1
|
Moss WE, Crausbay SD, Rangwala I, Wason JW, Trauernicht C, Stevens-Rumann CS, Sala A, Rottler CM, Pederson GT, Miller BW, Magness DR, Littell JS, Frelich LE, Frazier AG, Davis KT, Coop JD, Cartwright JM, Booth RK. Drought as an emergent driver of ecological transformation in the twenty-first century. Bioscience 2024; 74:524-538. [PMID: 39872081 PMCID: PMC11770345 DOI: 10.1093/biosci/biae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/02/2024] [Indexed: 01/29/2025] Open
Abstract
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly or through drought's interactions with factors such as land management, biotic interactions, and other disturbances. We emphasize how interactions among mechanisms can inhibit postdrought recovery and can shift trajectories toward alternate states. Providing a holistic picture of how drought initiates long-term change supports the development of risk assessments, predictive models, and management strategies, enhancing preparedness for a complex and growing challenge.
Collapse
Affiliation(s)
- Wynne E Moss
- Conservation Science Partners, Truckee, California, United States
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Truckee, California, United States
- USDA Forest Service, Fort Collins, Colorado, United States
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center and with the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States
| | - Jay W Wason
- School of Forest Resources at the University of Maine, Orono, Maine, United States
| | - Clay Trauernicht
- Department of Natural Resources and Environmental Management at the University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute in the Forest and Rangeland Stewardship Department at Colorado State University in Fort Collins, Colorado, United States
| | - Anna Sala
- Division of Biological Sciences at the University of Montana, Missoula, Montana, United States
| | - Caitlin M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma, United States
| | - Gregory T Pederson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Brian W Miller
- U.S. Geological Survey, North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Dawn R Magness
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - Jeremy S Littell
- U.S. Geological Survey, Alaska Climate Adaptation Science Center, Anchorage, Alaska, United States
| | - Lee E Frelich
- Department of Forest Resources at the University of Minnesota, Saint Paul, Minnesota, United States
| | - Abby G Frazier
- Graduate School of Geography at Clark University, Worcester, Massachusetts, United States
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences at the University of Montana, Missoula, Montana, United States
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station of the USDA Forest Service, Missoula, Montana, United States
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, United States
| | - Jennifer M Cartwright
- U.S. Geological Survey, Southeast Climate Adaptation Science Center, Raleigh, North Carolina, United States
| | - Robert K Booth
- Earth and Environmental Science Department at Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
2
|
Kunert N, Münchinger IK, Hajek P. Turgor loss point explains climate-driven growth reductions in trees in Central Europe. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38940818 DOI: 10.1111/plb.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
As climate change thrives, and the frequency of intense droughts is affecting many forested regions, a mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. However, studies linking the observed growth reduction to mechanistic traits are still rare. We compared the median growth anomalies of 16 native tree species, gathered across a network of study plots in Bavaria, with the mean species-specific turgor loss point (πtlp) measured at five locations in Central Europe πtlp explained 37% of the growth anomalies observed in response to the intense droughts between 2018 and 2020 compared to the pre-drought period between 2006 and 2017 across sites. πtlp constitutes an important leaf drought tolerance trait and influences the growth response of native tree species during extraordinary dry periods. As climate change-induced droughts intensify, tree species with drought-tolerant leaves will be less vulnerable to growth reductions. πtlp provides a useful indicator for selecting tree species to adapt forest management systems to climate change.
Collapse
Affiliation(s)
- N Kunert
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - I K Münchinger
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
| | - P Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Hopkins AJM, Brace AJ, Bruce JL, Hyde J, Fontaine JB, Walden L, Veber W, Ruthrof KX. Drought legacy interacts with wildfire to alter soil microbial communities in a Mediterranean climate-type forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170111. [PMID: 38232837 DOI: 10.1016/j.scitotenv.2024.170111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Mediterranean forest ecosystems will be increasingly affected by hotter drought and more frequent and severe wildfire events in the future. However, little is known about the longer-term responses of these forests to multiple disturbances and the forests' capacity to maintain ecosystem function. This is particularly so for below-ground organisms, which have received less attention than those above-ground, despite their essential contributions to forest function. We investigated rhizosphere microbial communities in a resprouting Eucalyptus marginata forest, southwestern Australia, that had experienced a severe wildfire four years previously, and a hotter drought eight years previously. Our aim was to understand how microbial communities are affected over longer-term trajectories by hotter drought and wildfire, singularly, and in combination. Fungal and bacterial DNA was extracted from soil samples, amplified, and subjected to high throughput sequencing. Richness, diversity, composition, and putative functional groups were then examined. We found a monotonic decrease in fungal, but not bacterial, richness and diversity with increasing disturbance with the greatest changes resulting from the combination of drought and wildfire. Overall fungal and bacterial community composition reflected a stronger effect of fire than drought, but the combination of both produced the greatest number of indicator taxa for fungi, and a significant negative effect on the abundance of several fungal functional groups. Key mycorrhizal fungi, fungal saprotrophs and fungal pathogens were found at lower proportions in sites affected by drought plus wildfire. Wildfire had a positive effect on bacterial hydrogen and bacterial nitrogen recyclers. Fungal community composition was positively correlated with live tree height. These results suggest that microbial communities, in particular key fungal functional groups, are highly responsive to wildfire following drought. Thus, a legacy of past climate conditions such as hotter drought can be important for mediating the responses of soil microbial communities to subsequent disturbance like wildfire.
Collapse
Affiliation(s)
- A J M Hopkins
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - A J Brace
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J L Bruce
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - J Hyde
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia
| | - J B Fontaine
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - L Walden
- Soil and Landscape Science, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - W Veber
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - K X Ruthrof
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Filipe JC, Ahrens CC, Byrne M, Hardy G, Rymer PD. Germination temperature sensitivity differs between co-occurring tree species and climate origins resulting in contrasting vulnerability to global warming. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:146-162. [PMID: 37362420 PMCID: PMC10290426 DOI: 10.1002/pei3.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Climate change is shifting temperatures from historical patterns, globally impacting forest composition and resilience. Seed germination is temperature-sensitive, making the persistence of populations and colonization of available habitats vulnerable to warming. This study assessed germination response to temperature in foundation trees in south-western Australia's Mediterranean-type climate forests (Eucalyptus marginata (jarrah) and Corymbia calophylla (marri)) to estimate the thermal niche and vulnerability among populations. Seeds from the species' entire distribution were collected from 12 co-occurring populations. Germination thermal niche was investigated using a thermal gradient plate (5-40°C). Five constant temperatures between 9 and 33°C were used to test how the germination niche (1) differs between species, (2) varies among populations, and (3) relates to the climate of origin. Germination response differed among species; jarrah had a lower optimal temperature and thermal limit than marri (T o 15.3°C, 21.2°C; ED50 23.4°C, 31°C, respectively). The thermal limit for germination differed among populations within both species, yet only marri showed evidence for adaptation to thermal origins. While marri has the capacity for germination at higher thermal temperatures, jarrah is more vulnerable to global warming exceeding safety margins. This discrepancy is predicted to alter species distributions and forest composition in the future.
Collapse
Affiliation(s)
- João C. Filipe
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Collin C. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNew South WalesAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| | - Margaret Byrne
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Giles Hardy
- Centre for Terrestrial Ecosystem Science and SustainabilityHarry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
6
|
Kunert N, Hajek P, Hietz P, Morris H, Rosner S, Tholen D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1254-1261. [PMID: 34651391 PMCID: PMC10078684 DOI: 10.1111/plb.13349] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Climate change-related environmental stress has been recognized as a driving force in accelerating forest mortality over the last decades in Central Europe. Here, we aim to elucidate the thermal sensitivity of three native conifer species, namely Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver fir (Abies alba), and three non-native species, namely Austrian pine (Pinus nigra), Douglas fir (Pseudotsuga menziesii) and Atlas cedar (Cedrus atlantica). Thermal sensitivity, defined here as a decline of the maximum quantum yield of photosystem II (Fv /Fm ) with increasing temperature, was measured under varying levels of heat stress and compared with the turgor loss point (πtlp ) as a drought resistance trait. We calculated three different leaf thermotolerance traits: the temperature at the onset (5%) of the Fv /Fm decline (T5), the temperature at which Fv /Fm was half the maximum value (T50) and the temperature at which only 5% Fv /Fm remained (T95). T5 ranged from 38.5 ± 0.8 °C to 43.1 ± 0.6 °C across all species, while T50 values were at least 9 to 11 degrees above the maximum air temperatures on record for all species. Only Austrian pine had a notably higher T5 value than recorded maximum air temperatures. Species with higher T5 values were characterized by a less negative πtlp compared to species with lower T5. The six species could be divided into 'drought-tolerant heat-sensitive' and 'drought-sensitive heat-tolerant' groups. Exposure to short-term high temperatures thus exhibits a considerable threat to conifer species in Central European forest production systems.
Collapse
Affiliation(s)
- N. Kunert
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - P. Hajek
- GeobotanyUniversity of FreiburgFreiburgGermany
| | - P. Hietz
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - H. Morris
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - S. Rosner
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| | - D. Tholen
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
7
|
Kiskaddon E, Bienn H, Hemmerling SA, Dalyander S, Grismore A, Parfait J, Miner MD, Cameron C, Hopkins TE, Allen Y, Jones-Farrand D, Martin M, Tirpak BE, Green M, Rhinehart K, Carruthers TJ. Supporting habitat restoration in the northern Gulf of Mexico through synthesis of data on multiple and interacting benefits and stressors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115589. [PMID: 35772270 DOI: 10.1016/j.jenvman.2022.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Outcomes of landscape scale restoration and conservation can be maximized when planning is based upon quantitative and decision-relevant information. Existing tools to support data-driven planning are hindered by regionally inconsistent information and a need for advanced methods to analyze data of varying spatial resolution and coverage. We present a synthesis methodology for region-wide derived metrics to characterize natural resource value, ecosystem stress, and social vulnerability to inform implementation of conservation and restoration projects. Our three-part methodology was developed and tested for the Gulf of Mexico in support of the Southeast Conservation Blueprint that was created to advance the Southeast Conservation and Adaptation Strategy. The first step included integration of prioritized natural resource metrics alongside socio-ecological metrics to create a data layer of synthesized natural resource priority across the northern Gulf of Mexico. The second component was calculation of ecosystem stress indices based on ecologically relevant thresholds and a cumulative ecosystem stress layer, in addition to analyzing correlations between individual stressors and their relative importance. The final component was development of a social vulnerability (SoVI) index. Analysis of these metrics illustrate their ability to effectively capture variability at multiple scales in the Gulf of Mexico, including expected spatial correlation of stressors such as road density and non-point source pollution in populated areas and the dominance of sea-level rise as a future stressor along the coast. Significant composite components of social vulnerability for the northern Gulf of Mexico region were identified and include economic status, professional workforce, elderly population, population stability, migrant workforce, and rural population. To demonstrate the utility of the data synthesis approach, we used the developed data layers to evaluate proposed marsh creation projects in southern Louisiana. The synthesized data layers were capable of distinguishing differences at the scale of individual habitat restoration projects, and high-value projects could be aligned with the goals of key funding streams. This pilot application illustrates how restoration programs could use the methodology developed here to maximize benefits from conservation and restoration actions along the northern Gulf of Mexico or other regions globally.
Collapse
Affiliation(s)
- Erin Kiskaddon
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA.
| | - Harris Bienn
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Scott A Hemmerling
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Soupy Dalyander
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Audrey Grismore
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Jessi Parfait
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Michael D Miner
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Charley Cameron
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| | - Todd E Hopkins
- U.S. Fish and Wildlife Service, USA; 1339 20th Street, Vero Beach, FL, 32960, USA
| | - Yvonne Allen
- U.S. Fish and Wildlife Service, USA; 1875 Century Boulevard, Atlanta, GA, 30345, USA
| | - David Jones-Farrand
- U.S. Fish and Wildlife Service, USA; 302 Natural Resources, Univ. Columbia, Missouri, 65211, USA
| | - Mallory Martin
- U.S. Fish and Wildlife Service, USA; P.O. Box 433, Linville, NC, USA
| | - Blair E Tirpak
- U.S. Fish and Wildlife Service, USA; 1875 Century Boulevard, Atlanta, GA, 30345, USA
| | - Mandy Green
- Royal Engineers & Consultants, LLC, 14635 S Harrell's Ferry Rd #4B, Baton Rouge, LA, 70816, USA
| | - Kirk Rhinehart
- Royal Engineers & Consultants, LLC, 14635 S Harrell's Ferry Rd #4B, Baton Rouge, LA, 70816, USA
| | - Tim Jb Carruthers
- The Water Institute of the Gulf, 1110 River Rd S, Baton Rouge, LA, 70802, USA
| |
Collapse
|
8
|
Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:673-702. [PMID: 35231182 DOI: 10.1146/annurev-arplant-102820-012804] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, Jena, Germany;
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, Jena, Germany
| | - Adrian J Das
- US Geological Survey, Western Ecological Research Center, Three Rivers, Sequoia and Kings Canyon Field Station, California, USA
| | - Adriane Esquivel-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jennifer S Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thomas A M Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Katinka X Ruthrof
- Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
- Murdoch University, Murdoch, Western Australia, Australia
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
9
|
Bendall ER, Bedward M, Boer M, Clarke H, Collins L, Leigh A, Bradstock RA. Growth enhancements of elevated atmospheric [CO
2
] are reduced under drought‐like conditions in temperate eucalypts. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. R. Bendall
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| | - M. Bedward
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| | - M. Boer
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - H. Clarke
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - L. Collins
- La Trobe University Department of Ecology Environment & Evolution Bundoora Victoria 3086 Australia
- Arthur Rylah Institute for Environmental Research Department of Environment, Land, Water and Planning Heidelberg Victoria 3084 Australia
- Pacific Forestry Centre Canadian Forest Service Natural Resources Canada 506 Burnside Road West Victoria BC V8Z 1M5 Canada
| | - A. Leigh
- University of Technology Sydney School of Life Sciences Broadway New South Wales Australia
| | - R. A. Bradstock
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| |
Collapse
|
10
|
Efficacy of Chemical and Biological Stump Treatments for the Control of Heterobasidion occidentale Infection of California Abies concolor. Pathogens 2021; 10:pathogens10111390. [PMID: 34832546 PMCID: PMC8621004 DOI: 10.3390/pathogens10111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
We conducted an experimental evaluation of treatments to limit Heterobasidion occidentale infection of white fir (Abies concolor) stumps and wounds in California mixed conifer forests. We tested the efficacy of urea, borate, and a mixture of two locally collected Phlebiopsis gigantea strains in preventing pathogen colonization of fir stumps and separately, urea and borate as infection controls on experimental stem wounds. These were paired with a laboratory test on ~100 g wood blocks with and without a one-week delay between inoculation and treatment. Urea, borates, and Phlebiopsis treatments all significantly reduced the stump surface area that was colonized by H. occidentale at 84%, 91%, and 68%, respectively, relative to the controls. However, only the borate treatments significantly lowered the number of stumps that were infected by the pathogen. The laboratory study matched the patterns that were found in the stump experiment with a reduced area of colonization for urea, borates, or P. gigantea treatments relative to the controls; delaying the treatment did not affect efficacy. The field wound experiment did not result in any Heterobasidion colonization, even in positive control treatments, rendering the experiment uninformative. Our study suggests treatments that are known to limit Heterobasidion establishment on pine or spruce stumps elsewhere in the world may also be effective on true firs in California.
Collapse
|
11
|
Wilder BT, Jarnevich CS, Baldwin E, Black JS, Franklin KA, Grissom P, Hovanes KA, Olsson A, Malusa J, Kibria AS, Li YM, Lien AM, Ponce A, Rowe JA, Soto JR, Stahl MR, Young NE, Betancourt JL. Grassification and Fast-Evolving Fire Connectivity and Risk in the Sonoran Desert, United States. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.655561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the southwestern United States, non-native grass invasions have increased wildfire occurrence in deserts and the likelihood of fire spread to and from other biomes with disparate fire regimes. The elevational transition between desertscrub and montane grasslands, woodlands, and forests generally occurs at ∼1,200 masl and has experienced fast suburbanization and an expanding wildland-urban interface (WUI). In summer 2020, the Bighorn Fire in the Santa Catalina Mountains burned 486 km2 and prompted alerts and evacuations along a 40-km stretch of WUI below 1,200 masl on the outskirts of Tucson, Arizona, a metropolitan area of >1M people. To better understand the changing nature of the WUI here and elsewhere in the region, we took a multidimensional and timely approach to assess fire dynamics along the Desertscrub-Semi-desert Grassland ecotone in the Catalina foothills, which is in various stages of non-native grass invasion. The Bighorn Fire was principally a forest fire driven by a long-history of fire suppression, accumulation of fine fuels following a wet winter and spring, and two decades of hotter droughts, culminating in the hottest and second driest summer in the 125-yr Tucson weather record. Saguaro (Carnegia gigantea), a giant columnar cactus, experienced high mortality. Resprouting by several desert shrub species may confer some post-fire resiliency in desertscrub. Buffelgrass and other non-native species played a minor role in carrying the fire due to the patchiness of infestation at the upper edge of the Desertscrub biome. Coupled state-and-transition fire-spread simulation models suggest a marked increase in both burned area and fire frequency if buffelgrass patches continue to expand and coalesce at the Desertscrub/Semi-desert Grassland interface. A survey of area residents six months after the fire showed awareness of buffelgrass was significantly higher among residents that were evacuated or lost recreation access, with higher awareness of fire risk, saguaro loss and declining property values, in that order. Sustained and timely efforts to document and assess fast-evolving fire connectivity due to grass invasions, and social awareness and perceptions, are needed to understand and motivate mitigation of an increasingly fire-prone future in the region.
Collapse
|
12
|
Drought and Pathogen Effects on Survival, Leaf Physiology, Oxidative Damage, and Defense in Two Middle Eastern Oak Species. FORESTS 2021. [DOI: 10.3390/f12020247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The charcoal disease agents, Biscogniauxia mediterranea and Obolarina persica are two latent, ascomycetous oak pathogens in the Middle Eastern Zagros forests, where they have devastating effects, particularly during drought. Under greenhouse conditions, we investigated the effects of the two charcoal disease agents individually and in combination with drought on survival, growth, foliar gas-exchange, pigment content, oxidative stress and the antioxidant response of Quercus infectoria and Q. libani, two of the dominant tree species in this region. Commonly, the strongest negative effects emerged in the drought–pathogen interaction treatments. Q. infectoria showed less severe lesions, higher survival, more growth, and less leaf loss than Q. libani under combined biotic and abiotic stress. In both oak species, the combination of pathogen infection and drought resulted in more than 50% reduction in foliar gas-exchange parameters with partial recovery over time in Q. infectoria suggesting a superior defense system. Indeed, enhanced foliar anthocyanin, total soluble protein and glutathione concentrations imply an upregulation of the antioxidant defense system in Q. infectoria under stress while none of these parameters showed a significant treatment response in Q. libani. Consequently, Q. infectoria foliage showed no significant increase in superoxide, lower lipoxygenase activity, and less electrolyte leakage compared to the highly elevated levels seen in Q. libani indicating oxidative damage. Our findings indicate greater drought tolerance and pathogen resilience in Q. infectoria compared to Q. libani. Under future climate scenarios, we therefore expect changes in forest community structure driven by a decline in Q. libani and closely associated organisms.
Collapse
|
13
|
Batllori E, Lloret F, Aakala T, Anderegg WRL, Aynekulu E, Bendixsen DP, Bentouati A, Bigler C, Burk CJ, Camarero JJ, Colangelo M, Coop JD, Fensham R, Floyd ML, Galiano L, Ganey JL, Gonzalez P, Jacobsen AL, Kane JM, Kitzberger T, Linares JC, Marchetti SB, Matusick G, Michaelian M, Navarro-Cerrillo RM, Pratt RB, Redmond MD, Rigling A, Ripullone F, Sangüesa-Barreda G, Sasal Y, Saura-Mas S, Suarez ML, Veblen TT, Vilà-Cabrera A, Vincke C, Zeeman B. Forest and woodland replacement patterns following drought-related mortality. Proc Natl Acad Sci U S A 2020; 117:29720-29729. [PMID: 33139533 PMCID: PMC7703631 DOI: 10.1073/pnas.2002314117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Enric Batllori
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Unitat de Botànica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Francisco Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Unitat d'Ecologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona, 08193 Barcelona, Spain
| | - Tuomas Aakala
- Department of Forest Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Devin P Bendixsen
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74074
| | - Abdallah Bentouati
- Institut des Sciences Vétérinaires et des Sciences Agronomiques, Université El Hadj Lakhdar, 05000 Batna, Algérie
| | - Christof Bigler
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - C John Burk
- Department of Biological Sciences, Smith College, Northampton, MA 01066
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Jonathan D Coop
- School of Environment and Sustainability, Western Colorado University, Gunnison, CO 81231
| | | | | | - Lucía Galiano
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Joseph L Ganey
- Rocky Mountain Research Station, United States Department of Agriculture (USDA) Forest Service, Flagstaff, AZ 86001
| | - Patrick Gonzalez
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
- Institute for Parks, People, and Biodiversity, University of California, Berkeley, CA 94720
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, CA 93311
| | - Jeffrey Michael Kane
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521
| | - Thomas Kitzberger
- Departamento de Ecología, Universidad Nacional del Comahue (UN Comahue), 8400 Bariloche, Río Negro, Argentina
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Ciencia y Tecnología (CONICET)-UN Comahue, 8400 Bariloche, Río Negro, Argentina
| | - Juan C Linares
- Departamento Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - George Matusick
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Michael Michaelian
- Natural Resources Canada, Canadian Forest Service, Edmonton, AB T6H 3S5, Canada
| | - Rafael M Navarro-Cerrillo
- Department of Forest Engineering, Laboratory of Dendrochronology, Silviculture and Global Change (DendrodatLab-ERSAF), University of Córdoba, 14071 Córdoba, Spain
| | | | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecology, Department of Environmental Sciences, Swiss Federal Institute Technology, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Francesco Ripullone
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Gabriel Sangüesa-Barreda
- Departamento de Ciencias Agroforestales, Escuela de Ingeniería de Soria (EiFAB), Instituto Universitario de Investigación Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid, 42004 Soria, Spain
| | - Yamila Sasal
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Ciencia y Tecnología (CONICET)-UN Comahue, 8400 Bariloche, Río Negro, Argentina
| | - Sandra Saura-Mas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Laura Suarez
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Consejo Nacional de Ciencia y Tecnología (CONICET)-UN Comahue, 8400 Bariloche, Río Negro, Argentina
| | - Thomas T Veblen
- Department of Geography, University of Colorado Boulder, Boulder, CO 80301
| | - Albert Vilà-Cabrera
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| | - Caroline Vincke
- Faculty of Bioscience Engineering, Université Catholique de Louvain,1348 Louvain-la-Neuve, Belgium
- Earth and Life Institute, Université Catholique de Louvain,1348 Louvain-la-Neuve, Belgium
| | - Ben Zeeman
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
14
|
Hulme PE, Baker R, Freckleton R, Hails RS, Hartley M, Harwood J, Marion G, Smith GC, Williamson M. The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Emerging microparasite (e.g. viruses, bacteria, protozoa and fungi) epidemics and the introduction of non-native pests and weeds are major biosecurity threats worldwide. The likelihood of these threats is often estimated from probabilities of their entry, establishment, spread and ease of prevention. If ecosystems are considered equivalent to hosts, then compartment disease models should provide a useful framework for understanding the processes that underpin non-native species invasions. To enable greater cross-fertilisation between these two disciplines, the Epidemiological Framework for Biological Invasions (EFBI) is developed that classifies ecosystems in relation to their invasion status: Susceptible, Exposed, Infectious and Resistant. These states are linked by transitions relating to transmission, latency and recovery. This viewpoint differs markedly from the species-centric approaches often applied to non-native species. It allows generalisations from epidemiology, such as the force of infection, the basic reproductive ratio R0, super-spreaders, herd immunity, cordon sanitaire and ring vaccination, to be discussed in the novel context of non-native species and helps identify important gaps in the study of biological invasions. The EFBI approach highlights several limitations inherent in current approaches to the study of biological invasions including: (i) the variance in non-native abundance across ecosystems is rarely reported; (ii) field data rarely (if ever) distinguish source from sink ecosystems; (iii) estimates of the susceptibility of ecosystems to invasion seldom account for differences in exposure to non-native species; and (iv) assessments of ecosystem susceptibility often confuse the processes that underpin patterns of spread within -and between- ecosystems. Using the invasion of lakes as a model, the EFBI approach is shown to present a new biosecurity perspective that takes account of ecosystem status and complements demographic models to deliver clearer insights into the dynamics of biological invasions at the landscape scale. It will help to identify whether management of the susceptibility of ecosystems, of the number of vectors, or of the diversity of pathways (for movement between ecosystems) is the best way of limiting or reversing the population growth of a non-native species. The framework can be adapted to incorporate increasing levels of complexity and realism and to provide insights into how to monitor, map and manage biological invasions more effectively.
Collapse
|
15
|
Simler-Williamson AB, Rizzo DM, Cobb RC. Interacting Effects of Global Change on Forest Pest and Pathogen Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens and insect pests are important drivers of tree mortality and forest dynamics, but global change has rapidly altered or intensified their impacts. Predictive understanding of changing disease and outbreak occurrence has been limited by two factors: ( a) tree mortality and morbidity are emergent phenomena determined by interactions between plant hosts, biotic agents (insects or pathogens), and the environment; and ( b) disparate global change drivers co-occur, obscuring net impacts on each of these components. To expand our understanding of changing forest diseases, declines, and outbreaks, we adopt a framework that identifies and organizes observed impacts of diverse global change drivers on the primary mechanisms underlying agent virulence and host susceptibility. We then discuss insights from ecological theory that may advance prediction of forest epidemics and outbreaks. This approach highlights key drivers of changing pest and pathogen dynamics, which may inform forest management aimed at mitigating accelerating rates of tree mortality globally.
Collapse
Affiliation(s)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;,
| | - Richard C. Cobb
- Department of Natural Resources Management and Environmental Science, California Polytechnic State University, San Luis Obispo, California 93407, USA
| |
Collapse
|
16
|
Chen Z, Li S, Luan J, Zhang Y, Zhu S, Wan X, Liu S. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. TREE PHYSIOLOGY 2019; 39:1428-1437. [PMID: 30977822 DOI: 10.1093/treephys/tpz045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
A growing body of evidence highlights the occurrence of increased widespread tree mortality during climate change-associated severe droughts; however, in situ long-term drought experiments with multispecies communities for the prediction of tree mortality and exploration of related mechanisms are rather limited in natural environments. We conducted a 7-year afforestation trial with 20 drought-resistant broadleaf tree species in an arid limestone habitat in northern China, where the species displayed a broad range of survival rates. The stomatal and xylem hydraulic traits of all the species were measured. We found that species' stomatal closure points were strongly related to their xylem embolism resistance and xylem minimum water potential but not to their survival rates. Hydraulic failure of the vascular system appeared to be the main cause of tree mortality, and the stomatal safety margin was a better predictor of tree mortality than the traditionally considered xylem embolism resistance and hydraulic safety margin. We recommend the stomatal safety margin as the indicator for predicting drought-induced tree mortality and for selecting tree species in future forest restorations in arid regions.
Collapse
Affiliation(s)
- Zhicheng Chen
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Junwei Luan
- Institute for Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, National Forestry and Grassland Administration, Beijing, China
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Yongtao Zhang
- Mountain Tai Forest Ecosystem Research Station of National Forestry and Grassland Administration, Forestry College of Shandong Agricultural University, Taian, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Xianchong Wan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
17
|
Anderegg WRL, Anderegg LDL, Huang CY. Testing early warning metrics for drought-induced tree physiological stress and mortality. GLOBAL CHANGE BIOLOGY 2019; 25:2459-2469. [PMID: 30983066 DOI: 10.1111/gcb.14655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Climate change-driven drought stress has triggered numerous large-scale tree mortality events in recent decades. Advances in mechanistic understanding and prediction are greatly limited by an inability to detect in situ where trees are likely to die in order to take timely measurements and actions. Thus, algorithms of early warning and detection of drought-induced tree stress and mortality could have major scientific and societal benefits. Here, we leverage two consecutive droughts in the southwestern United States to develop and test a set of early warning metrics. Using Landsat satellite data, we constructed early warning metrics from the first drought event. We then tested these metrics' ability to predict spatial patterns in tree physiological stress and mortality from the second drought. To test the broader applicability of these metrics, we also examined a separate drought in the Amazon rainforest. The early warning metrics successfully explained subsequent tree mortality in the second drought in the southwestern US, as well as mortality in the independent drought in tropical forests. The metrics also strongly correlated with spatial patterns in tree hydraulic stress underlying mortality, which provides a strong link between tree physiological stress and remote sensing during the severe drought and indicates that the loss of hydraulic function during drought likely mediated subsequent mortality. Thus, early warning metrics provide a critical foundation for elucidating the physiological mechanisms underpinning tree mortality in mature forests and guiding management responses to these climate-induced disturbances.
Collapse
Affiliation(s)
| | - Leander D L Anderegg
- Department of Integrative Biology, UC Berkeley, Berkeley, California
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California
| | - Cho-Ying Huang
- Department of Geography, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Zeppel MJB, Anderegg WRL, Adams HD, Hudson P, Cook A, Rumman R, Eamus D, Tissue DT, Pacala SW. Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecol Evol 2019; 9:5348-5361. [PMID: 31110684 PMCID: PMC6509402 DOI: 10.1002/ece3.5126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.
Collapse
Affiliation(s)
- Melanie J. B. Zeppel
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | | | - Henry D. Adams
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma
| | - Patrick Hudson
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Alicia Cook
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Rizwana Rumman
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Derek Eamus
- School of Life SciencesUniversity of Technology SydneySydneyNew South WalesAustralia
| | - David T. Tissue
- Hawkesbury Institute of the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
| |
Collapse
|
19
|
Walden LL, Fontaine JB, Ruthrof KX, Matusick G, Harper RJ, Hardy GESJ. Carbon consequences of drought differ in forests that resprout. GLOBAL CHANGE BIOLOGY 2019; 25:1653-1664. [PMID: 30737866 DOI: 10.1111/gcb.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Prolonged drought and intense heat-related events trigger sudden forest die-off events and have now been reported from all forested continents. Such die-offs are concerning given that drought and heatwave events are forecast to increase in severity and duration as climate change progresses. Quantifying consequences to carbon dynamics and storage from die-off events are critical for determining the current and future mitigation potential of forests. We took stand measurements five times over 2+ years from affected and unaffected plots across the Northern Jarrah Forest, southwestern Australia, following an acute drought/heatwave in 2011. We found a significant loss of live standing carbon (49.3 t ha-1 ), and subsequently a significant increase in the dead standing carbon pool by 6 months post-die-off. Of the persisting live trees, 38% experienced partial mortality contributing to the rapid regrowth and replenishment (82%-88%) of labile carbon pools (foliage, twigs, and branches) within 26 months. Such regrowth was not substantial in terms of net carbon changes within the timeframe of the study but does reflect the resprouting resilience of this forest type. Dead carbon generated by the die-off may persist for centuries given low fragmentation and decay rates resulting in low biogenic emission rates relative to other forest types. However, future fire may threaten persistence of both dead and live pools via combustion and mortality of live tissue and impaired regrowth capacity. Resprouting forests are commonly regarded as resilient systems, however, a changing climate could see vulnerable portions of forests become carbon sources rather than carbon sinks.
Collapse
Affiliation(s)
- Lewis L Walden
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Katinka X Ruthrof
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
- Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
| | - George Matusick
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Richard J Harper
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Giles E St J Hardy
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
20
|
Winters G, Otieno D, Cohen S, Bogner C, Ragowloski G, Paudel I, Klein T. Tree growth and water-use in hyper-arid Acacia occurs during the hottest and driest season. Oecologia 2018; 188:695-705. [PMID: 30120548 DOI: 10.1007/s00442-018-4250-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
Drought-induced tree mortality has been recently increasing and is expected to increase further under warming climate. Conversely, tree species that survive under arid conditions might provide vital information on successful drought resistance strategies. Although Acacia (Vachellia) species dominate many of the globe's deserts, little is known about their growth dynamics and water-use in situ. Stem diameter dynamics, leaf phenology, and sap flow were monitored during 3 consecutive years in five Acacia raddiana trees and five Acacia tortilis trees in the Arid Arava Valley, southern Israel (annual precipitation 20-70 mm, restricted to October-May). We hypothesized that stem growth and other tree activities are synchronized with, and limited to single rainfall or flashflood events. Unexpectedly, cambial growth of both Acacia species was arrested during the wet season, and occurred during most of the dry season, coinciding with maximum daily temperatures as high as 45 °C and vapor pressure deficit of up to 9 kPa. Summer growth was correlated with peak sap flow in June, with almost year-round activity and foliage cover. To the best of our knowledge, these are the harshest drought conditions ever documented permitting cambial growth. These findings point to the possibility that summer cambial growth in Acacia under hyper-arid conditions relies on concurrent leaf gas exchange, which is in turn permitted by access to deep soil water. Soil water can support low-density tree populations despite heat and drought, as long as recharge is kept above a minimum threshold.
Collapse
Affiliation(s)
- Gidon Winters
- The Dead Sea-Arava Science Center, Tamar Regional Council, 86910, Neve Zohar, Israel
| | - Dennis Otieno
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Shabtai Cohen
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Christina Bogner
- Ecological Modelling, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Gideon Ragowloski
- The Dead Sea-Arava Science Center, Tamar Regional Council, 86910, Neve Zohar, Israel
| | - Indira Paudel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Gazol A, Camarero JJ, Sangüesa-Barreda G, Vicente-Serrano SM. Post-drought Resilience After Forest Die-Off: Shifts in Regeneration, Composition, Growth and Productivity. FRONTIERS IN PLANT SCIENCE 2018; 9:1546. [PMID: 30410500 PMCID: PMC6210004 DOI: 10.3389/fpls.2018.01546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/03/2018] [Indexed: 05/12/2023]
Abstract
A better understanding on the consequences of drought on forests can be reached by paying special attention to their resilience capacity, i.e., the ability to return to a state similar to pre-drought conditions. Nevertheless, extreme droughts may surpass the threshold for the resilience capacity triggering die-off causing multiple changes at varying spatial and temporal scales and affecting diverse processes (tree growth and regeneration, ecosystem productivity). Combining several methodological tools allows reaching a comprehensive characterization of post-drought forest resilience. We evaluated the changes in the abundance, regeneration capacity (seedling abundance), and radial growth (annual tree rings) of the main tree species. We also assessed if drought-induced reductions in growth and regeneration of the dominant tree species scale-up to drops in vegetation productivity by using the Normalized Difference Vegetation Index (NDVI). We studied two conifer forests located in north-eastern Spain which displayed drought-induced die-off during the last decades: a Scots pine (Pinus sylvestris) forest under continental Mediterranean conditions and a Silver fir (Abies alba) forest under more temperate conditions. We found a strong negative impact of a recent severe drought (2012) on Scots pine growth, whereas the coexisting Juniperus thurifera showed positive trends in basal area increment (0.02 ± 0.003 cm2 yr-1). No Scots pine recruitment was observed in sites with intense die-off, but J. thurifera and Quercus ilex recruited. The 2012 drought event translated into a strong NDVI reduction (32% lower than the 1982-2014 average). In Silver fir we found a negative impact of the 2012 drought on short-term radial growth, whilst long-term growth of Silver fir and the coexisting Fagus sylvatica showed positive trends. Growth rates were higher in F. sylvatica (0.04 ± 0.003 cm2 yr-1) than in A. alba (0.02 ± 0.004 cm2 yr-1). These two species recruited beneath declining and non-declining Silver fir trees. The 2012 drought translated into a strong NDVI reduction which lasted until 2013. The results presented here suggest two different post-drought vegetation pathways. In the Scots pine forest, the higher growth and recruitment rates of J. thurifera correspond to a vegetation shift where Scots pine is being replaced by the drought-tolerant juniper. Conversely, in the Silver fir forest there is an increase of F. sylvatica growth and abundance but no local extinction of the Silver fir. Further research is required to monitor the evolution of these forests in the forthcoming years to illustrate the cumulative impacts of drought on successional dynamics.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- *Correspondence: J. Julio Camarero,
| | - Gabriel Sangüesa-Barreda
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Ciencias Agroforestales, EU de Ingenierías Agrarias, Universidad de Valladolid, Soria, Spain
| | | |
Collapse
|