1
|
Selten M, Bernard C, Mukherjee D, Hamid F, Hanusz-Godoy A, Oozeer F, Zimmer C, Marín O. Regulation of PV interneuron plasticity by neuropeptide-encoding genes. Nature 2025:10.1038/s41586-025-08933-z. [PMID: 40307547 DOI: 10.1038/s41586-025-08933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function1-3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells4-8, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV+ interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV+ interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Diptendu Mukherjee
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Christoph Zimmer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
2
|
Yang J, Dong Y, Liu J, Peng Y, Wang D, Li L, Hu X, Li J, Wang L, Chu J, Ma J, Shi H, Shi SH. Primary ciliary protein kinase A activity in the prefrontal cortex modulates stress in mice. Neuron 2025; 113:1276-1289.e5. [PMID: 40056898 DOI: 10.1016/j.neuron.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
Primary cilia are cellular antennae emanating from vertebrate cell surfaces to sense and transduce extracellular signals intracellularly to regulate cell behavior and function. However, their signal sensing and physiological functions in neocortical neurons remain largely unclear. Here, we show that, in response to various animal stressors, primary cilia in the mouse prefrontal cortex (PFC) exhibit consistent axonemal elongation. Selective removal of excitatory neuron primary cilia in the prefrontal but not sensory cortex leads to a reduction in animal stress sensing and response. Treatment with corticosterone, the major stress hormone, elicits an increase in primary ciliary cyclic adenosine 3',5'-monphosphate (cAMP) level in PFC excitatory neurons and a decrease in neuronal excitability dependent on primary cilia. Suppression of primary ciliary protein kinase A (PKA) activity in PFC excitatory neurons reduces animal stress. These results suggest that excitatory neurons in the PFC are involved in sensing and regulating animal stress via primary ciliary cAMP/PKA signaling.
Collapse
Affiliation(s)
- Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yingjie Dong
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jie Liu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yuwei Peng
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Ding Wang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Lei Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Xiaoqing Hu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jinfeng Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Liang Wang
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jun Chu
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Hang Shi
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China; Chinese Institute for Brain Research, Beijing, P.R. China.
| |
Collapse
|
3
|
Armbrust F, Bickenbach K, Koudelka T, Joos C, Keller M, Tholey A, Pietrzik CU, Becker-Pauly C. HYTANE-Identified Latrophilin-3 Cleavage by Meprin β Leads to Loss of the Interaction Domains. J Proteome Res 2025; 24:1832-1844. [PMID: 40135725 PMCID: PMC11976865 DOI: 10.1021/acs.jproteome.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
The metalloprotease meprin β is upregulated in neurons and astrocytes of Alzheimer's disease patients' brains. While the role of meprin β as the β-secretase of amyloid precursor protein (APP) has been characterized, its broader substrate profile within the brain remains largely unexplored. Hence, to identify additional substrates, we conducted N-terminomics of brain lysates from mice overexpressing meprin β in astrocytes employing the Hydrophobic Tagging-Assisted N-terminal Enrichment (HYTANE) strategy. We observed 3906 (82.2%) N-terminal peptides and identified seven new substrates that match meprin β in terms of localization and cleavage specificity. Of note, the meprin β overexpressing mice show mild cognitive impairments caused by amyloidogenic APP processing alongside hyperactivity and altered exploratory behavior seemingly independent of APP cleavage. Hence, latrophilin-3 was of particular interest, as latrophilin-3 defects are associated with hyperactivity in mice and human. In brain lysates from mice overexpressing meprin β in astrocytes as well as in cellulo, we validated the cleavage of latrophilin-3, resulting in the release of two N-terminal domains. These domains promote interactions with neuronal proteins such as fibronectin leucine-rich repeat transmembrane proteins, promoting adequate synapse formation. Thus, meprin β might affect synaptic integrity by cleaving interaction domains of latrophilin-3, potentially exacerbating the observed hyperactivity phenotype.
Collapse
Affiliation(s)
- Fred Armbrust
- Biochemical
Institute, Unit for Degradomics of the Protease Web, University of Kiel, 24118 Kiel, Germany
| | - Kira Bickenbach
- Biochemical
Institute, Unit for Degradomics of the Protease Web, University of Kiel, 24118 Kiel, Germany
| | - Tomas Koudelka
- Systematic
Proteomics & Bioanalytics, Institute for Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Corentin Joos
- Biochemical
Institute, Unit for Degradomics of the Protease Web, University of Kiel, 24118 Kiel, Germany
| | - Maximilian Keller
- Institute
for Pathobiochemistry, University Medical
Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Andreas Tholey
- Systematic
Proteomics & Bioanalytics, Institute for Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Claus U. Pietrzik
- Institute
for Pathobiochemistry, University Medical
Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Christoph Becker-Pauly
- Biochemical
Institute, Unit for Degradomics of the Protease Web, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
4
|
Huang JY, Hess M, Bajpai A, Li X, Hobson LN, Xu AJ, Barton SJ, Lu HC. From initial formation to developmental refinement: GABAergic inputs shape neuronal subnetworks in the primary somatosensory cortex. iScience 2025; 28:112104. [PMID: 40129704 PMCID: PMC11930745 DOI: 10.1016/j.isci.2025.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neuronal subnetworks, also known as ensembles, are functional units formed by interconnected neurons for information processing and encoding in the adult brain. Our study investigates the establishment of neuronal subnetworks in the mouse primary somatosensory (S1) cortex from postnatal days (P)11 to P21 using in vivo two-photon calcium imaging. We found that at P11, neuronal activity was highly synchronized but became sparser by P21. Clustering analyses revealed that while the number of subnetworks remained constant, their activity patterns became more distinct, with increased coherence, independent of cortical layer or sex. Furthermore, the coherence of neuronal activity within individual subnetworks significantly increased when synchrony frequencies were reduced by augmenting gamma-aminobutyric acid (GABA)ergic activity at P15/16, a period when the neuronal subnetworks were still maturing. Together, these findings indicate the early formation of subnetworks and underscore the pivotal roles of GABAergic inputs in modulating S1 neuronal subnetworks.
Collapse
Affiliation(s)
- Jui-Yen Huang
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Michael Hess
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Abhinav Bajpai
- Research Technologies, Indiana University, Bloomington, IN 47408, USA
| | - Xuan Li
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Liam N. Hobson
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ashley J. Xu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Scott J. Barton
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
van Doeselaar L, Abromeit A, Stark T, Menegaz D, Ballmann M, Mitra S, Yang H, Rehawi G, Huettl RE, Bordes J, Narayan S, Harbich D, Deussing JM, Rammes G, Czisch M, Knauer-Arloth J, Eder M, Lopez JP, Schmidt MV. FKBP51 in glutamatergic forebrain neurons promotes early life stress inoculation in female mice. Nat Commun 2025; 16:2529. [PMID: 40087272 PMCID: PMC11912546 DOI: 10.1038/s41467-025-57952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Early life stress (ELS) can increase vulnerability to psychiatric disorders, but also trigger resilience. FKBP51 has been associated with an increased risk for developing psychiatric disorders, specifically in interaction with ELS exposure. Here, the contribution of FKBP51 in glutamatergic forebrain neurons to the long-term consequences of ELS was investigated in both sexes. In female wild-type Fkbp5lox/lox mice, ELS exposure led to an anxiolytic phenotype and improved memory performance in a stressful context, however this ELS effect was absent in Fkbp5Nex mice. These interactive FKBP51 x ELS effects in female mice were also reflected in reduced brain region volumes, and on structural and electrophysiological properties of CA1 pyramidal neurons of the dorsal hippocampus. In contrast, the behavioral, structural and functional effects in male ELS mice were less pronounced and independent of FKBP51. RNA sequencing of the hippocampus revealed the transcription factor 4 (TCF4) as a potential regulator of the female interactive effects. Cre-dependent viral overexpression of TCF4 in female Nex-Cre mice led to similar beneficial effects on behavior as the ELS exposure. This study demonstrates a sex-specific role for FKBP51 in mediating the adaptive effects of ELS on emotional regulation, cognition, and neuronal function, implicating TCF4 as a downstream effector.
Collapse
Affiliation(s)
- Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Alexandra Abromeit
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ghalia Rehawi
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rosa-Eva Huettl
- Core Unit Virus Production, Max Planck Institute of Psychiatry, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Daniela Harbich
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Janine Knauer-Arloth
- Department Genes & Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Matthias Eder
- Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
6
|
Bose M, Talwar I, Suresh V, Mishra U, Biswas S, Yadav A, Suryavanshi ST, Hippenmeyer S, Tole S. Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. eLife 2025; 13:RP101851. [PMID: 40085500 PMCID: PMC11908781 DOI: 10.7554/elife.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishita Talwar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Varun Suresh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Urvi Mishra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shiona Biswas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Anuradha Yadav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shital T Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
7
|
Yano S, Asami N, Kishi Y, Takeda I, Kubotani H, Hattori Y, Kitazawa A, Hayashi K, Kubo KI, Saeki M, Maeda C, Hiraki C, Teruya RI, Taketomi T, Akiyama K, Okajima-Takahashi T, Sato B, Wake H, Gotoh Y, Nakajima K, Ichinohe T, Nagata T, Chiba T, Tsuruta F. Propagation of neuronal micronuclei regulates microglial characteristics. Nat Neurosci 2025; 28:487-498. [PMID: 39825140 DOI: 10.1038/s41593-024-01863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period. Neurons passing through a dense region of the developing neocortex give rise to MN and release them into the extracellular space, before being incorporated into microglia and inducing morphological changes. Two-photon imaging analyses have revealed that microglia incorporating MN tend to slowly retract their processes. Loss of the cGAS gene alleviates effects on micronucleus-dependent morphological changes. Neuronal MN-harboring microglia also exhibit unique transcriptome signatures. These results demonstrate that neuronal MN serve as niche signals that transform microglia, and provide a potential mechanism for regulation of microglial characteristics in the early postnatal neocortex.
Collapse
Affiliation(s)
- Sarasa Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Chugai Life Science Park Yokohama, Chugai Pharmaceutical Co. Ltd., Yokohama, Japan
| | - Natsu Asami
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
| | - Hikari Kubotani
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Saeki
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Maeda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Hiraki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Rin-Ichiro Teruya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takumi Taketomi
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kaito Akiyama
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Ban Sato
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies SOKENDAI, Hayama, Japan
- Department of Systems Science, Center of Optical Scattering Image Science, Kobe University, Kobe, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo, Japan
| | - Takeshi Nagata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Information and Communication Research Division, Mizuho Research and Technologies Ltd., Tokyo, Japan
- Faculty of Mathematical Informatics, Meiji Gakuin University, Yokohama, Japan
| | - Tomoki Chiba
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fuminori Tsuruta
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
- Center for Quantum and Information Life Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
8
|
Chen H, Ferguson CJ, Mitchell DC, Risch I, Titus A, Paulo JA, Hwang A, Beck LK, Lin TH, Gu W, Song SK, Yuede CM, Yano H, Griffith OL, Griffith M, Gygi SP, Bonni A, Kim AH. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway. Cell Rep 2025; 44:115231. [PMID: 39862434 PMCID: PMC11922642 DOI: 10.1016/j.celrep.2025.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss. Strikingly, USP7 deletion perturbs the synaptic proteome and dendritic spinogenesis independent of p53. Integrated proteomics and biochemical analyses identify the RNA splicing factor Ppil4 as a key substrate of USP7. Ppil4 knockdown phenocopies the effect of USP7 loss on dendritic spines. Accordingly, USP7 loss disrupts splicing of synaptic genes. These findings reveal that USP7-Ppil4 signaling regulates neuronal connectivity in the developing brain with implications for our understanding of HAFOUS pathogenesis and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cole J Ferguson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Amanda Titus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Hwang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loren K Beck
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Obi L Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Roche Pharma Research and Early Development, Neuroscience and Rare Disease Discovery and Translational Area, Roche Innovation Center, 4070 Basel, Switzerland.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Chen KH, Yang J, Liu B, Jiang C, Koylass N, Zhang Z, Sun S, Huganir R, Qiu Z. Loss of the proton-activated chloride channel in neurons impairs AMPA receptor endocytosis and LTD via endosomal hyper-acidification. Cell Rep 2025; 44:115302. [PMID: 39946237 PMCID: PMC11938102 DOI: 10.1016/j.celrep.2025.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity, thought to be the molecular basis of learning and memory, dependent on dynamic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking. Alteration of endosomal pH negatively affects synaptic transmission and neural development, but it is unclear how pH is involved in AMPAR trafficking. We show that the proton-activated chloride (PAC) channel localizes to early and recycling endosomes in neurons and prevents endosome hyper-acidification. Loss of PAC reduces AMPAR endocytosis during chemical LTD in primary neurons, while basal trafficking and LTP are unaffected. Pyramidal neuron-specific PAC knockout mice have impaired hippocampal LTD, but not LTP, and perform poorly in the Morris water maze reversal test, exhibiting impaired behavioral adaptation. We conclude that proper maintenance of endosomal pH by PAC in neurons is important during LTD to regulate AMPAR trafficking in a manner critical for animal physiology and behavior.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chaohua Jiang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Koylass
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Bartholome O, Neirinckx V, De La Brassinne O, Desloovere J, Van Den Ackerveken P, Raedt R, Rogister B. Synaptic Vesicle Glycoprotein 2A Knockout in Parvalbumin and Somatostatin Interneurons Drives Seizures in the Postnatal Mouse Brain. J Neurosci 2025; 45:e1169242024. [PMID: 39753304 PMCID: PMC11841765 DOI: 10.1523/jneurosci.1169-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congenital seizures. How SV2A action impacts the epileptic phenotype remains unclear, especially among the diverse neuronal populations that regulate network excitability. This study explored how brain structure and function are affected by SV2A conditional knock-out (SV2A-cKO) in specific neural cell subtypes. We show that SV2A-cKO in all neurons of the postnatal brain triggers lethal seizures, suggesting that the seizures observed in earlier knock-out models were not due to aberrant brain development. Similar lethal seizures are detected in mice in which the loss of SV2A is limited to GABAergic neurons, whereas loss in excitatory neurons produces no noticeable phenotype. No apparent gender difference was ever observed. Further investigation revealed that SV2A-cKO in different GABAergic interneuron populations induces seizure, with variable timescales and severity. Most notably SV2A-cKO in parvalbumin interneurons (PV+) leads to lethal seizures in young animals, while SV2A-cKO in somatostatin (SST) inhibitory neurons results in seizures that were scarcely observed only in adult mice. These results support the crucial role SV2A plays in PV and SST interneurons and suggest that the action of levetiracetam may be due largely to effects on a subset of GABAergic interneurons.
Collapse
Affiliation(s)
- Odile Bartholome
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Virginie Neirinckx
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Orianne De La Brassinne
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | | | | | - Bernard Rogister
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liège, Liège 4000 Belgium
| |
Collapse
|
11
|
Ohte N, Kimura T, Sekine R, Yoshizawa S, Furusho Y, Sato D, Nishiyama C, Hanashima C. Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex. Cereb Cortex 2025; 35:bhae491. [PMID: 39756431 PMCID: PMC11795310 DOI: 10.1093/cercor/bhae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The cerebral cortex consists of hierarchically organized areas interconnected by reciprocal axonal projections. However, the coordination of neurogenesis to optimize neuronal production and wiring between distinct cortical areas remains largely unexplored. The somatosensory cortex plays a crucial role in processing tactile information, with inputs from peripheral sensory receptors relayed through the thalamus to the primary and secondary somatosensory areas. To investigate the dynamics of neurogenesis in cortical circuit formation, we employed temporal genetic fate mapping of glutamatergic neuron cohorts across the somatosensory cortices. Our analysis revealed that neuronal production in the secondary somatosensory cortex (S2) precedes that of the primary somatosensory cortex (S1) from the deep-layer neuron production period and terminates earlier. We further revealed a progressive decline in upper-layer neuron output in S2, attributed to the attenuation of the apical ventricular surface, resulting in a reduced number of upper-layer neurons within S2. These findings support the existence of a protomap mechanism governing the area-specific assembly of primary and secondary areas in the developing neocortex.
Collapse
Affiliation(s)
- Naoto Ohte
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Takayuki Kimura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Rintaro Sekine
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Shoko Yoshizawa
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Yuta Furusho
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Daisuke Sato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Chihiro Nishiyama
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| |
Collapse
|
12
|
Serdar LD, Egol JR, Lackford B, Bennett BD, Hu G, Silver DL. mRNA stability fine-tunes gene expression in the developing cortex to control neurogenesis. PLoS Biol 2025; 23:e3003031. [PMID: 39913536 PMCID: PMC11838918 DOI: 10.1371/journal.pbio.3003031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/19/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
RNA abundance is controlled by rates of synthesis and degradation. Although mis-regulation of RNA turnover is linked to neurodevelopmental disorders, how it contributes to cortical development is largely unknown. Here, we discover the landscape of RNA stability regulation in the cerebral cortex and demonstrate that intact RNA decay machinery is essential for corticogenesis in vivo. We use SLAM-seq to measure RNA half-lives transcriptome-wide across multiple stages of cortical development. Leveraging these data, we discover cis-acting features associated with RNA stability and probe the relationship between RNA half-life and developmental expression changes. Notably, RNAs that are up-regulated across development tend to be more stable, while down-regulated RNAs are less stable. Using compound mouse genetics, we discover CNOT3, a core component of the CCR4-NOT deadenylase complex linked to neurodevelopmental disease, is essential for cortical development. Conditional knockout of Cnot3 in neural progenitors and their progeny in the developing mouse cortex leads to severe microcephaly due to altered cell fate and p53-dependent apoptosis. Finally, we define the molecular targets of CNOT3, revealing it controls expression of poorly expressed, non-optimal mRNAs in the cortex, including cell cycle-related transcripts. Collectively, our findings demonstrate that fine-tuned control of RNA turnover is crucial for brain development.
Collapse
Affiliation(s)
- Lucas D. Serdar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jacob R. Egol
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brad Lackford
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Guang Hu
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Sudarsanam S, Guzman-Clavel L, Dar N, Ziak J, Shahid N, Jin XO, Kolodkin AL. Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634300. [PMID: 39896513 PMCID: PMC11785193 DOI: 10.1101/2025.01.22.634300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical connectivity is contingent on ordered emergence of neuron subtypes followed by the formation of subtype-specific axon projections. Intracortical circuits, including long-range callosal projections, are crucial for information processing, but mechanisms of intracortical axon targeting are still unclear. We find that the transcription factor Myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) layer 4 and 5 pyramidal neurons during embryogenesis. During early postnatal development, Mef2c expression shifts to layer 2/3 callosal projection neurons (L2/3 CPNs), and we find a novel function for Mef2c in targeting homotopic contralateral cortical regions by S1-L2/3 CPNs. We demonstrate, using functional manipulation of EphA-EphrinA signaling in Mef2c-mutant CPNs, that Mef2c downregulates EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5-repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis, and axon targeting in postnatal callosal neurons.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Luis Guzman-Clavel
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Nyle Dar
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naseer Shahid
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu O. Jin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Senior author
- Lead contact
| |
Collapse
|
14
|
Bayam E, Tilly P, Collins SC, Rivera Alvarez J, Kannan M, Tonneau L, Brivio E, Rinaldi B, Lecat R, Schwaller N, Cotellessa L, Maddirevula S, Monteiro F, Guardia CM, Kitajima JP, Kok F, Kato M, Hamed AAA, Salih MA, Al Tala S, Hashem MO, Tada H, Saitsu H, Stabile M, Giacobini P, Friant S, Yüksel Z, Nakashima M, Alkuraya FS, Yalcin B, Godin JD. Bi-allelic variants in WDR47 cause a complex neurodevelopmental syndrome. EMBO Mol Med 2025; 17:129-168. [PMID: 39609633 PMCID: PMC11730659 DOI: 10.1038/s44321-024-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Brain development requires the coordinated growth of structures and cues that are essential for forming neural circuits and cognitive functions. The corpus callosum, the largest interhemispheric connection, is formed by the axons of callosal projection neurons through a series of tightly regulated cellular events, including neuronal specification, migration, axon extension and branching. Defects in any of those steps can lead to a range of disorders known as syndromic corpus callosum dysgenesis (CCD). We report five unrelated families carrying bi-allelic variants in WDR47 presenting with CCD together with other neuroanatomical phenotypes such as microcephaly and enlarged ventricles. Using in vitro and in vivo mouse models and complementation assays, we show that WDR47 is required for survival of callosal neurons by contributing to the maintenance of mitochondrial and microtubule homeostasis. We further propose that severity of the CCD phenotype is determined by the degree of the loss of function caused by the human variants. Taken together, we identify WDR47 as a causative gene of a new neurodevelopmental syndrome characterized by corpus callosum abnormalities and other neuroanatomical malformations.
Collapse
Affiliation(s)
- Efil Bayam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Stephan C Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - José Rivera Alvarez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Meghna Kannan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Lucile Tonneau
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - Elena Brivio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Bruno Rinaldi
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- INSERM, U1112, CRBS (Centre de recherche en biomédecine de Strasbourg), Université de Strasbourg, Strasbourg, F-67000, France
| | - Romain Lecat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Noémie Schwaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Ludovica Cotellessa
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | | | - Fernando Kok
- Mendelics Análise Genomica SA, CEP 02511-000, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, 01246-903, Sao Paulo, Brazil
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ahlam A A Hamed
- Department of Pediatric and Child Health, Faculty of Medicine University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics, Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroko Tada
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-0057, Japan
- Division of Pediatrics, Chibaken Saiseikai Narashino Hospital, Chiba, 275-8580, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Mariano Stabile
- Center of Genetics and Prenatal Diagnosis "Zygote", 84131, Salerno, Italy
| | - Paolo Giacobini
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- PCBIS-IMPReSs, Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Zafer Yüksel
- Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
- INSERM UMR1231, Université de Bourgogne, 21000, Dijon, France.
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| |
Collapse
|
15
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
16
|
Kwon HJ, Santhosh D, Huang Z. A novel monomeric amyloid β-activated signaling pathway regulates brain development via inhibition of microglia. eLife 2024; 13:RP100446. [PMID: 39635981 PMCID: PMC11620749 DOI: 10.7554/elife.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Amyloid β (Aβ) forms aggregates in the Alzheimer's disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer's disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.
Collapse
Affiliation(s)
- Hyo Jun Kwon
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Devi Santhosh
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
17
|
Wang Y, Cao S, Tone D, Fujishima H, Yamada RG, Ohno RI, Shi S, Matsuzawa K, Yada S, Kaneko M, Sakamoto H, Onishi T, Ukai-Tadenuma M, Ukai H, Hanashima C, Hirose K, Kiyonari H, Sumiyama K, Ode KL, Ueda HR. Postsynaptic competition between calcineurin and PKA regulates mammalian sleep-wake cycles. Nature 2024; 636:412-421. [PMID: 39506111 DOI: 10.1038/s41586-024-08132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
The phosphorylation of synaptic proteins is a significant biochemical reaction that controls the sleep-wake cycle in mammals1-3. Protein phosphorylation in vivo is reversibly regulated by kinases and phosphatases. In this study, we investigate a pair of kinases and phosphatases that reciprocally regulate sleep duration. First, we perform a comprehensive screen of protein kinase A (PKA) and phosphoprotein phosphatase (PPP) family genes by generating 40 gene knockout mouse lines using prenatal and postnatal CRISPR targeting. We identify a regulatory subunit of PKA (Prkar2b), a regulatory subunit of protein phosphatase 1 (PP1; Pppr1r9b) and catalytic and regulatory subunits of calcineurin (also known as PP2B) (Ppp3ca and Ppp3r1) as sleep control genes. Using adeno-associated virus (AAV)-mediated stimulation of PKA and PP1-calcineurin activities, we show that PKA is a wake-promoting kinase, whereas PP1 and calcineurin function as sleep-promoting phosphatases. The importance of these phosphatases in sleep regulation is supported by the marked changes in sleep duration associated with their increased and decreased activities, ranging from approximately 17.3 h per day (PP1 expression) to 4.3 h per day (postnatal CRISPR targeting of calcineurin). Localization signals to the excitatory post-synapse are necessary for these phosphatases to exert their sleep-promoting effects. Furthermore, the wake-promoting effect of PKA localized to the excitatory post-synapse negated the sleep-promoting effect of PP1-calcineurin. These findings indicate that PKA and PP1-calcineurin have competing functions in sleep regulation at excitatory post-synapses.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Siyu Cao
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Tone
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Rei-Ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kyoko Matsuzawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan.
| |
Collapse
|
18
|
Maroni MJ, Barton M, Lynch K, Deshwar AR, Campbell P, Millard J, Lee R, Cohen A, Paranjapye A, Faundes V, Repetto GM, McKenna C, Shillington AL, Phornphutkul C, Mancini GMS, Schot R, Barakat TS, Richmond CM, Lauzon J, Elsayed Ibrahim AI, Benito DND, Ortez C, Estevez-Arias B, Lecoquierre F, Cassinari K, Guerrot AM, Levy J, Latypova X, Verloes A, Innes AM, Yang XR, Banka S, Vill K, Jacob M, Kruer M, Skidmore P, Galaz-Montoya CI, Bakhtiari S, Mester JL, Granato M, Armache KJ, Costain G, Korb E. Loss of DOT1L function disrupts neuronal transcription, animal behavior, and leads to a novel neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.31.24314716. [PMID: 39574879 PMCID: PMC11581099 DOI: 10.1101/2024.10.31.24314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Individuals with monoallelic pathogenic variants in the histone lysine methyltransferase DOT1L display global developmental delay and varying congenital anomalies. However, the impact of monoallelic loss of DOT1L remains unclear. Here, we present a largely female cohort of 11 individuals with DOT1L variants with developmental delays and dysmorphic facial features. We found that DOT1L variants include missense variants clustered in the catalytic domain, frameshift, and stop-gain variants. We demonstrate that specific variants cause loss of methyltransferase activity and therefore sought to define the effects of decreased DOT1L function. Using RNA-sequencing of cultured neurons and single nucleus RNA-sequencing of mouse cortical tissue, we found that partial Dot1l depletion causes sex-specific transcriptional responses and disrupts transcription of synaptic genes. Further, Dot1l loss alters neuron branching and expression of synaptic proteins. Lastly using zebrafish and mouse models, we found behavioral disruptions that include sex-specific deficits in mice. Overall, we define how DOT1L loss leads to neurological dysfunction by demonstrating that partial Dot1l loss impacts transcription, neuron morphology, and behavior across multiple models and systems.
Collapse
Affiliation(s)
- Marissa J. Maroni
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Melissa Barton
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Katherine Lynch
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Ashish R. Deshwar
- Program in Developmental and Stem Cell Biology, Sickkids Research Institute, Toronto, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Philip Campbell
- Department of Psychiatry, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Josephine Millard
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Rachel Lee
- Skirball Institute of Biomolecular Medicine, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Annastelle Cohen
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Alekh Paranjapye
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Gabriela M. Repetto
- Rare Diseases Program, Center for Genetics and Genomics, Institute for Science and Innovation in Medicine, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo
| | - Caoimhe McKenna
- Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Amelle L. Shillington
- Cincinnati Children’s Hospital Medical Center, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chanika Phornphutkul
- Rhode Island Hospital, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Grazia MS. Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Whole Genome Sequencing Implementation and Research Task Force, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Christopher M. Richmond
- Royal Brisbane & Women’s Hospital, Herston, Queensland, Australia
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Julie Lauzon
- Alberta Children’s Hospital, Calgary AB Canada Department of Medical Genetics, Cummings School of Medicine, University of Calgary, Alberta Canada
| | | | | | - Carlos Ortez
- Neuromuscular Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Berta Estevez-Arias
- Neuromuscular Unit, Hospital Sant Joan de Deu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Kévin Cassinari
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Anne-Marie Guerrot
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France
| | - Jonathan Levy
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Xenia Latypova
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - A. Micheil Innes
- University of Calgary Department of Medical Genetics; Alberta Children’s Hospital Research Institute
| | - Xiao-Ru Yang
- University of Calgary Department of Medical Genetics; Alberta Children’s Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Maureen Jacob
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Michael Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | - Peter Skidmore
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Carolina I. Galaz-Montoya
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
- Genetics, GIDP PhD Program, Tucson, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular and Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ 85004, USA
| | | | - Michael Granato
- Department of Cell and Developmental Biology, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Erica Korb
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
20
|
Loganathan S, Menegaz D, Delling JP, Eder M, Deussing JM. Cacna1c deficiency in forebrain glutamatergic neurons alters behavior and hippocampal plasticity in female mice. Transl Psychiatry 2024; 14:421. [PMID: 39370418 PMCID: PMC11456591 DOI: 10.1038/s41398-024-03140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Cav1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Cav1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Cav1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Cav1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Cav1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Cav1.2-Nex mice.
Collapse
Affiliation(s)
- Srivaishnavi Loganathan
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan Philipp Delling
- Research Group Neural Dynamics and Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
21
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Barzan R, Bozkurt B, Nejad MM, Süß ST, Surdin T, Böke H, Spoida K, Azimi Z, Grömmke M, Eickelbeck D, Mark MD, Rohr L, Siveke I, Cheng S, Herlitze S, Jancke D. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT 2A). Nat Commun 2024; 15:8078. [PMID: 39277631 PMCID: PMC11401874 DOI: 10.1038/s41467-024-51861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
Response gain is a crucial means by which modulatory systems control the impact of sensory input. In the visual cortex, the serotonergic 5-HT2A receptor is key in such modulation. However, due to its expression across different cell types and lack of methods that allow for specific activation, the underlying network mechanisms remain unsolved. Here we optogenetically activate endogenous G protein-coupled receptor (GPCR) signaling of a single receptor subtype in distinct mouse neocortical subpopulations in vivo. We show that photoactivation of the 5-HT2A receptor pathway in pyramidal neurons enhances firing of both excitatory neurons and interneurons, whereas 5-HT2A photoactivation in parvalbumin interneurons produces bidirectional effects. Combined photoactivation in both cell types and cortical network modelling demonstrates a conductance-driven polysynaptic mechanism that controls the gain of visual input without affecting ongoing baseline levels. Our study opens avenues to explore GPCRs neuromodulation and its impact on sensory-driven activity and ongoing neuronal dynamics.
Collapse
Affiliation(s)
- Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- MEDICE Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Beyza Bozkurt
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohammadreza M Nejad
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Sandra T Süß
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Spoida
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
23
|
Jeon S, Park J, Likhite S, Moon JH, Shin D, Li L, Meyer KC, Lee JW, Lee SK. The postnatal injection of AAV9-FOXG1 rescues corpus callosum agenesis and other brain deficits in the mouse model of FOXG1 syndrome. Mol Ther Methods Clin Dev 2024; 32:101275. [PMID: 39022742 PMCID: PMC11253142 DOI: 10.1016/j.omtm.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Heterozygous mutations in the FOXG1 gene manifest as FOXG1 syndrome, a severe neurodevelopmental disorder characterized by structural brain anomalies, including agenesis of the corpus callosum, hippocampal reduction, and myelination delays. Despite the well-defined genetic basis of FOXG1 syndrome, therapeutic interventions targeting the underlying cause of the disorder are nonexistent. In this study, we explore the therapeutic potential of adeno-associated virus 9 (AAV9)-mediated delivery of the FOXG1 gene. Remarkably, intracerebroventricular injection of AAV9-FOXG1 to Foxg1 heterozygous mouse model at the postnatal stage rescues a wide range of brain pathologies. This includes the amelioration of corpus callosum deficiencies, the restoration of dentate gyrus morphology in the hippocampus, the normalization of oligodendrocyte lineage cell numbers, and the rectification of myelination anomalies. Our findings highlight the efficacy of AAV9-based gene therapy as a viable treatment strategy for FOXG1 syndrome and potentially other neurodevelopmental disorders with similar brain malformations, asserting its therapeutic relevance in postnatal stages.
Collapse
Affiliation(s)
- Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaein Park
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Ji Hwan Moon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Dongjun Shin
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Kathrin C. Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Jae W. Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
24
|
Kim H, Melliti N, Breithausen E, Michel K, Colomer SF, Poguzhelskaya E, Nemcova P, Ewell L, Blaess S, Becker A, Pitsch J, Dietrich D, Schoch S. Paroxysmal dystonia results from the loss of RIM4 in Purkinje cells. Brain 2024; 147:3171-3188. [PMID: 38478593 DOI: 10.1093/brain/awae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 09/04/2024] Open
Abstract
Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell type-specific role in cerebellar Purkinje cells that is essential for normal motor function. In the absence of RIM4, Purkinje cell intrinsic firing is reduced and caffeine-sensitive, and dendritic integration of climbing fibre input is disturbed. Mice lacking RIM4, but not mice lacking RIM1/2, selectively in Purkinje cells exhibit a severe, hours-long paroxysmal dystonia. These episodes can also be induced by caffeine, ethanol or stress and closely resemble the deficits seen with mutations of the PNKD (paroxysmal non-kinesigenic dystonia) gene. Our data reveal essential postsynaptic functions of RIM proteins and show non-overlapping specialized functions of a small isoform despite high homology to a single domain in the full-length proteins.
Collapse
Affiliation(s)
- Hyuntae Kim
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Nesrine Melliti
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Eva Breithausen
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Michel
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sara Ferrando Colomer
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Ekaterina Poguzhelskaya
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Paulina Nemcova
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Laura Ewell
- School of Medicine, UC Irvine, 92697 Irvine, USA
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Albert Becker
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
25
|
Chen J, Yang J, Chu J, Chen KH, Alt J, Rais R, Qiu Z. The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401085. [PMID: 39056405 PMCID: PMC11423184 DOI: 10.1002/advs.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
26
|
Sasmita AO, Depp C, Nazarenko T, Sun T, Siems SB, Ong EC, Nkeh YB, Böhler C, Yu X, Bues B, Evangelista L, Mao S, Morgado B, Wu Z, Ruhwedel T, Subramanian S, Börensen F, Overhoff K, Spieth L, Berghoff SA, Sadleir KR, Vassar R, Eggert S, Goebbels S, Saito T, Saido T, Saher G, Möbius W, Castelo-Branco G, Klafki HW, Wirths O, Wiltfang J, Jäkel S, Yan R, Nave KA. Oligodendrocytes produce amyloid-β and contribute to plaque formation alongside neurons in Alzheimer's disease model mice. Nat Neurosci 2024; 27:1668-1674. [PMID: 39103558 PMCID: PMC11374705 DOI: 10.1038/s41593-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Amyloid-β (Aβ) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APPNLGF, we demonstrate that OLs and neurons contribute to Aβ plaque burden. For rapid plaque seeding, excitatory projection neurons must provide a threshold level of Aβ. Ultimately, our findings are relevant for AD prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- International Max Planck Research School for Neurosciences, Göttingen, Germany.
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erinne Cherisse Ong
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Yakum B Nkeh
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Böhler
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Xuan Yu
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bastian Bues
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Shuying Mao
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Barbara Morgado
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Zoe Wu
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute Multidisciplinary Sciences, Göttingen, Germany
| | - Swati Subramanian
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Friederike Börensen
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Overhoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine Rose Sadleir
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Wako, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Wako, Saitama, Japan
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute Multidisciplinary Sciences, Göttingen, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
27
|
Bessa P, Newman AG, Yan K, Schaub T, Dannenberg R, Lajkó D, Eilenberger J, Brunet T, Textoris-Taube K, Kemmler E, Deng P, Banerjee P, Ravindran E, Preissner R, Rosário M, Tarabykin V. Semaphorin heterodimerization in cis regulates membrane targeting and neocortical wiring. Nat Commun 2024; 15:7059. [PMID: 39152101 PMCID: PMC11329519 DOI: 10.1038/s41467-024-51009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Disruption of neocortical circuitry and architecture in humans causes numerous neurodevelopmental disorders. Neocortical cytoarchitecture is orchestrated by various transcription factors such as Satb2 that control target genes during strict time windows. In humans, mutations of SATB2 cause SATB2 Associated Syndrome (SAS), a multisymptomatic syndrome involving epilepsy, intellectual disability, speech delay, and craniofacial defects. Here we show that Satb2 controls neuronal migration and callosal axonal outgrowth during murine neocortical development by inducing the expression of the GPI-anchored protein, Semaphorin 7A (Sema7A). We find that Sema7A exerts this biological activity by heterodimerizing in cis with the transmembrane semaphorin, Sema4D. We could also observe that heterodimerization with Sema7A promotes targeting of Sema4D to the plasma membrane in vitro. Finally, we report an epilepsy-associated de novo mutation in Sema4D (Q497P) that inhibits normal glycosylation and plasma membrane localization of Sema4D-associated complexes. These results suggest that neuronal use of semaphorins during neocortical development is heteromeric, and a greater signaling complexity exists than was previously thought.
Collapse
Affiliation(s)
- Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Denis Lajkó
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Eilenberger
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theresa Brunet
- Department of Pediatric Neurology and Developmental Medicine and Ludwig Maximilians University Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Hospital, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Textoris-Taube
- Institute of Biochemistry, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
- Core Facility - High-Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility - High-Throughput Mass Spectrometry, Am Charitéplatz 1, Berlin, Germany
| | - Emanuel Kemmler
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Penghui Deng
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Priyanka Banerjee
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
28
|
Lin L, Zhao J, Kubota N, Li Z, Lam YL, Nguyen LP, Yang L, Pokharel SP, Blue SM, Yee BA, Chen R, Yeo GW, Chen CW, Chen L, Zheng S. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 2024; 112:2157-2176.e12. [PMID: 38697111 PMCID: PMC11446168 DOI: 10.1016/j.neuron.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Li Lam
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Lauren P Nguyen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela P Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA; Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Chen H, Ferguson CJ, Mitchell DC, Titus A, Paulo JA, Hwang A, Lin TH, Yano H, Gu W, Song SK, Yuede CM, Gygi SP, Bonni A, Kim AH. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563880. [PMID: 37961719 PMCID: PMC10634808 DOI: 10.1101/2023.10.24.563880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.
Collapse
|
30
|
Sagner A. Temporal patterning of the vertebrate developing neural tube. Curr Opin Genet Dev 2024; 86:102179. [PMID: 38490162 DOI: 10.1016/j.gde.2024.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The chronologically ordered generation of distinct cell types is essential for the establishment of neuronal diversity and the formation of neuronal circuits. Recently, single-cell transcriptomic analyses of various areas of the developing vertebrate nervous system have provided evidence for the existence of a shared temporal patterning program that partitions neurons based on the timing of neurogenesis. In this review, I summarize the findings that lead to the proposal of this shared temporal program before focusing on the developing spinal cord to discuss how temporal patterning in general and this program specifically contributes to the ordered formation of neuronal circuits.
Collapse
Affiliation(s)
- Andreas Sagner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
31
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Bar E, Fischer I, Rokach M, Elad-Sfadia G, Shirenova S, Ophir O, Trangle SS, Okun E, Barak B. Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia 2024; 72:1117-1135. [PMID: 38450767 DOI: 10.1002/glia.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
Collapse
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Silvestre M, Dempster K, Mihaylov SR, Claxton S, Ultanir SK. Cell type-specific expression, regulation and compensation of CDKL5 activity in mouse brain. Mol Psychiatry 2024; 29:1844-1856. [PMID: 38326557 PMCID: PMC11371643 DOI: 10.1038/s41380-024-02434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.
Collapse
Affiliation(s)
- Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
34
|
Liu ZY, Li YQ, Wang DL, Wang Y, Qiu WT, Qiu YY, Zhang HL, You QL, Liu SM, Liang QN, Wu EJ, Hu BJ, Sun XD. Agrin-Lrp4 pathway in hippocampal astrocytes restrains development of temporal lobe epilepsy through adenosine signaling. Cell Biosci 2024; 14:66. [PMID: 38783336 PMCID: PMC11112884 DOI: 10.1186/s13578-024-01241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.
Collapse
Affiliation(s)
- Zi-Yang Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Die-Lin Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He-Lin Zhang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang-Long You
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi-Min Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiu-Ni Liang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Liu Y, Fan M, Yang J, Mihaljević L, Chen KH, Ye Y, Sun S, Qiu Z. KAT6A deficiency impairs cognitive functions through suppressing RSPO2/Wnt signaling in hippocampal CA3. SCIENCE ADVANCES 2024; 10:eadm9326. [PMID: 38758792 PMCID: PMC11100567 DOI: 10.1126/sciadv.adm9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Luo W, Egger M, Cruz-Ochoa N, Tse A, Maloveczky G, Tamás B, Lukacsovich D, Seng C, Amrein I, Lukacsovich T, Wolfer D, Földy C. Activation of feedforward wiring in adult hippocampal neurons by the basic-helix-loop-helix transcription factor Ascl4. PNAS NEXUS 2024; 3:pgae174. [PMID: 38711810 PMCID: PMC11071515 DOI: 10.1093/pnasnexus/pgae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.
Collapse
Affiliation(s)
- Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Matteo Egger
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Alice Tse
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Gyula Maloveczky
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Bálint Tamás
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zürich, Zürich 8057, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
37
|
Xu M, Lin R, Wen H, Wang Y, Wong J, Peng Z, Liu L, Nie B, Luo J, Tang X, Cui S. Electroacupuncture Enhances the Functional Connectivity of Limbic System to Neocortex in the 5xFAD Mouse Model of Alzheimer's Disease. Neuroscience 2024; 544:28-38. [PMID: 38423162 DOI: 10.1016/j.neuroscience.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Our previous study revealed that acupuncture may exhibit therapeutic effects on Alzheimer's disease (AD) through the activation of metabolism in memory-related brain regions. However, the underlying functional mechanism remains poorly understood and warrants further investigation. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to explore the potential effect of electroacupuncture (EA) on the 5xFAD mouse model of AD. We found that the EA group exhibited significant improvements in the number of platforms crossed and the time spent in the target quadrant when compared with the Model group (p < 0.05). The functional connectivity (FC) of left hippocampus (Hip) was enhanced significantly among 12 regions of interest (ROIs) in the EA group (p < 0.05). Based on the left Hip as the seed point, the rsfMRI analysis of the entire brain revealed increased FC between the limbic system and the neocortex in the 5xFAD mice after EA treatment. Additionally, the expression of amyloid-β(Aβ) protein and deposition in the Hip showed a downward trend in the EA group compared to the Model group (p < 0.05). In conclusion, our findings indicate that EA treatment can improve the learning and memory abilities and inhibit the expression of Aβ protein and deposition of 5xFAD mice. This improvement may be attributed to the enhancement of the resting-state functional activity and connectivity within the limbic-neocortical neural circuit, which are crucial for cognition, motor function, as well as spatial learning and memory abilities in AD mice.
Collapse
Affiliation(s)
- Mingzhu Xu
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Run Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China
| | - Huaneng Wen
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yixiao Wang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China
| | - John Wong
- MGH Institute of Health Professions, Boston, MA, USA
| | - Zhihua Peng
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China
| | - Lu Liu
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100000, China
| | - Jing Luo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China
| | - Xiaoyu Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China
| | - Shaoyang Cui
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, China.
| |
Collapse
|
38
|
Liu L, Hu H, Wu J, Koleske AJ, Chen H, Wang N, Yu K, Wu Y, Xiao X, Zhang Q. Integrin α3 is required for high-frequency repetitive transcranial magnetic stimulation-induced glutamatergic synaptic transmission in mice with ischemia. CNS Neurosci Ther 2024; 30:e14498. [PMID: 37867481 PMCID: PMC11017422 DOI: 10.1111/cns.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post-stroke motor recovery. However, the underlying mechanisms of rTMS regulates long-lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. METHODS Mice were received 10-Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10-Hz rTMS in the mice with PT model. Moreover, we used wild-type (WT) and NEX-α3-/- mice to further explore the 10-Hz rTMS effect. RESULTS We found that 10-Hz rTMS improved the post-stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri-infarct were significantly increased in the rTMS group. In contrast, 10-Hz rTMS did not induce these aforementioned effects in NEX-α3-/- mice. The amplitude of AMPAR-mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX-α3-/- mice with rTMS. CONCLUSIONS In this study, 10-Hz rTMS improved the glutamatergic synaptic transmission in the peri-infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Han Hu
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Anthony J. Koleske
- Departments of Molecular Biophysics and Biochemistry and NeuroscienceYale UniversityNew HavenConnecticutUSA
| | - Hongting Chen
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
39
|
Lu Y, Mu L, Elstrott J, Fu C, Sun C, Su T, Ma X, Yan J, Jiang H, Hanson JE, Geng Y, Chen Y. Differential depletion of GluN2A induces heterogeneous schizophrenia-related phenotypes in mice. EBioMedicine 2024; 102:105045. [PMID: 38471394 PMCID: PMC10943646 DOI: 10.1016/j.ebiom.2024.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.
Collapse
Affiliation(s)
- Yi Lu
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Mu
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA 94080, USA
| | - Chaoying Fu
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China
| | - Cailu Sun
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tonghui Su
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofan Ma
- Department of Anaesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai 200011, China
| | - Jia Yan
- Department of Anaesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai 200011, China
| | - Hong Jiang
- Department of Anaesthesiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai 200011, China
| | - Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yang Geng
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Centre on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd., Pudong New District, Shanghai 201210, China.
| |
Collapse
|
40
|
Lu D, Zhi Y, Su H, Lin X, Lin J, Shi Y, Yi W, Hong C, Zhang T, Fu Z, Chen LY, Zhao Z, Li R, Xu Z, Chen W, Wang N, Xu D. ESCRT-I protein UBAP1 controls ventricular expansion and cortical neurogenesis via modulating adherens junctions of radial glial cells. Cell Rep 2024; 43:113818. [PMID: 38402586 DOI: 10.1016/j.celrep.2024.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and β-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.
Collapse
Affiliation(s)
- Danping Lu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Huizhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jingjing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China
| | - Wenxiang Yi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chaoyin Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Tongtong Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhifei Fu
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Li-Yu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqi Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
41
|
Lanfranchi M, Yandiev S, Meyer-Dilhet G, Ellouze S, Kerkhofs M, Dos Reis R, Garcia A, Blondet C, Amar A, Kneppers A, Polvèche H, Plassard D, Foretz M, Viollet B, Sakamoto K, Mounier R, Bourgeois CF, Raineteau O, Goillot E, Courchet J. The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions. Nat Commun 2024; 15:2487. [PMID: 38514619 PMCID: PMC10958033 DOI: 10.1038/s41467-024-46146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.
Collapse
Affiliation(s)
- Marine Lanfranchi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sozerko Yandiev
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Salma Ellouze
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn Kerkhofs
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Raphael Dos Reis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Audrey Garcia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Camille Blondet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Alizée Amar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Anita Kneppers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Rémi Mounier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Evelyne Goillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France.
| |
Collapse
|
42
|
Zhu YJ, Deng CY, Fan L, Wang YQ, Zhou H, Xu HT. Combinatorial expression of γ-protocadherins regulates synaptic connectivity in the mouse neocortex. eLife 2024; 12:RP89532. [PMID: 38470230 DOI: 10.7554/elife.89532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.
Collapse
Affiliation(s)
- Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Yun Deng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
43
|
Wang YJ, Cao JB, Yang J, Liu T, Yu HL, He ZX, Bao SL, He XX, Zhu XJ. PRMT5-mediated homologous recombination repair is essential to maintain genomic integrity of neural progenitor cells. Cell Mol Life Sci 2024; 81:123. [PMID: 38459149 PMCID: PMC10923982 DOI: 10.1007/s00018-024-05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jian-Bo Cao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Tong Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Shi-Lai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
44
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
45
|
Jahncke JN, Miller DS, Krush M, Schnell E, Wright KM. Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy. eLife 2024; 12:RP87965. [PMID: 38179984 PMCID: PMC10942650 DOI: 10.7554/elife.87965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Milana Krush
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care SystemPortlandUnited States
- Anesthesiology and Perioperative Medicine, Oregon Health & Science UniversityPortlandUnited States
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
46
|
Altas B, Rhee HJ, Ju A, Solís HC, Karaca S, Winchenbach J, Kaplan-Arabaci O, Schwark M, Ambrozkiewicz MC, Lee C, Spieth L, Wieser GL, Chaugule VK, Majoul I, Hassan MA, Goel R, Wojcik SM, Koganezawa N, Hanamura K, Rotin D, Pichler A, Mitkovski M, de Hoz L, Poulopoulos A, Urlaub H, Jahn O, Saher G, Brose N, Rhee J, Kawabe H. Nedd4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J Cell Biol 2024; 223:e201902050. [PMID: 38032389 PMCID: PMC10689203 DOI: 10.1083/jcb.201902050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/21/2021] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hong-Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anes Ju
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
| | - Hugo Cruces Solís
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Samir Karaca
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jan Winchenbach
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oykum Kaplan-Arabaci
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Georg L. Wieser
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viduth K. Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Irina Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Mohamed A. Hassan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Rashi Goel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenji Hanamura
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daniela Rotin
- The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Neuroproteomics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
47
|
Zheng Y, Zhao C, Song Q, Xu L, Zhang B, Hu G, Kong X, Li S, Li X, Shen Y, Zhuang L, Wu M, Liu Y, Zhou Y. Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities. Cell Rep 2023; 42:113496. [PMID: 37995181 DOI: 10.1016/j.celrep.2023.113496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Appropriate histone modifications emerge as essential cell fate regulators of neuronal identities across neocortical areas and layers. Here we showed that NSD1, the methyltransferase for di-methylated lysine 36 of histone H3 (H3K36me2), controls both area and layer identities of the neocortex. Nsd1-ablated neocortex showed an area shift of all four primary functional regions and aberrant wiring of cortico-thalamic-cortical projections. Nsd1 conditional knockout mice displayed defects in spatial memory, motor learning, and coordination, resembling patients with the Sotos syndrome carrying NSD1 mutations. On Nsd1 loss, superficial-layer pyramidal neurons (PNs) progressively mis-expressed markers for deep-layer PNs, and PNs remained immature both morphologically and electrophysiologically. Loss of Nsd1 in postmitotic PNs causes genome-wide loss of H3K36me2 and re-distribution of DNA methylation, which accounts for diminished expression of neocortical layer specifiers but ectopic expression of non-neural genes. Together, H3K36me2 mediated by NSD1 is required for the establishment and maintenance of region- and layer-specific neocortical identities.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiulin Song
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lichao Xu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Bo Zhang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guangda Hu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiangfei Kong
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Shaowen Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yin Shen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; College of Life Sciences, Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan 430071, China.
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
48
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Montanari R, Alegre-Cortés J, Alonso-Andrés A, Cabrera-Moreno J, Navarro I, García-Frigola C, Sáez M, Reig R. Callosal inputs generate side-invariant receptive fields in the barrel cortex. SCIENCE ADVANCES 2023; 9:eadi3728. [PMID: 38019920 PMCID: PMC10686559 DOI: 10.1126/sciadv.adi3728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Barrel cortex integrates contra- and ipsilateral whiskers' inputs. While contralateral inputs depend on the thalamocortical innervation, ipsilateral ones are thought to rely on callosal axons. These are more abundant in the barrel cortex region bordering with S2 and containing the row A-whiskers representation, the row lying nearest to the facial midline. Here, we ask what role this callosal axonal arrangement plays in ipsilateral tactile signaling. We found that novel object exploration with ipsilateral whiskers confines c-Fos expression within the highly callosal subregion. Targeting this area with in vivo patch-clamp recordings revealed neurons with uniquely strong ipsilateral responses dependent on the corpus callosum, as assessed by tetrodotoxin silencing and by optogenetic activation of the contralateral hemisphere. Still, in this area, stimulation of contra- or ipsilateral row A-whiskers evoked an indistinguishable response in some neurons, mostly located in layers 5/6, indicating their involvement in the midline representation of the whiskers' sensory space.
Collapse
Affiliation(s)
| | | | | | - Jorge Cabrera-Moreno
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | | - Cristina García-Frigola
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | - María Sáez
- Instituto de Neurociencias UMH-CSIC (Alicante), Avenida Santiago Ramón y Cajal s.n., 03550, Spain
| | | |
Collapse
|
50
|
Quesnel KM, Martin-Kenny N, Bérubé NG. A mouse model of ATRX deficiency with cognitive deficits and autistic traits. J Neurodev Disord 2023; 15:39. [PMID: 37957569 PMCID: PMC10644498 DOI: 10.1186/s11689-023-09508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND ATRX is an ATP-dependent chromatin remodeling protein with essential roles in safeguarding genome integrity and modulating gene expression. Deficiencies in this protein cause ATR-X syndrome, a condition characterized by intellectual disability and an array of developmental abnormalities, including features of autism. Previous studies demonstrated that deleting ATRX in mouse forebrain excitatory neurons postnatally resulted in male-specific memory deficits, but no apparent autistic-like behaviours. METHODS We generated mice with an earlier embryonic deletion of ATRX in forebrain excitatory neurons and characterized their behaviour using a series of memory and autistic-related paradigms. RESULTS We found that mutant mice displayed a broader spectrum of impairments, including fear memory, decreased anxiety-like behaviour, hyperactivity, as well as self-injurious and repetitive grooming. Sex-specific alterations were also observed, including male-specific aggression, sensory gating impairments, and decreased social memory. CONCLUSIONS Collectively, the findings indicate that early developmental abnormalities arising from ATRX deficiency in forebrain excitatory neurons contribute to the presentation of fear memory deficits as well as autistic-like behaviours.
Collapse
Affiliation(s)
- Katherine M Quesnel
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nicole Martin-Kenny
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nathalie G Bérubé
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Paediatrics, Western University, London, Canada.
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada.
- Department of Oncology, Western University, London, Canada.
| |
Collapse
|