S.D.V.),University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| | - Alice Neal
- Department of Physiology, Anatomy and Genetics (S.D.V., A.N.),University of Oxford, United Kingdom
| |
Collapse
|
8
|
Chen Y, Keskin D, Sugimoto H, Kanasaki K, Phillips PE, Bizarro L, Sharpe A, LeBleu VS, Kalluri R. Podoplanin+ tumor lymphatics are rate limiting for breast cancer metastasis. PLoS Biol 2018; 16:e2005907. [PMID: 30592710 PMCID: PMC6310240 DOI: 10.1371/journal.pbio.2005907] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Metastatic dissemination employs both the blood and lymphatic vascular systems. Solid tumors dynamically remodel and generate both vessel types during cancer progression. Lymphatic vessel invasion and cancer cells in the tumor-draining lymph nodes (LNs) are prognostic markers for breast cancer metastasis and patient outcome, and tumor-induced lymphangiogenesis likely influences metastasis. Deregulated tumor tissue fluid homeostasis and immune trafficking associated with tumor lymphangiogenesis may contribute to metastatic spreading; however, the precise functional characterization of lymphatic endothelial cells (LECs) in tumors is challenged by the lack of specific reagents to decipher their rate-limiting role in metastasis. Therefore, we generated novel transgenic mice (PDPN promoter-driven Cre recombinase transgene [PDPN-Cre] and PDPN promoter-driven thymidine kinase transgene [PDPN-tk]) that allow for the identification and genetically controlled depletion of proliferating podoplanin (Pdpn)-expressing LECs. We demonstrate that suppression of lymphangiogenesis is successfully achieved in lymphangioma lesions induced in the PDPN-tk mice. In multiple metastatic breast cancer mouse models, we identified distinct roles for LECs in primary and metastatic tumors. Our findings support the functional contribution of primary tumor lymphangiogenesis in controlling metastasis to axillary LNs and lung parenchyma. Reduced lymphatic vessel density enhanced primary tumor lymphedema and increased the frequency of intratumoral macrophages but was not associated with a significant impact on primary tumor growth despite a marked reduction in metastatic dissemination. Our findings identify the rate-limiting contribution of the breast tumor lymphatic vessels for lung metastasis.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Doruk Keskin
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keizo Kanasaki
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patricia E. Phillips
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lauren Bizarro
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Arlene Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Valerie S. LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Chen PY, Simons M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr Opin Lipidol 2018; 29:397-403. [PMID: 30080704 PMCID: PMC6290915 DOI: 10.1097/mol.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite much effort, atherosclerosis remains an important public health problem, leading to substantial morbidity and mortality worldwide. The purpose of this review is to provide an understanding of the role of endothelial cell fate change in atherosclerosis process. RECENT FINDINGS Recent studies indicate that a process known as endothelial-to-mesenchymal transition (EndMT) may play an important role in atherosclerosis development. Transforming growth factor beta (TGFβ) has been shown to be an important driver of the endothelial cell phenotype transition. SUMMARY The current review deals with the current state of knowledge regarding EndMT's role in atherosclerosis and its regulation by fibroblast growth factor (FGF)-TGFβ cross-talk. A better understanding of FGF-TGFβ signaling in the regulation of endothelial cell phenotypes is key to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
11
|
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 2018; 145:145/16/dev164038. [PMID: 30166318 PMCID: PMC6124540 DOI: 10.1242/dev.164038] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level. Summary: New markers for specific cell types in the developing human kidney are identified and computational approaches infer developmental trajectories and interrogate the complex network of signaling pathways and cellular transitions.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Kokoruda
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristina Cebrián
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
13
|
Niranjana Murthy AS, Veerappa AM, Ramachandra NB. Whole exome sequencing of discordant diseases in Monozygotic twins with Down syndrome reveals mutations for Congenital Heart Defect and epileptic seizures. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol 2016; 23:260-7. [PMID: 26849476 DOI: 10.1097/moh.0000000000000233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Long recognized for its role in regulation of vascular endothelial growth factor signaling, neuropilin (Nrp)1 has emerged as a modulator of additional signaling pathways critical for vascular development and function. Here we review two novel functions of Nrp1 in blood vessels: regulation of transforming growth factor-β (TGFβ) signaling in endothelial cells and regulation of platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells. RECENT FINDINGS Novel mouse models demonstrate that Nrp1 fulfills vascular functions independent of vascular endothelial growth factor signaling. These include modulation of TGFβ-dependent inhibition of endothelial sprouting during developmental angiogenesis and PDGF signaling in vascular smooth muscle cells during development and disease. SUMMARY Broadening our understanding of how and where Nrp1 functions in the vasculature is critical for the development of targeted therapeutics for cancer and vascular diseases such as atherosclerosis and retinopathies.
Collapse
|
15
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
16
|
Association of TGFBR2 rs6785358 Polymorphism with Increased Risk of Congenital Ventricular Septal Defect in a Chinese Population. Pediatr Cardiol 2015; 36:1476-82. [PMID: 26022443 DOI: 10.1007/s00246-015-1189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/05/2015] [Indexed: 01/29/2023]
Abstract
Transforming growth factor beta receptor 2 (TGFBR2) plays a central role in normal heart development, and we investigated whether TGFBR2 polymorphism confers the risk of congenital ventricular septal defect (CVSD). The case-control study included 115 CVSD children and 188 healthy children in a Chinese population. TGFBR2 rs6785358 polymorphism was genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Enzyme-linked immunoassay (ELISA) was used to detect serum TGFBR2 levels. The genotype and allele frequency of TGFBR2 rs6785358 were significantly higher in the CVSD group than in the controls (all P < 0.05). The G allele carriers were associated with increased CVSD risk compared with the A allele carriers in CVSD group (OR 3.503, 95 % CI 2.670-4.596). Stratified analysis by gender revealed that the TGFBR2 rs6785358 genotype and allele frequency were significantly different between the CVSD case and controls, in both the male subgroup and the female subgroup (all P < 0.001). The G allele carriers were more susceptible to CVSD risk than the A allele carriers in both the male subgroup (OR 9.096, 95 % CI 5.398-15.33) and the female subgroup (OR 3.148, 95 % CI 1.764-5.618). Logistic regression analysis revealed that age, gender and genotype were associated with the risk of CVSD (all P < 0.05). The study findings revealed that TGFBR2 rs6785358 polymorphism contributes to CVSD susceptibility, and the G allele may increase the risk of CVSD.
Collapse
|
17
|
Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS, Fuxe J, Akhurst R, Betsholtz C, Sheppard D, Reichardt LF. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 2014; 141:4489-99. [PMID: 25406396 DOI: 10.1242/dev.107193] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVβ8 activates angiosuppressive TGFβ gradients in the brain, which inhibit endothelial cell sprouting. Loss of αVβ8 in the brain or downstream TGFβ1-TGFBR2-ALK5-Smad3 signaling in endothelial cells increases vascular sprouting, branching and proliferation, leading to vascular dysplasia and hemorrhage. Importantly, BBB function in Itgb8 mutants is intact during early stages of vascular dysgenesis before hemorrhage. By contrast, Pdgfb(ret/ret) mice, which exhibit severe BBB disruption and vascular leak due to pericyte deficiency, have comparatively normal vascular morphogenesis and do not exhibit brain hemorrhage. Our data therefore suggest that abnormal vascular sprouting and patterning, not BBB dysfunction, underlie developmental cerebral hemorrhage.
Collapse
Affiliation(s)
- Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Colin Niaudet
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Mei-Fong Pang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Julie Siegenthaler
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Konstantin Gaengel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Bongnam Jung
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Gina M Ferrero
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Rosemary Akhurst
- Helen Diller Cancer Center and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Louis F Reichardt
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Sox9- and Scleraxis-Cre Lineage Fate Mapping in Aortic and Mitral Valve Structures. J Cardiovasc Dev Dis 2014. [DOI: 10.3390/jcdd1020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Abstract
Angiogenesis is a vital component of bone healing. The formation of the new blood vessels at the fracture site restores the hypoxia and nutrient deprivation found at the early stages after fracture whilst at a later stage facilitates osteogenesis by the activity of the osteoprogenitor cells. Emerging evidence suggests that there are certain molecules and gene therapies that could promote new blood vessel formation and as a consequence enhance the local bone healing response. This article summarizes the current in vivo evidence on therapeutic approaches aiming at the augmentation of the angiogenic signalling during bone repair.
Collapse
|
20
|
Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 2014; 71:3489-506. [PMID: 24760128 DOI: 10.1007/s00018-014-1625-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood-brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases.
Collapse
|
21
|
Auer DR, Sysa-Shah P, Bedja D, Simmers JL, Pak E, Dutra A, Cohn R, Gabrielson KL, Chakravarti A, Kapoor A. Generation of a cre recombinase-conditional Nos1ap over-expression transgenic mouse. Biotechnol Lett 2014; 36:1179-85. [PMID: 24563304 DOI: 10.1007/s10529-014-1473-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1ap (Tg)). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected. For heart-restricted over-expression, Nos1ap (Tg) mice were crossed with Mlc2v-cre and Nos1ap transcript over-expression was observed in left ventricles from Nos1ap (Tg); Mlc2v-cre F1 mice. We believe that with the potential of conditional over-expression, Nos1ap (Tg) mice will be a useful resource in studying NOS1AP function in various tissues under physiological and disease states.
Collapse
Affiliation(s)
- Dallas R Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Garside VC, Chang AC, Karsan A, Hoodless PA. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell Mol Life Sci 2013; 70:2899-917. [PMID: 23161060 PMCID: PMC4996658 DOI: 10.1007/s00018-012-1197-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022]
Abstract
Congenital heart defects affect approximately 1-5 % of human newborns each year, and of these cardiac defects 20-30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.
Collapse
Affiliation(s)
- Victoria C. Garside
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Alex C. Chang
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
23
|
Jakobsson L, van Meeteren LA. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts. Exp Cell Res 2013; 319:1264-70. [PMID: 23454603 DOI: 10.1016/j.yexcr.2013.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse.
Collapse
Affiliation(s)
- Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
24
|
Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH. The vasculome of the mouse brain. PLoS One 2012; 7:e52665. [PMID: 23285140 PMCID: PMC3527566 DOI: 10.1371/journal.pone.0052665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023] Open
Abstract
The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties – actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer’s disease, Parkinson’s disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| | - Yiming Zhou
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angel T. Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - MingMing Ning
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, Peoples Republic of China
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| |
Collapse
|
25
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
26
|
Allinson KR, Lee HS, Fruttiger M, McCarty J, Arthur HM. Endothelial expression of TGFβ type II receptor is required to maintain vascular integrity during postnatal development of the central nervous system. PLoS One 2012; 7:e39336. [PMID: 22745736 PMCID: PMC3383742 DOI: 10.1371/journal.pone.0039336] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022] Open
Abstract
TGFβ signalling in endothelial cells is important for angiogenesis in early embryonic development, but little is known about its role in early postnatal life. To address this we used a tamoxifen inducible Cre-LoxP strategy in neonatal mice to deplete the TypeII TGFβ receptor (Tgfbr2) specifically in endothelial cells. This resulted in multiple micro-haemorrhages, and glomeruloid-like vascular tufts throughout the cerebral cortices and hypothalamus of the brain as well as in retinal tissues. A detailed examination of the retinal defects in these mutants revealed that endothelial adherens and tight junctions were in place, pericytes were recruited and there was no failure of vascular smooth muscle differentiation. However, the deeper retinal plexus failed to form in these mutants and the angiogenic sprouts stalled in their progress towards the inner nuclear layer. Instead the leading endothelial cells formed glomerular tufts with associated smooth muscle cells. This evidence suggests that TGFβ signalling is not required for vessel maturation, but is essential for the organised migration of endothelial cells as they begin to enter the deeper layers of the retina. Thus, TGFβ signalling is essential in vascular endothelial cells for maintaining vascular integrity at the angiogenic front as it migrates into developing neural tissues in early postnatal life.
Collapse
Affiliation(s)
- Kathleen R. Allinson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hye Shin Lee
- University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College, London, United Kingdom
| | - Joseph McCarty
- University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Helen M. Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Kruithof BPT, Duim SN, Moerkamp AT, Goumans MJ. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 2012; 84:89-102. [PMID: 22656450 DOI: 10.1016/j.diff.2012.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 02/01/2023]
Abstract
Cardiac cushion formation is crucial for both valvular and septal development. Disruption in this process can lead to valvular and septal malformations, which constitute the largest part of congenital heart defects. One of the signaling pathways that is important for cushion formation is the TGFβ superfamily. The involvement of TGFβ and BMP signaling pathways in cardiac cushion formation has been intensively studied using chicken in vitro explant assays and in genetically modified mice. In this review, we will summarize and discuss the role of TGFβ and BMP signaling components in cardiac cushion formation.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. J Neurosci 2012; 32:1197-206. [PMID: 22279205 DOI: 10.1523/jneurosci.5648-11.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8's role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.
Collapse
|
29
|
Nguyen HL, Lee YJ, Shin J, Lee E, Park SO, McCarty JH, Oh SP. TGF-β signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. J Transl Med 2011; 91:1554-63. [PMID: 21876535 PMCID: PMC3802535 DOI: 10.1038/labinvest.2011.124] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The various organs of the body harbor blood vessel networks that display unique structural and functional features; however, the mechanisms that control organ-specific vascular development and physiology remain mostly unknown. In the developing mouse brain, αvβ8 integrin-mediated TGF-β activation and signaling is essential for normal blood vessel growth and sprouting. Whether integrins activate TGF-β signaling pathways in vascular endothelial cells (ECs), neural cells, or both, has yet to be determined. Here, we have generated and characterized mice in which TGF-β receptors are specifically deleted in neuroepithelial cells via Nestin-Cre, or in ECs via a novel Cre transgenic strain (Alk1(GFPCre)) in which Cre is expressed under control of the endogenous activin receptor-like kinase 1 (Alk1) promoter. We report that deletion of Tgfbr2 in the neuroepithelium does not impact brain vascular development. In contrast, selective deletion of the Tgfbr2 or Alk5 genes in ECs result in embryonic lethality because of brain-specific vascular pathologies, including blood vessel morphogenesis and intracerebral hemorrhage. These data reveal for the first time that αvβ8 integrin-activated TGF-βs regulate angiogenesis in the developing brain via paracrine signaling to ECs.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Young Jae Lee
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA,Laboratory of Developmental Genetics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Jaekyung Shin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunji Lee
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Ok Park
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph H McCarty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA,Laboratory of Developmental Genetics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea,World Class University Program, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| |
Collapse
|
30
|
Doetschman T, Barnett JV, Runyan RB, Camenisch TD, Heimark RL, Granzier HL, Conway SJ, Azhar M. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell Tissue Res 2011; 347:203-23. [PMID: 21953136 DOI: 10.1007/s00441-011-1241-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/15/2023]
Abstract
The majority of children with congenital heart disease now live into adulthood due to the remarkable surgical and medical advances that have taken place over the past half century. Because of this, adults now represent the largest age group with adult cardiovascular diseases. It includes patients with heart diseases that were not detected or not treated during childhood, those whose defects were surgically corrected but now need revision due to maladaptive responses to the procedure, those with exercise problems and those with age-related degenerative diseases. Because adult cardiovascular diseases in this population are relatively new, they are not well understood. It is therefore necessary to understand the molecular and physiological pathways involved if we are to improve treatments. Since there is a developmental basis to adult cardiovascular disease, transforming growth factor beta (TGFβ) signaling pathways that are essential for proper cardiovascular development may also play critical roles in the homeostatic, repair and stress response processes involved in adult cardiovascular diseases. Consequently, we have chosen to summarize the current information on a subset of TGFβ ligand and receptor genes and related effector genes that, when dysregulated, are known to lead to cardiovascular diseases and adult cardiovascular deficiencies and/or pathologies. A better understanding of the TGFβ signaling network in cardiovascular disease and repair will impact genetic and physiologic investigations of cardiovascular diseases in elderly patients and lead to an improvement in clinical interventions.
Collapse
|
31
|
Mobley AK, McCarty JH. β8 integrin is essential for neuroblast migration in the rostral migratory stream. Glia 2011; 59:1579-87. [DOI: 10.1002/glia.21199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/19/2011] [Indexed: 11/08/2022]
|
32
|
Arthur HM, Bamforth SD. TGFβ signaling and congenital heart disease: Insights from mouse studies. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:423-34. [PMID: 21538815 DOI: 10.1002/bdra.20794] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β (TGFβ) regulates one of the major signaling pathways that control tissue morphogenesis. In vitro experiments using heart explants indicated the importance of this signaling pathway for the generation of cushion mesenchymal cells, which ultimately contribute to the valves and septa of the mature heart. Recent advances in mouse genetics have enabled in vivo investigation into the roles of individual ligands, receptors, and coreceptors of this pathway, including investigation of the tissue specificity of these roles in heart development. This work has revealed that (1) cushion mesenchyme can form in the absence of TGFβ signaling, although mesenchymal cell numbers may be misregulated; (2) TGFβ signaling is essential for correct remodeling of the cushions, particularly those of the outflow tract; (3) TGFβ signaling also has a role in ensuring accurate remodeling of the pharyngeal arch arteries to form the mature aortic arch; and (4) mesenchymal cells derived from the epicardium require TGFβ signaling to promote their differentiation to vascular smooth muscle cells to support the coronary arteries. In addition, a mouse genetics approach has also been used to investigate the disease pathogenesis of Loeys-Dietz syndrome, a familial autosomal dominant human disorder characterized by a dilated aortic root, and associated with mutations in the two TGFβ signaling receptor genes, TGFBR1 and TGFBR2. Further important insights are likely as this exciting work progresses.
Collapse
Affiliation(s)
- Helen M Arthur
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
33
|
Campbell IM, Kolodziejska KE, Quach MM, Wolf VL, Cheung SW, Lalani SR, Ramocki MB, Stankiewicz P. TGFBR2 deletion in a 20-month-old female with developmental delay and microcephaly. Am J Med Genet A 2011; 155A:1442-7. [PMID: 21567932 DOI: 10.1002/ajmg.a.34015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/07/2011] [Indexed: 11/07/2022]
Abstract
To date, over 70 mutations in the TGFBR2 gene have been reported in patients with Loeys-Dietz syndrome (LDS), Marfan syndrome type 2 (MFS2), or other hereditary thoracic aortic aneurysms and dissections. Whereas almost all of mutations analyzed thus far are predicted to disrupt the constitutively active C-terminal serine/threonine kinase domain of TGFBR2, mounting evidence suggests that the molecular mechanism underlying these diseases is more complex than simple haploinsufficiency. Using exon-targeted oligonucleotide array comparative genomic hybridization, we identified an ∼896 kb deletion of TGFBR2 in a 20-month-old female with microcephaly and global developmental delay, but no stigmata of LDS. FISH analysis showed no evidence of this deletion in the parental peripheral blood samples; however, somatic mosaicism was detected using PCR in the paternal DNA from peripheral blood lymphocytes and lymphoblasts. Our data suggest that TGFBR2 haploinsufficiency may cause a phenotype, which is distinct from LDS. Moreover, we propose that somatic mosaicism below the detection threshold of FISH analysis in asymptomatic parents of children with genomic disorders may be more common than previously recognized.
Collapse
Affiliation(s)
- Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|