1
|
Castle D, Alkassab AT, Erler S, Bischoff G, Gerdes F, Yurkov A, Steinert M, Steffan-Dewenter I, Pistorius J. Polyfloral nutritional resources promote bumble bee colony development after exposure to a pesticide mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118170. [PMID: 40220355 DOI: 10.1016/j.ecoenv.2025.118170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Bumble bees are important pollinators of crops in the field and greenhouses. They are naturally exposed to a combination of interacting stressors, e.g., loss of flowering resources and exposure to plant protection products. Mass-flowering crops are important resources for bees, but they may result in unbalanced nutrition due to different nutritional values. In this study, a semi-field experiment was conducted to evaluate the response of Bombus terrestris colonies after the application of a tank mixture containing the insecticide chlorantraniliprole and the fungicide prochloraz, either in monofloral-managed lupin (Lupinus albus) as high pollen protein resource or in presence of an additional polyfloral flower mixture. Our results demonstrate an evident effect on worker mortality after application of the tank mixture. Higher worker mortality in polyfloral treatments compared to the untreated control was observed. The number of young brood and pupae in colonies in polyfloral control were significantly higher than in monofloral treatment. However, no long-term effects on the number or weight of new queens were found. Furthermore, flowering resources, but not pesticide exposure, affected colony weight. Exposure to the tank mixture resulted in declining nectar yeasts abundance and an increasing proportion of phylloplane yeasts in forager guts. In conclusion, diverse flowering resources are important for a bumble bee colony's development. Even in a high pollen protein crop, low flower diversity may act as an additional stressor. Thus, we suggest further maintaining and promoting flowering strips or flowering fields in agricultural landscapes, even near high pollen protein crops, to enhance bee health.
Collapse
Affiliation(s)
- Denise Castle
- Julius Kuehn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Abdulrahim T Alkassab
- Julius Kuehn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany.
| | - Silvio Erler
- Julius Kuehn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; Technische Universität Braunschweig, Zoological Institute, Mendelssohnstr. 4, Braunschweig 38106, Germany
| | - Gabriela Bischoff
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Königin-Luise-Straße 19, Berlin, Germany
| | - Falk Gerdes
- Technische Universität Braunschweig, Zoological Institute, Mendelssohnstr. 4, Braunschweig 38106, Germany
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig 38124, Germany
| | - Michael Steinert
- Technische Universität Braunschweig, Institut für Mikrobiologie, Spielmannstrasse 7, Braunschweig 38106, Germany
| | - Ingolf Steffan-Dewenter
- University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Jens Pistorius
- Julius Kuehn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
2
|
Herrera CM, Alonso C. Flowers as fungal extended phenotypes: nectar yeasts obfuscate among-plant differences in nectar sugar concentration. Biol Lett 2025; 21:20250095. [PMID: 40425046 PMCID: PMC12115797 DOI: 10.1098/rsbl.2025.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Nectar-dwelling yeasts modulate the ecology of interactions between flowers and pollinators. We assess here the hypothesis that floral nectar traits, which are a central element in most plant-pollinator relationships, can largely represent the extended fungal phenotypes of nectar-dwelling yeasts. The following specific question is addressed: do local genotypes of the specialist nectar yeast Metschnikowia reukaufii have the ability to obfuscate intrinsic individual variation among Helleborus foetidus plants in nectar sugar concentration? An array of paired plant-yeast genotypes mimicking a natural field situation was created in the laboratory by inoculating field-collected nectar from different plant individuals with distinct yeast genotypes following a factorial design. Chemical analyses of nectar sugars before and after exposure to yeasts were performed using ion-exchange high-performance liquid chromatography. Plant individual, yeast genotype and their interaction all had strong, significant effects on sucrose concentration of H. foetidus nectar. Yeasts abolished 79% of intrinsic variance among plants in nectar sucrose concentration and profoundly reshaped patterns of intrinsic among-plant variation. Our results support the hypothesis that among-plant variation in nectar sugar concentration found by pollinators in the field can sometimes reflect the extended phenotypes of nectar yeasts more closely than intrinsic differences among the plants themselves.
Collapse
Affiliation(s)
- Carlos M. Herrera
- Ecology and Evolution, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla41092, Spain
| | - Conchita Alonso
- Ecology and Evolution, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla41092, Spain
| |
Collapse
|
3
|
Malassigné S, Laÿs M, Vallon L, Martin E, Meiffren G, Vigneron A, Tran Van V, Minard G, Valiente Moro C, Luis P. Environmental yeasts differentially impact the development and oviposition behavior of the Asian tiger mosquito Aedes albopictus. MICROBIOME 2025; 13:99. [PMID: 40241175 PMCID: PMC12004758 DOI: 10.1186/s40168-025-02099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND While the Asian tiger mosquito (Aedes albopictus), a known vector of many arboviruses, establishes symbiotic associations with environmentally acquired yeasts, their impact on mosquito biology remains poorly investigated. To better understand these associations, we hypothesized that waterborne yeasts colonizing the larval gut differentially support mosquito development based on their capacity to produce riboflavin or recycle nitrogen waste into proteins by secreting uricase, as B vitamins and amino acids are crucial for mosquito development. To address this hypothesis, we used axenic and gnotobiotic insects to gauge the specific impact of different environmental yeasts on Ae. albopictus development and survival. We then evaluated whether the observed variations across yeast species could be linked to differential uricolytic activities and varying quantities of riboflavin and proteins in insecta. Finally, given that mosquito oviposition site selection favors conditions that enhance offspring performance, we tested whether yeasts that promote faster development mediate oviposition site selection by gravid females. RESULTS Differences in mosquito development times were observed based on the environmental yeast used. Yeasts like Rhodotorula mucilaginosa and Aureobasidium pullulans promoted rapid development and were associated with improved survival. Conversely, yeasts such as Torulaspora delbrueckii and Martiniozyma asiatica, which led to slower development, produced smaller adults. Notably, R. mucilaginosa, which promoted the fastest development, provided high riboflavin intakes and enhance nitrogenous waste recycling and protein synthesis through strong uricolytic-ureolytic activity. Behavioral experiments indicated that yeasts promoting rapid development "attract gravid females. CONCLUSIONS Our findings highlight that a set of environmental yeasts present in natural larval breeding sites can be associated with improved mosquito development and survival by enhancing nutritional intake, thereby attracting gravid females. Variations in mosquito development time are likely linked to the differential levels of riboflavin production and nitrogenous waste recycling capacities among yeast species. This study opens new perspectives on the trophic interactions between mosquitoes and their mycobiota, emphasizing the importance of nitrogen-containing molecules such as essential amino acids, proteins, or vitamins provided by the mycobiota. Video Abstract.
Collapse
Affiliation(s)
- Simon Malassigné
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Mathieu Laÿs
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Laurent Vallon
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Guillaume Meiffren
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Aurélien Vigneron
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Vân Tran Van
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Guillaume Minard
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Patricia Luis
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France.
| |
Collapse
|
4
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
5
|
Rering CC, Rudolph AB, Li QB, Read QD, Muñoz PR, Ternest JJ, Hunter CT. A quantitative survey of the blueberry (Vaccinium spp.) culturable nectar microbiome: variation between cultivars, locations, and farm management approaches. FEMS Microbiol Ecol 2024; 100:fiae020. [PMID: 38366934 PMCID: PMC10903978 DOI: 10.1093/femsec/fiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Microbes in floral nectar can impact both their host plants and floral visitors, yet little is known about the nectar microbiome of most pollinator-dependent crops. In this study, we examined the abundance and composition of the fungi and bacteria inhabiting Vaccinium spp. nectar, as well as nectar volume and sugar concentrations. We compared wild V. myrsinites with two field-grown V. corymbosum cultivars collected from two organic and two conventional farms. Differences in nectar traits and microbiomes were identified between V. corymbosum cultivars but not Vaccinium species. The microbiome of cultivated plants also varied greatly between farms, whereas management regime had only subtle effects, with higher fungal populations detected under organic management. Nectars were hexose-dominant, and high cell densities were correlated with reduced nectar sugar concentrations. Bacteria were more common than fungi in blueberry nectar, although both were frequently detected and co-occurred more often than would be predicted by chance. "Cosmopolitan" blueberry nectar microbes that were isolated in all plants, including Rosenbergiella sp. and Symmetrospora symmetrica, were identified. This study provides the first systematic report of the blueberry nectar microbiome, which may have important implications for pollinator and crop health.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Qin-Bao Li
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Quentin D Read
- Agricultural Research Service, Southeast Area, United States Department of Agriculture, 840 Oval Drive, Raleigh, NC 27606, United States
| | - Patricio R Muñoz
- Horticultural Sciences Department, University of Florida, 2550 Hull Rd, Gainesville, FL 32611, United States
| | - John J Ternest
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr, Gainesville, FL 32611, United States
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| |
Collapse
|
6
|
Álvarez-Pérez S, Lievens B, de Vega C. Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101138. [PMID: 37931689 DOI: 10.1016/j.cois.2023.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Sugar-rich plant-related secretions, such as floral nectar and honeydew, that are commonly used as nutrient sources by insects and other animals, are also the ecological niche for diverse microbial communities. Recent research has highlighted the great potential of nectar and honeydew microbiomes in biological pest control and improved pollination, but the exploitation of these microbiomes requires a deep understanding of their community dynamics and plant-microbe-insect interactions. Additionally, the successful application of microbes in crop fields is conditioned by diverse ecological, legal, and ethical challenges that should be taken into account. In this article, we provide an overview of the nectar and honeydew microbiomes and discuss their potential applications in sustainable agricultural practices.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001 Heverlee, Belgium
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Agarbati A, Gattucci S, Canonico L, Ciani M, Comitini F. Yeast communities related to honeybees: occurrence and distribution in flowers, gut mycobiota, and bee products. Appl Microbiol Biotechnol 2024; 108:175. [PMID: 38276993 PMCID: PMC10817854 DOI: 10.1007/s00253-023-12942-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Honeybee (Apis mellifera) is an important agricultural pollinator and a model for sociality. In this study, a deep knowledge on yeast community characterizing the honeybees' environmental was carried out. For this, a total of 93 samples were collected: flowers as food sources, bee gut mycobiota, and bee products (bee pollen, bee bread, propolis), and processed using culture-dependent techniques and a molecular approach for identification. The occurrence of yeast populations was quantitatively similar among flowers, bee gut mycobiota, and bee products. Overall, 27 genera and 51 species were identified. Basidiomycetes genera were predominant in the flowers while the yeast genera detected in all environments were Aureobasidium, Filobasidium, Meyerozyma, and Metschnikowia. Fermenting species belonging to the genera Debaryomyces, Saccharomyces, Starmerella, Pichia, and Lachancea occurred mainly in the gut, while most of the identified species of bee products were not found in the gut mycobiota. Five yeast species, Meyerozyma guilliermondii, Debaryomyces hansenii, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Starmerella roseus, were present in both summer and winter, thus indicating them as stable components of bee mycobiota. These findings can help understand the yeast community as a component of the bee gut microbiota and its relationship with related environments, since mycobiota characterization was still less unexplored. In addition, the gut microbiota, affecting the nutrition, endocrine signaling, immune function, and pathogen resistance of honeybees, represents a useful tool for its health evaluation and could be a possible source of functional yeasts. KEY POINTS: • The stable yeast populations are represented by M. guilliermondii, D. hansenii, H. uvarum, H. guilliermondii, and S. roseus. • A. pullulans was the most abondance yeast detective in the flowers and honeybee guts. • Aureobasidium, Meyerozyma, Pichia, and Hanseniaspora are the main genera resident in gut tract.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Gattucci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Canonico
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
8
|
Rering CC, Lanier AM, Peres NA. Blueberry floral probiotics: nectar microbes inhibit the growth of Colletotrichum pathogens. J Appl Microbiol 2023; 134:lxad300. [PMID: 38061796 DOI: 10.1093/jambio/lxad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
AIMS To identify whether microorganisms isolated from blueberry flowers can inhibit the growth of Colletotrichum, an opportunistic plant pathogen that infects flowers and threatens yields, and to assess the impacts of floral microbes and Colletotrichum pathogens on artificial nectar sugars and honey bee consumption. METHODS AND RESULTS The growth inhibition of Colletotrichum (Colletotrichum acutatum, Colletotrichum fioriniae, and Colletotrichum gloeosporioides) was screened using both artificial nectar co-culture and dual culture plate assays. All candidate nectar microbes were screened for antagonism against a single C. acutatum isolate. Then, the top four candidate nectar microbes showing the strongest inhibition of C. acutatum (Neokomagataea thailandica, Neokomagataea tanensis, Metschnikowia rancensis, and Symmetrospora symmetrica) were evaluated for antagonism against three additional C. acutatum isolates, and single isolates of both C. fioriniae and C. gloeosporioides. In artificial nectar assays, single and three-species cultures inhibited the growth of two of four C. acutatum isolates by ca. 60%, but growth of other Colletotrichum species was not affected. In dual culture plate assays, inhibition was observed for all Colletotrichum species for at least three of four selected microbial antagonists (13%‒53%). Neither honey bee consumption of nectar nor nectar sugar concentrations were affected by any microbe or pathogen tested. CONCLUSIONS Selected floral microbes inhibited growth of all Colletotrichum species in vitro, although the degree of inhibition was specific to the assay and pathogen examined. In all microbial treatments, nectar sugars were preserved, and honey bee preference was not affected.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Alexia M Lanier
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Natalia A Peres
- Department of Horticulture, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| |
Collapse
|
9
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Glushakova A, Kachalkin A. Yeasts associated with mines on tree leaves in the urban areas. Int Microbiol 2023; 26:1113-1121. [PMID: 37133716 DOI: 10.1007/s10123-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Mines on tree leaves and undamaged leaves were studied to investigate yeast complexes in urban areas (Aesculus hippocastanum, miner - Cameraria ohridella; Betula verrucosa, miner - Caloptilia betulicola; Populus nigra, miner - Lithocolletis populifoliella; Quercus robur, miner - Tischeria companella; Salix caprea, miner - Trachys minuta; Syringa vulgaris, miner - Caloptilia syringella; Tilia cordata, miner - Phyllonorycter issikii; Ulmus laevis, miner - Carpatolechia fugitivella). The abundance and taxonomic structure of yeasts were studied using a surface plating method on solid media (GPY agar). Identification of yeast species was based on the ITS rDNA nucleotide sequence. The average abundance of yeasts during the first stages of mine formation in the internal tissues of leaves was 103 cfu/g. After 23-25 days, during the last stage of larval metamorphosis before mine destruction, the abundance of yeasts in the mines increased by two orders of magnitude to 105 cfu/g. No significant differences were observed in the abundance of yeasts in mines formed by different insects on different trees. A total of twelve yeast species were observed. The fast-growing ascomycetous yeasts Hanseniaspora uvarum and H. occidentalis dominated the mines. On undamaged leaves, the basidiomycetous yeasts Papiliotrema flavescens and Rhodotorula mucilaginosa, typical in the phyllosphere, dominated. The opportunistic yeast Candida parapsilosis was detected in the yeast complexes of all mines examined and was not found on the surface of leaves. Comparison of the relative abundance of yeast species between the studied mines and undamaged leaves using principal component analysis showed that all studied yeast communities in the mines were significantly different from the epiphytic yeast complexes of the undamaged leaves. Thus, miners in urban environments provoke the formation of short-lived endophytic yeast complexes with high abundance of Hanseniaspora. For leaf miners, the yeasts serve primarily as a food source for insect larvae rich in vitamins and amino acids. The adult leaf miners, in turn, contribute to the reproduction of the yeasts and create favorable conditions for their development.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
11
|
Nguyen PN, Rehan SM. Environmental Effects on Bee Microbiota. MICROBIAL ECOLOGY 2023; 86:1487-1498. [PMID: 37099156 DOI: 10.1007/s00248-023-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
12
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Kogan HV, Elikan AB, Glaser KF, Bergmann JM, Raymond LM, Prado-Irwin SR, Snow JW. Colonization of Honey Bee Digestive Tracts by Environmental Yeast Lachancea thermotolerans Is Naturally Occurring, Temperature Dependent, and Impacts the Microbiome of Newly Emerged Bees. Microbiol Spectr 2023; 11:e0519422. [PMID: 36790179 PMCID: PMC10100982 DOI: 10.1128/spectrum.05194-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Honey bees are critical pollinators in both agricultural and ecological settings. Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Although there are many environmental stressors implicated in honey bee disease, there has been intensifying focus on the role of microbial attacks on honey bee health. Despite the long-standing appreciation for the association of fungi of various groups with honey bees and their broader environment, the effects of these interactions on honey bee health are incompletely understood. Here, we report the discovery of colonization of the honey bee digestive tract by the environmental yeast Lachancea thermotolerans. Experimental colonization of honey bee digestive tracts by L. thermotolerans revealed that this yeast species maintains high levels in the honey bee midgut only at temperatures below the typical colony temperature. In newly eclosed bees, L. thermotolerans colonization alters the microbiome, suggesting that environmental yeasts can impact its composition. Future studies should be undertaken to better understand the role of L. thermotolerans and other environmental yeasts in honey bee health. IMPORTANCE Although many fungal species are found in association with honey bees and their broader environment, the effects of these interactions on honey bee health are largely unknown. Here, we report the discovery that a yeast commonly found in the environment can be found at high levels in honey bee digestive tracts. Experimentally feeding this yeast to honey bees showed that the yeast's ability to maintain high levels in the digestive tract is influenced by temperature and can lead to alterations of the microbiome in young bees. These studies provide a foundation for future studies to better understand the role of environmental yeasts in honey bee health.
Collapse
Affiliation(s)
- Helen V. Kogan
- Biology Department, Barnard College, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Niu J, Li X, Zhang S, Yao Y, Zhang Y, Liu Y, Peng X, Huang J, Peng F. Identification and functional studies of microbial volatile organic compounds produced by Arctic flower yeasts. FRONTIERS IN PLANT SCIENCE 2023; 13:941929. [PMID: 36684747 PMCID: PMC9850290 DOI: 10.3389/fpls.2022.941929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Microbial volatile organic compounds (mVOCs) can serve as a communication channel among microorganisms, insects and plants, making them important in ecosystem. In order to understand the possible role of mVOCs in Arctic ecology, the microbes in Arctic flowers and their mVOCs and effects on plants were investigated. This study aims to isolate different yeast species from the flowers of five Arctic plant species and further to explore the function of mVOCs emitted by these microbes to plant. It was found that the composition and amount of mVOCs produced by the isolated yeasts were considerably affected by changes in incubation temperature. When the incubation temperature rose, the species of alcohols, aldehydes, esters, organic acids, and ketones increased, but substances specific to low temperature decreased or disappeared. When yeasts were co-cultured with Arabidopsis thaliana without any direct contact, mVOCs produced by the isolated yeasts inhibited the seed germination of A. thaliana at low temperatures; however, the mVOCs promoted the chlorophyll content, fresh weight, root weight and flowering rate of Arabidopsis plants. Although the overall growth-promoting effect of yeast mVOCs was higher at 20°C than at 10°C, the growth-promoting effect on roots, flowers and chlorophyll was highest at 10°C. When cultured at 10°C, the mVOCs produced by Cystofilobasidium capitatum A37, Cryptococcus sp. D41, and Sporidiobolus salmonicolor D27 had the highest growth-promoting effects on the root, flowering rate and chlorophyll content of Arabidopsis, respectively. In the co-culture system, some new mVOCs were detected, such as hendecane, tetradecane, and 1-hexanol that have been proven to promote plant growth. In addition, mVOCs of the isolated Arctic yeasts could inhibit the growth of several microorganisms, especially filamentous fungi. It was the first time to prove that mVOCs produced by the isolated yeasts had varying effects on plant growth at different incubating temperatures, providing a reference for the interactions between microorganisms and plants and their possible responses to climate change in the Arctic area. Moreover, the characteristics of promoting plant growth and inhibiting microbial growth by mVOCs of Arctic yeasts would lay a foundation for potential applications in the future.
Collapse
Affiliation(s)
- Jingjing Niu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuhuan Li
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Siyu Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Yifeng Yao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongping Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixuan Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoya Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Nguyen PN, Rehan SM. The effects of urban land use gradients on wild bee microbiomes. Front Microbiol 2022; 13:992660. [PMID: 36466654 PMCID: PMC9714450 DOI: 10.3389/fmicb.2022.992660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2023] Open
Abstract
Bees and their microbes interact in complex networks in which bees form symbiotic relationships with their bacteria and fungi. Microbial composition and abundance affect bee health through nutrition, immunity, and fitness. In ever-expanding urban landscapes, land use development changes bee habitats and floral resource availability, thus altering the sources of microbes that wild bees need to establish their microbiome. Here, we implement metabarcoding of the bacterial 16S and fungal ITS regions to characterize the diversity and composition of the microbiome in 58 small carpenter bees, Ceratina calcarata, across urban land use gradients (study area 6,425 km2). By categorizing land use development, green space, precipitation, and temperature variables as indicators of habitat across the city, we found that land use variables can predict microbial diversity. Microbial composition was also found to vary across urban land use gradients, with certain microbes such as Acinetobacter and Apilactobacillus overrepresented in less urban locations and Penicillium more abundant in developed areas. Environmental features may also lead to differences in microbe interactions, as co-occurrences between bacteria and fungi varied across percent land use development, exemplified by the correlation between Methylobacterium and Sphingomonas being more prevalent in areas of higher urban development. Surrounding landscapes change the microbial landscape in wild bees and alter the relationships they have with their microbiome. As such, urban centres should consider the impact of growing cities on their pollinators' health and protect wild bees from the effects of anthropogenic activities.
Collapse
|
16
|
Burgess EC, Schaeffer RN. The Floral Microbiome and Its Management in Agroecosystems: A Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9819-9825. [PMID: 35917340 DOI: 10.1021/acs.jafc.2c02037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disease management is critical to ensuring healthy crop yields and is often targeted at flowers because of their susceptibility to pathogens and direct link to reproduction. Many disease management strategies are unsustainable however because of the potential for pathogens to evolve resistance, or nontarget effects on beneficial insects. Manipulating the floral microbiome holds some promise as a sustainable alternative to chemical means of disease control. In this perspective, we discuss the current state of research concerning floral microbiome assembly and management in agroecosystems as well as future directions aimed at improving the sustainability of disease control and insect-mediated ecosystem services.
Collapse
Affiliation(s)
- Emily C Burgess
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Robert N Schaeffer
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
17
|
Russell KA, McFrederick QS. Elevated Temperature May Affect Nectar Microbes, Nectar Sugars, and Bumble Bee Foraging Preference. MICROBIAL ECOLOGY 2022; 84:473-482. [PMID: 34596711 PMCID: PMC9436853 DOI: 10.1007/s00248-021-01881-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/22/2021] [Indexed: 05/02/2023]
Abstract
Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens. The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus. Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.
Collapse
Affiliation(s)
- Kaleigh A Russell
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Jones J, Rader R. Pollinator nutrition and its role in merging the dual objectives of pollinator health and optimal crop production. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210170. [PMID: 35491607 PMCID: PMC9058521 DOI: 10.1098/rstb.2021.0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bee and non-bee insect pollinators play an integral role in the quantity and quality of production for many food crops, yet there is growing evidence that nutritional challenges to pollinators in agricultural landscapes are an important factor in the reduction of pollinator populations worldwide. Schemes to enhance crop pollinator health have historically focused on floral resource plantings aimed at increasing pollinator abundance and diversity by providing more foraging opportunities for bees. These efforts have demonstrated that improvements in bee diversity and abundance are achievable; however, goals of increasing crop pollination outcomes via these interventions are not consistently met. To support pollinator health and crop pollination outcomes in tandem, habitat enhancements must be tailored to meet the life-history needs of specific crop pollinators, including non-bees. This will require greater understanding of the nutritional demands of these taxa together with the supply of floral and non-floral food resources and how these interact in cropping environments. Understanding the mechanisms underlying crop pollination and pollinator health in unison across a range of taxa is clearly a win–win for industry and conservation, yet achievement of these goals will require new knowledge and novel, targeted methods. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Jeremy Jones
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
19
|
Martin VN, Schaeffer RN, Fukami T. Potential effects of nectar microbes on pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210155. [PMID: 35491594 DOI: 10.1098/rstb.2021.0155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
| | | | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
de Vega C, Albaladejo RG, Álvarez-Pérez S, Herrera CM. Contrasting effects of nectar yeasts on the reproduction of Mediterranean plant species. AMERICAN JOURNAL OF BOTANY 2022; 109:393-405. [PMID: 35315515 DOI: 10.1002/ajb2.1834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Yeasts are often present in floral nectar and can influence plant fitness directly (independently of pollinators) or indirectly by influencing pollinator visitation and behavior. However, few studies have assessed the effect of nectar yeasts on plant reproductive success or compared effects across different plant species, limiting our understanding of the relative impact of direct vs. indirect effects. METHODS We inoculated the nectar of six plant species in the field with the cosmopolitan yeast Metschnikowia reukaufii to analyze the direct and indirect effects on female reproductive success over 2 years. The pollinator assemblage for each species was recorded during both flowering years. RESULTS Direct yeast effects on female fecundity were statistically nonsignificant for all plant species. There were significant indirect, pollinator-mediated effects on fruit production and seed mass for the two species pollinated almost exclusively by bumblebees or hawkmoths, with the direction of the effects differing for the quantity- and quality-related fitness components. There were no consistent effects of the yeast on maternal fecundity for any of the species with diverse pollinator assemblages. CONCLUSIONS Effects of M. reukaufii on plant reproduction ranged from negative to neutral or positive depending on the plant species. The among-species variation in the indirect effects of nectar yeasts on plant pollination could reflect variation in the pollinator community, the specific microbes colonizing the nectar, and the order of microbial infection (priority effects), determining potential species interactions. Elucidating the nature of these multitrophic plant-pollinator-microbe interactions is important to understand complex processes underlying plant pollination.
Collapse
Affiliation(s)
- Clara de Vega
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González n 2. 41012 Sevilla, Spain
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González n 2. 41012 Sevilla, Spain
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 26, E-41092, Sevilla, Spain
| |
Collapse
|
21
|
Ugine TA, Krasnoff SB, Behmer ST. Omnivory in predatory lady beetles is widespread and driven by an appetite for sterols. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Todd A. Ugine
- Department of Entomology Cornell University Ithaca NY USA
| | - Stuart B. Krasnoff
- Emerging Pests and Pathogens Research Unit USDA‐ARSRobert W. Holley Center Ithaca NY USA
| | - Spencer T. Behmer
- Department of Entomology Texas A&M University College Station TX USA
| |
Collapse
|
22
|
Hisatomi T, Toyomura K. Isolation, identification, and characterization of wild budding yeasts from rose flowers in Fukuyama city, Hiroshima, Japan, and their application in bread and wine production. MYCOSCIENCE 2021; 62:382-389. [PMID: 37090174 PMCID: PMC9721520 DOI: 10.47371/mycosci.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, we isolated 741 wild budding yeast strains from the flowers of 45 rose cultivars growing in Fukuyama city, Hiroshima, Japan. Of these 741 strains, 21 were found to have high fermentation abilities in yeast extract-peptone-dextrose (YPD) medium. Four of the 21 strains were able to ferment bread dough to make bread. These yeasts were identified as Saccharomyces cerevisiae, Lachancea fermentati, Lachancea kluyveri, and a Torulaspora sp. based on DNA sequences from the 26S rDNA D1/D2 regions. The CO2 production profiles of the bread dough generated by the rose yeasts were evaluated using a Fermograph. Saccharomyces cerevisiae FRY2915 exhibited the highest fermentation capacity. Furthermore, FRY2915 was able to ferment grape juice to produce wine, yielding an alcohol concentration of more than 12%. The four rose yeasts isolated during this study have the potential to produce various types of unique fermented foods, thus enhancing the value of the microbiota associated with rose flowers.
Collapse
Affiliation(s)
- Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University
| | - Kousuke Toyomura
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University
| |
Collapse
|
23
|
Abstract
Bumblebees (Bombus) are charismatic and important pollinators. They are one of the best studied insect groups, especially in terms of ecology, behavior, and social structure. As many species are declining, there is a clear need to understand more about them. Microbial symbionts, which can influence many dimensions of animal life, likely have an outsized role in bumblebee biology. Recent research has shown that a conserved set of beneficial gut bacterial symbionts is ubiquitous across bumblebees. These bacteria are related to gut symbionts of honeybees, but have not been studied as intensively. Here we synthesize studies of bumblebee gut microbiota, highlight major knowledge gaps, and suggest future directions. Several patterns emerge, such as symbiont-host specificity maintained by sociality, frequent symbiont loss from individual bees, symbiont-conferred protection from trypanosomatid parasites, and divergence between bumblebee and honeybee microbiota in several key traits. For many facets of bumblebee-microbe interactions, however, underlying mechanisms and ecological functions remain unclear. Such information is important if we are to understand how bumblebees shape, and are shaped by, their gut microbiota. Bumblebees may provide a useful system for microbiome scientists, providing insights into general principles of host-microbe interactions. We also note how microbiota could influence bumblebee traits and responses to stressors. Finally, we propose that tinkering with the microbiota could be one way to aid bumblebee resilience in the face of global change.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
- Corresponding author:
| | - Eli Le
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| | - Alexia N. Martin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
24
|
Gloder G, Bourne ME, Verreth C, Wilberts L, Bossaert S, Crauwels S, Dicke M, Poelman EH, Jacquemyn H, Lievens B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim Microbiome 2021; 3:73. [PMID: 34654483 PMCID: PMC8520287 DOI: 10.1186/s42523-021-00135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/01/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Mitchel E. Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
25
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
26
|
Janeček Š, Chmel K, Ewome FL, Hrubá K, Klomberg Y, Kobe IN, Kouede RD, Mertens JEJ, Njie MM, Tropek R. Differences in Nectar Traits between Ornithophilous and Entomophilous Plants on Mount Cameroon. PLANTS (BASEL, SWITZERLAND) 2021; 10:1161. [PMID: 34200999 PMCID: PMC8226534 DOI: 10.3390/plants10061161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022]
Abstract
Despite a growing number of studies, the role of pollinators as a selection agent for nectar traits remains unclear. Moreover, the lack of data from some biogeographic regions prohibits us from determining their general importance and global patterns. We analyzed nectar carbohydrate traits and determined the main pollinators of 66 plant species in the tropical forests of Mount Cameroon (tropical West Africa). The measured nectar traits included total sugar amounts and proportions of sucrose and hexoses (i.e., glucose and fructose). We report the nectar properties for plants visited by five pollinator groups (bees, butterflies, moths, hoverflies, and specialized birds). Our results indicate that, rather than specific evolution in each of the five plant groups, there was a unique nectar-trait evolution in plants pollinated by specialized birds. The ornithophilous plants had a higher proportion of sucrose and produced larger sugar amounts than the plants pollinated by insects. We also demonstrated a significant phylogenetic signal in the nectar properties in some lineages of the studied plants.
Collapse
Affiliation(s)
- Štěpán Janeček
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
| | - Kryštof Chmel
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
- Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic;
| | | | - Karolína Hrubá
- Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic;
- Department of Zoology, Faculty of Sciences, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic
| | - Yannick Klomberg
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
- Naturalis Biodiversity Center, Darwinweg 2, 2233 CR Leiden, The Netherlands
| | - Ishmeal N. Kobe
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
| | - Raissa Dywou Kouede
- Department of Nursing, Faculty of Health Science, Herzing University, 1865 SR 436, Winter Park, Orlando, FL 32792, USA;
| | - Jan E. J. Mertens
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
| | - Marcus Mokake Njie
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea 63, Cameroon;
| | - Robert Tropek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic; (K.C.); (Y.K.); (I.N.K.); (J.E.J.M.); (R.T.)
- Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic;
| |
Collapse
|
27
|
Rering CC, Rudolph AB, Beck JJ. Pollen and yeast change nectar aroma and nutritional content alone and together, but honey bee foraging reflects only the avoidance of yeast. Environ Microbiol 2021; 23:4141-4150. [PMID: 33876542 DOI: 10.1111/1462-2920.15528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Floral nectar often contains pollen and microorganisms, which may change nectar's chemical composition, and in turn impact pollinator affinity. However, their individual and combined effects remain understudied. Here, we examined the impacts of the nectar specialist yeast, Metschnikowia reukaufii, and the addition of sunflower (Hellianthus annus) pollen. Pollen grains remained intact, yet still increased yeast growth and amino acid concentrations in nectar, whereas yeast depleted amino acids. Pollen, but not yeast, changed nectar sugar concentrations by converting sucrose to its monomers. Both pollen and yeast contributed emissions from nectar, though yeast volatiles were more abundant than pollen volatiles. Yeast volatile emission was positively correlated with pollen concentration and cell density, and yeast depleted a subset of pollen-derived volatiles. Honey bees avoided foraging on yeast-inoculated nectar and foraged equally among uninoculated nectars regardless of pollen content, underscoring the importance of microbial metabolites in mediating pollinator foraging.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| |
Collapse
|
28
|
Francis JS, Tatarko AR, Richman SK, Vaudo AD, Leonard AS. Microbes and pollinator behavior in the floral marketplace. CURRENT OPINION IN INSECT SCIENCE 2021; 44:16-22. [PMID: 33075580 DOI: 10.1016/j.cois.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Pollinator foraging decisions shape microbial dispersal, and microbes change floral phenotypes in ways perceivable by pollinators. Yet, the role microbes play in the cognitive ecology of pollination is relatively unexplored. Reviewing recent literature on floral microbial ecology and pollinator behavior, we advocate for further integration between these two fields. Insights into pollinator learning, memory, and decision-making can help explain their responses to microbially-altered floral phenotypes. Specifically, considering how pollinators forage for multiple nutrients, cope with uncertainty, structure foraging bouts, and move through their environment could inform predictions about microbial dispersal within plant communities. We highlight how behavior connects microbial changes in floral phenotype to downstream effects on both microbial dispersal and plant fitness.
Collapse
Affiliation(s)
- Jacob S Francis
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anna R Tatarko
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Sarah K Richman
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anthony D Vaudo
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Anne S Leonard
- Department of Biology, MS-314, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
29
|
Adler LS, Irwin RE, McArt SH, Vannette RL. Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. CURRENT OPINION IN INSECT SCIENCE 2021; 44:1-7. [PMID: 32866657 PMCID: PMC7914268 DOI: 10.1016/j.cois.2020.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 05/22/2023]
Abstract
Flowers provide resources for pollinators, and can also be transmission venues for beneficial or pathogenic pollinator-associated microbes. Floral traits could mediate transmission similarly for beneficial and pathogenic microbes, although some beneficial microbes can grow in flowers while pathogenic microbes may only survive until acquired by a new host. In spite of conceptual similarities, research on beneficial and pathogenic pollinator-associated microbes has progressed mostly independently. Recent advances demonstrate that floral traits are associated with transmission of beneficial and pathogenic microbes, with consequences for pollinator populations and communities. However, there is a near-absence of experimental manipulations of floral traits to determine causal effects on transmission, and a need to understand how floral, microbe and host traits interact to mediate transmission.
Collapse
Affiliation(s)
- Lynn S Adler
- Department of Biology, University of Massachusetts, 221 Morrill Science Center, 611 N. Pleasant St., Amherst MA 01002 USA.
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, 127 David Clark Labs, 100 Eugene Brooks Ave., Raleigh, NC 27695 USA
| | - Scott H McArt
- Department of Entomology, Cornell University, 4132 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853 USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, 43 Briggs Hall, Davis CA 95616 USA
| |
Collapse
|
30
|
Jacquemyn H, Pozo MI, Álvarez-Pérez S, Lievens B, Fukami T. Yeast-nectar interactions: metacommunities and effects on pollinators. CURRENT OPINION IN INSECT SCIENCE 2021; 44:35-40. [PMID: 33065340 DOI: 10.1016/j.cois.2020.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
About 90% of all flowering plant species are pollinated by animals. Animals are attracted to flowers because they often provide food in the form of nectar and pollen. While floral nectar is assumed to be initially sterile, it commonly becomes colonized by yeasts after animals have visited the flowers. Although yeast communities in floral nectar appear simple, community assembly depends on a complex interaction between multiple factors. Yeast colonization has a significant effect on the scent of floral nectar, foraging behavior of insects and nectar consumption. Consumption of nectar colonized by yeasts has been shown to improve bee fitness, but effects largely depended on yeast species. Altogether, these results indicate that dispersal, colonization history and nectar chemistry strongly interact and have pronounced effects on yeast metacommunities and, as a result, on bee foraging behavior and fitness. Future research directions to better understand the dynamics of plant-microbe-pollinator interactions are discussed.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001 Leuven, Belgium
| | - María I Pozo
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001 Leuven, Belgium
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium.
| | - Tadashi Fukami
- Department of Biology, Stanford University, 94305 Stanford, CA, USA
| |
Collapse
|
31
|
Detry R, Simon-Delso N, Bruneau E, Daniel HM. Specialisation of Yeast Genera in Different Phases of Bee Bread Maturation. Microorganisms 2020; 8:E1789. [PMID: 33202620 PMCID: PMC7696220 DOI: 10.3390/microorganisms8111789] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Pollen stored by bees undergoes a fermentation marked by the presence of lactic acid bacteria and yeasts. It results in bee bread. Past studies have singled out Starmerella (Candida) magnoliae as the most common yeast species in honey bee-stored bee bread. Starmerella species are ecological specialists with potential biotechnological value. The rarity of recent studies on yeasts in honey bees prompted us to generate new information on yeast diversity during the conversion of bee-collected pollen to bee bread. Bees and stored pollen from two apiaries in Belgium were sampled, a yeast isolation protocol was developed, yeast isolates were grouped according to their macro- and micromorphology, and representative isolates were identified using DNA sequences. Most of the 252 identified isolates belonged to the genera Starmerella, Metschnikowia, and Zygosaccharomyces. The high abundance of yeasts in fresh bee bread decreased rapidly with the storage duration. Starmerella species dominated fresh bee bread, while mostly Zygosaccharomyces members were isolated from aged bee bread. Starmerella (Candida) apis, a rarely isolated species, was the most frequent and abundant species in fresh bee bread. Yeasts from the bee's honey stomach and from pollen pellets obtained from bees hind legs were dominated by Metschnikowia species. The distinctive communities from pollen pellets over fresh bee bread to aged bee bread indicate a non-random distribution of these yeasts.
Collapse
Affiliation(s)
- Roxane Detry
- Laboratory of Mycology, Earth and Life Institute, Applied Microbiology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Noa Simon-Delso
- Beekeeping Research and Information Centre (CARI), 1348 Louvain-la-Neuve, Belgium; (N.S.-D.); (E.B.)
| | - Etienne Bruneau
- Beekeeping Research and Information Centre (CARI), 1348 Louvain-la-Neuve, Belgium; (N.S.-D.); (E.B.)
| | - Heide-Marie Daniel
- Laboratory of Mycology, Earth and Life Institute, Applied Microbiology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
- Belgian Coordinated Collection of Microorganisms (BCCM), Mycothèque de l’Université Catholique de Louvain (MUCL), 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Vannette RL. The Floral Microbiome: Plant, Pollinator, and Microbial Perspectives. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-013401] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowers at times host abundant and specialized communities of bacteria and fungi that influence floral phenotypes and interactions with pollinators. Ecological processes drive variation in microbial abundance and composition at multiple scales, including among plant species, among flower tissues, and among flowers on the same plant. Variation in microbial effects on floral phenotype suggests that microbial metabolites could cue the presence or quality of rewards for pollinators, but most plants are unlikely to rely on microbes for pollinator attraction or reproduction. From a microbial perspective, flowers offer opportunities to disperse between habitats, but microbial species differ in requirements for and benefits received from such dispersal. The extent to which floral microbes shape the evolution of floral traits, influence fitness of floral visitors, and respond to anthropogenic change is unclear. A deeper understanding of these phenomena could illuminate the ecological and evolutionary importance of floral microbiomes and their role in the conservation of plant–pollinator interactions.
Collapse
Affiliation(s)
- Rachel L. Vannette
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
33
|
Floral fungal-bacterial community structure and co-occurrence patterns in four sympatric island plant species. Fungal Biol 2020; 125:49-61. [PMID: 33317776 DOI: 10.1016/j.funbio.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Flowers' fungal and bacterial communities can exert great impacts on host plant wellness and reproductive success-both directly and indirectly through species interactions. However, information about community structure and co-occurrence patterns in floral microbiome remains scarce. Here, using culture-independent methods, we investigated fungal and bacterial communities associated with stamens and pistils of four plant species (Scaevola taccada, Ipomoea cairica, Ipomoea pes-caprae, and Mussaenda kwangtungensis) growing together under the same environment conditions in an island located in South China. Plant species identity significantly influenced community composition of floral fungi but not bacteria. Stamen and pistil microbiomes did not differ in community composition, but differed in co-occurrence network topological features. Compared with the stamen network, pistil counterpart had fewer links between bacteria and fungi and showed more modular but less concentrated and connected structure. In addition, degree distribution of microbial network in each host species and each microhabitat (stamen or pistil) followed a significant power-law pattern. These results enhance our understanding in the assembly principles and ecological interactions of floral microbial communities.
Collapse
|
34
|
Microbial Co-Occurrence in Floral Nectar Affects Metabolites and Attractiveness to a Generalist Pollinator. J Chem Ecol 2020; 46:659-667. [PMID: 32246258 DOI: 10.1007/s10886-020-01169-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/27/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Microbial metabolism can shape cues important for animal attraction in service-resource mutualisms. Resources are frequently colonized by microbial communities, but experimental assessment of animal-microbial interactions often focus on microbial monocultures. Such an approach likely fails to predict effects of microbial assemblages, as microbe-microbe interactions may affect in a non-additive manner microbial metabolism and resulting chemosensory cues. Here, we compared effects of microbial mono- and cocultures on growth of constituent microbes, volatile metabolite production, sugar catabolism, and effects on pollinator foraging across two nectar environments that differed in sugar concentration. Growth in co-culture decreased the abundance of the yeast Metschnikowia reukaufii, but not the bacterium Asaia astilbes. Volatile emissions differed significantly between microbial treatments and with nectar concentration, while sugar concentration was relatively similar among mono- and cocultures. Coculture volatile emission closely resembled an additive combination of monoculture volatiles. Despite differences in microbial growth and chemosensory cues, honey bee feeding did not differ between microbial monocultures and assemblages. Taken together, our results suggest that in some cases, chemical and ecological effects of microbial assemblages are largely predictable from those of component species, but caution that more work is necessary to predict under what circumstances non-additive effects are important.
Collapse
|