1
|
Stelling‐Wood TP, Poore AGB, Hughes AR, Everett JD, Gribben PE. Habitat traits and predation interact to drive abundance and body size patterns in associated fauna. Ecol Evol 2023; 13:e10771. [PMID: 38053789 PMCID: PMC10694384 DOI: 10.1002/ece3.10771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Habitat-forming organisms provide three-dimensional structure that supports abundant and diverse communities. Variation in the morphological traits of habitat formers will therefore likely influence how they facilitate associated communities, either via food and habitat provisioning, or by altering predator-prey interactions. These mechanisms, however, are typically studied in isolation, and thus, we know little of how they interact to affect associated communities. In response to this, we used naturally occurring morphological variability in the alga Sargassum vestitum to create habitat units of distinct morphotypes to test whether variation in the morphological traits (frond size and thallus size) of S. vestitum or the interaction between these traits affects their value as habitat for associated communities in the presence and absence of predation. We found morphological traits did not interact, instead having independent effects on epifauna that were negligible in the absence of predation. However, when predators were present, habitat units with large fronds were found to host significantly lower epifaunal abundances than other morphotypes, suggesting that large frond alga provided low-value refuge from predators. The presence of predators also influenced the size structure of epifaunal communities from habitat units of differing frond size, suggesting that the refuge value of S. vestitum was also related to epifauna body size. This suggests that habitat formers may chiefly structure associated communities by mediating size-selective predation, and not through habitat provisioning. Furthermore, these results also highlight that habitat traits cannot be considered in isolation, for their interaction with biotic processes can have significant implications for associated communities.
Collapse
Affiliation(s)
- Talia P. Stelling‐Wood
- Evolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
- Centre of Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | - Alistair G. B. Poore
- Evolution & Ecology Research CentreUNSW SydneySydneyNew South WalesAustralia
- Centre of Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | | | - Jason D. Everett
- Centre of Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQueenslandAustralia
| | - Paul E. Gribben
- Centre of Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceMosmanNew South WalesAustralia
| |
Collapse
|
2
|
Reinhardt JR, Marquis RJ. Ecosystem engineering and leaf quality together affect arthropod community structure and diversity on white oak (Quercus alba L.). Oecologia 2023; 203:13-25. [PMID: 37689603 PMCID: PMC10615914 DOI: 10.1007/s00442-023-05439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
Shelter building caterpillars act as ecosystem engineers by creating and maintaining leaf shelters, which are then colonized by other arthropods. Foliage quality has been shown to influence initial colonization by shelter-building caterpillars. However, the effects of plant quality on the interactions between ecosystem engineers and their communities have yet to be studied at the whole plant level. We examined how leaf tying caterpillars, as ecosystem engineers, impact arthropod communities on Quercus alba (white oak), and the modifying effect of foliage quality on these interactions. We removed all leaf tying caterpillars and leaf ties on 35 Q. alba saplings during the season when leaf tying caterpillars were active (June-September), and compared these leaf tie removal trees to 35 control trees whose leaf ties were left intact. Removal of these ecosystem engineers had no impact on overall arthropod species richness, but reduced species diversity, and overall arthropod abundance and that of most guilds, and changed the structure of the arthropod community as the season progressed. There was an increase in plant-level species richness with increasing number of leaf ties, consistent with Habitat Diversity Hypothesis. In turn, total arthropod density, and that of both leaf tying caterpillars and free-feeding caterpillars were affected by foliar tannin and nitrogen concentrations, and leaf water content. The engineering effect was greatest on low quality plants, consistent with the Stress-Gradient Hypothesis. Our results demonstrate that interactions between ecosystem engineering and plant quality together determine community structure of arthropods on Q. alba in Missouri.
Collapse
Affiliation(s)
- Jason R Reinhardt
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, MO, 63121, USA.
- USDA Forest Service, Rocky Mountain Research Station, Forest and Woodland Ecosystems, 1221 South Main Street, Moscow, ID, 83843, USA.
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, MO, 63121, USA
| |
Collapse
|
3
|
Tumolo BB, Albertson LK, Daniels MD, Cross WF, Sklar LL. Facilitation strength across environmental and beneficiary trait gradients in stream communities. J Anim Ecol 2023; 92:2005-2015. [PMID: 37555442 DOI: 10.1111/1365-2656.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Ecosystem engineers modify habitats in ways that facilitate other community members by ameliorating harsh conditions. The strength of such facilitation is predicted to be influenced by both beneficiary traits and abiotic context. One key trait of animals that could control the strength of facilitation is beneficiary body size because it should determine how beneficiaries fit within and exploit stress ameliorating habitat modifications. However, few studies have measured how beneficiary body size relates to facilitation strength along environmental gradients. We examined how the strength of facilitation by net-spinning caddisflies on invertebrate communities in streams varied along an elevation gradient and based on traits of the invertebrate beneficiaries. We measured whether use of silk retreats as habitat concentrated invertebrate density and biomass compared to surrounding rock surface habitat and whether the use of retreat habitat varied across body sizes of community members along the gradient. We found that retreats substantially concentrated the densities of a diversity of taxa including eight different Orders, and this effect was greatest at high elevations. Caddisfly retreats also concentrated invertebrate biomass more as elevation increased. Body size of invertebrates inhabiting retreats was lower than that of surrounding rock habitats at low elevation sites, however, body size between retreats and rocks converged at higher elevation sites. Additionally, the body size of invertebrates found in retreats varied within and across taxa. Specifically, caddisfly retreats functioned as a potential nursery for taxa with large maximal body sizes. However, the patterns of this taxon-specific nursery effect were not influenced by elevation unlike the patterns observed based on community-level body size. Collectively, our results indicate that invertebrates use retreats in earlier life stages or when they are smaller in body size independent of life stage. Furthermore, our analysis suggests that facilitation strength intensifies as elevation increases within stream invertebrate communities. Further consideration of how trait variation and environmental gradients interact to determine the strength and direction of biotic interactions will be important as species ranges and environmental conditions continue to shift.
Collapse
Affiliation(s)
- Benjamin B Tumolo
- Department of Ecology, Montana State University, Bozeman, Montana, USA
- Rocky Mountain Biological Laboratory (RMBL), Crested Butte, Colorado, USA
| | - Lindsey K Albertson
- Department of Ecology, Montana State University, Bozeman, Montana, USA
- Rocky Mountain Biological Laboratory (RMBL), Crested Butte, Colorado, USA
| | | | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Leonard L Sklar
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Gallegos C, Hodgins KA, Monro K. Climate adaptation and vulnerability of foundation species in a global change hotspot. Mol Ecol 2023; 32:1990-2004. [PMID: 36645732 DOI: 10.1111/mec.16848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Climate change is altering species ranges, and relative abundances within ranges, as populations become differentially adapted and vulnerable to the climates they face. Understanding present species ranges, whether species harbour and exchange adaptive variants, and how variants are distributed across landscapes undergoing rapid change, is therefore crucial to predicting responses to future climates and informing conservation strategies. Such insights are nonetheless lacking for most species of conservation concern. We assess genomic patterns of neutral variation, climate adaptation and climate vulnerability (offsets in predicted distributions of putatively adaptive variants across present and future landscapes) for sister foundation species, the marine tubeworms Galeolaria caespitosa and Galeolaria gemineoa, in a sentinel region for climate change impacts. We find that species are genetically isolated despite uncovering sympatry in their ranges, show parallel and nonparallel signals of thermal adaptation on spatial scales smaller than gene flow across their ranges, and are predicted to face different risks of maladaptation under future temperatures across their ranges. Our findings have implications for understanding local adaptation in the face of gene flow, and generate spatially explicit predictions for climatic disruption of adaptation and species distributions in coastal ecosystems that could guide experimental validation and conservation planning.
Collapse
Affiliation(s)
- Cristóbal Gallegos
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Navarro‐Barranco C, Gribben PE, Ledet J J, Poore AGB. Habitat‐complexity regulates the intensity of facilitation along an environmental stress gradient. OIKOS 2022. [DOI: 10.1111/oik.08818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Paul E. Gribben
- Centre for Marine Science and Innovation, and Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney Australia
- Sydney Inst. of Marine Science Mosman NSW Australia
| | - Janine Ledet J
- Centre for Marine Science and Innovation, and Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney Australia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation, and Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, Univ. of New South Wales Sydney Australia
| |
Collapse
|
6
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
7
|
Bradley DJ, Boada J, Gladstone W, Glasby TM, Gribben PE. Sublethal effects of a rapidly spreading native alga on a key herbivore. Ecol Evol 2021; 11:12605-12616. [PMID: 34594524 PMCID: PMC8462141 DOI: 10.1002/ece3.8005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
Multiple anthropogenic stressors are causing a global decline in foundation species, including macrophytes, often resulting in the expansion of functionally different, more stressor-tolerant macrophytes. Previously subdominant species may experience further positive demographic feedback if they are exposed to weaker plant-herbivore interactions, possibly via decreased palatability or being structurally different from the species they are replacing. However, the consequences of the spread of opportunistic macrophytes for the local distribution and life history of herbivores are unknown.The green alga, Caulerpa filiformis, previously a subdominant macrophyte on low intertidal-shallow subtidal rock shores, is becoming locally more abundant and has spread into warmer waters across the coast of New South Wales, Australia.In this study, we measured (a) the distribution and abundance of a key consumer, the sea urchin Heliocidaris erythrogramma, across a seascape at sites where C. filiformis has become dominant, (b) performed behavioral field experiments to test the role of habitat selection in determining the local distribution of H. erythrogramma, and (c) consumer experiments to test differential palatability between previously dominant higher quality species like Ecklonia radiata and Sargassum sp. and C. filiformis and the physiological consequences of consuming it.At all sites, urchin densities were positively correlated with distance away from C. filiformis beds, and they actively moved away from beds. Feeding experiments showed that, while urchins consumed C. filiformis, sometimes in equal amounts to higher quality algae, there were strong sublethal consequences associated with C. filiformis consumption, mainly on reproductive potential (gonad size). Specifically, the gonad size of urchins that fed on C. filiformis was equivalent to that in starved urchins. There was also a tendency for urchin mortality to be greater when fed C. filiformis.Overall, strong negative effects on herbivore life-history traits and potentially their survivorship may establish further positive feedback on C. filiformis abundance that contributes to its spread and may mediate shifts from top-down to bottom-up control at locations where C. filiformis has become dominant.
Collapse
Affiliation(s)
- Daniel J. Bradley
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
| | - Jordi Boada
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
- Institute of Aquatic EcologyFaculty of SciencesUniversity of GironaGironaSpain
| | - William Gladstone
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Timothy M. Glasby
- NSW Department of Primary IndustriesPort Stephens Fisheries InstituteTaylors BeachNSWAustralia
| | - Paul E. Gribben
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
- Sydney Institute of Marine ScienceMosmanNSWAustralia
| |
Collapse
|
8
|
Stelling‐Wood TP, Poore AGB, Gribben PE. Shifts in biomass and structure of habitat-formers across a latitudinal gradient. Ecol Evol 2021; 11:8831-8842. [PMID: 34257931 PMCID: PMC8258212 DOI: 10.1002/ece3.7714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Global patterns of plant biomass drive the distribution of much of the marine and terrestrial life on Earth. This is because their biomass and physical structure have important consequences for the communities they support by providing food and habitat. In terrestrial ecosystems, temperature is one of the major determinants of plant biomass and can influence plant and leaf morphology. In temperate marine systems, macroalgae are major habitat-formers and commonly display highly variable morphology in response to local environmental conditions. Variation in their morphology, and thus habitat structure on temperate reefs, however, is poorly understood across large scales. In this study, we used a trait-based approach to quantify morphological variability in subtidal rocky reefs dominated by the algal genus Sargassum along a latitudinal gradient, in southeastern Australia (~900 km). We tested whether large-scale variation in sea surface temperature (SST), site exposure, and nutrient availability can predict algal biomass and individual morphology. We found Sargassum biomass declined with increasing maximum SST. We also found that individual morphology varied with abiotic ocean variables. Frond size and intraindividual variability in frond size decreased with increasing with distance from the equator, as SST decreased and nitrate concentration increased. The shape of fronds displayed no clear relationship with any of the abiotic variables measured. These results suggest climate change will cause significant changes to the structure of Sargassum habitats along the southeastern coast of Australia, resulting in an overall reduction in biomass and increase in the prevalence of thalli with large, highly variable fronds. Using a space-for-time approach means shifts in morphological trait values can be used as early warning signs of impending species declines and regime shifts. Consequently, by studying traits and how they change across large scales we can potentially predict and anticipate the impacts of environmental change on these communities.
Collapse
Affiliation(s)
- Talia Peta Stelling‐Wood
- Evolution & Ecology Research CentreUNSW SydneySydneyNSWAustralia
- Centre of Marine Science and InnovationUNSW SydneySydneyNSWAustralia
| | - Alistair G. B. Poore
- Evolution & Ecology Research CentreUNSW SydneySydneyNSWAustralia
- Centre of Marine Science and InnovationUNSW SydneySydneyNSWAustralia
| | - Paul E. Gribben
- Centre of Marine Science and InnovationUNSW SydneySydneyNSWAustralia
- Sydney Institute of Marine ScienceMosmanNSWAustralia
| |
Collapse
|
9
|
Lewis RD, Johnson CR, Wright JT. Demography of the Intertidal Fucoid Hormosira banksii: Importance of Recruitment to Local Abundance. JOURNAL OF PHYCOLOGY 2021; 57:664-676. [PMID: 33406291 DOI: 10.1111/jpy.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Canopy-forming macroalgae form the basis of diverse coastal ecosystems globally. The fucoid Hormosira banksii is often the dominant canopy-forming macroalga in the temperate intertidal of southern Australia and New Zealand, where it is commonly associated with an understory of coralline turf. Hormosira banksii is susceptible to both natural and anthropogenic disturbance and despite its abundance, few studies have examined the demography of this important species. This study determined the demographic response of H. banksii to different gradients of disturbance to both its canopy and to the understory coralline turf. We established plots in which the density of H. banksii and/or understory coralline turf was manipulated in a pulse perturbation to simulate a disturbance event. The manipulated plots contained eight treatments ranging from 100% removal of H. banksii to 100% removal of the understory coralline turf. We then measured recruitment and followed individual recruits for up to 18 months to determine growth and survivorship. We found that H. banksii recruitment was seasonally variable throughout the experiment and highest over summer, survivorship of recruits was generally high, and the species was slow-growing and long-lived. Moreover, the level of disturbance did not seem to affect recruitment, growth, or survivorship and post-recruitment mortality was independent of H. banksii density. In this system, it appears that H. banksii is a relatively long-lived perennial species whose demography is density-independent which appears to allow recovery from disturbance.
Collapse
Affiliation(s)
- Ryan D Lewis
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia
| | - Craig R Johnson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
10
|
Wang D, Nkurunziza V, Barber NA, Zhu H, Wang J. Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia 2021; 195:1007-1018. [PMID: 33625579 DOI: 10.1007/s00442-021-04880-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Introduced ecosystem engineers are expected to have extensive ecological impacts on a broad range of resident biota by altering the physical-chemical structure of ecosystems. Livestock that are potentially important introduced ecosystem engineers in grassland systems could create and/or modify habitats for native plant-dwelling insects. Yet, there is little knowledge of how insects respond to engineering effects of introduced livestock. To bridge this gap, we tested how domestic sheep affects the behavior and abundance of a native grasshopper Euchorthippus unicolor at both low (11.8 ± 0.4 plant species per plot) and high (19.8 ± 0.5 plant species per plot) diversity sites. Results found grasshoppers shifted their resting and feeding locations from the upper to the intermediate or low layers of vegetation, and fed on more plants species following livestock engineering effects. In the low plant diversity habitats, grazing caused grasshoppers to increase switching frequency, spend more time searching for host plants, and reduce time spent feeding, but had opposite effects on all the three behaviors in the high-diversity habitats. Moreover, grazing engineering effects on behavioral changes of grasshoppers were potentially related to their abundance. Overall, this study highlights native insect species' behavior and abundance in responses to introduced ecological engineers, and suggests that ecosystem engineers of non-native species have strong and important impacts extending beyond their often most obvious and frequently documented direct ecological effects.
Collapse
Affiliation(s)
- Deli Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Venuste Nkurunziza
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Hui Zhu
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China. .,School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Jingting Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| |
Collapse
|
11
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
12
|
Firth LB, Duff L, Gribben PE, Knights AM. Do positive interactions between marine invaders increase likelihood of invasion into natural and artificial habitats? OIKOS 2020. [DOI: 10.1111/oik.07862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Louise B. Firth
- School of Biological and Marine Sciences, Univ. of Plymouth Plymouth UK
| | - Lois Duff
- School of Biological and Marine Sciences, Univ. of Plymouth Plymouth UK
| | - Paul E. Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, Univ. of New South Wales Sydney New South Wales Australia
- Sydney Inst. of Marine Science Mosman New South Wales Australia
| | - Antony M. Knights
- School of Biological and Marine Sciences, Univ. of Plymouth Plymouth UK
| |
Collapse
|
13
|
Rebolledo AP, Sgrò CM, Monro K. Thermal performance curves reveal shifts in optima, limits and breadth in early life. J Exp Biol 2020; 223:jeb233254. [PMID: 33071221 DOI: 10.1242/jeb.233254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Understanding thermal performance at life stages that limit persistence is necessary to predict responses to climate change, especially for ectotherms whose fitness (survival and reproduction) depends on environmental temperature. Ectotherms often undergo stage-specific changes in size, complexity and duration that are predicted to modify thermal performance. Yet performance is mostly explored for adults, while performance at earlier stages that typically limit persistence remains poorly understood. Here, we experimentally isolate thermal performance curves at fertilization, embryo development and larval development stages in an aquatic ectotherm whose early planktonic stages (gametes, embryos and larvae) govern adult abundances and dynamics. Unlike previous studies based on short-term exposures, responses with unclear links to fitness or proxies in lieu of explicit curve descriptors (thermal optima, limits and breadth), we measured performance as successful completion of each stage after exposure throughout, and at temperatures that explicitly capture curve descriptors at all stages. Formal comparisons of descriptors using a combination of generalized linear mixed modelling and parametric bootstrapping reveal important differences among life stages. Thermal performance differs significantly from fertilization to embryo development (with thermal optimum declining by ∼2°C, thermal limits shifting inwards by ∼8-10°C and thermal breadth narrowing by ∼10°C), while performance declines independently of temperature thereafter. Our comparisons show that thermal performance at one life stage can misrepresent performance at others, and point to gains in complexity during embryogenesis, rather than subsequent gains in size or duration of exposure, as a key driver of thermal sensitivity in early life.
Collapse
Affiliation(s)
- Adriana P Rebolledo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| |
Collapse
|
14
|
Liversage K. Experiments determining if habitat mosaics include the refugia from succession theorized to promote species coexistence. Oecologia 2020; 194:193-204. [PMID: 32954461 DOI: 10.1007/s00442-020-04751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Refugia within successional mosaics where localized conditions inhibit successional replacement may support large abundances of early colonizing species and their coexistence with strongly competitive late colonizers. Numerous habitats have been hypothesized as refugia from succession with important landscape-scale consequences from export of propagules, but their commonness among ecological systems is unknown because tests to demonstrate their existence have not been formulated and applied. In this study on an intertidal model system, an early successional tubeworm was highly abundant in a hypothesized refuge habitat-type where late successional algae could not establish. In adjacent non-refuge habitat, a change in species dominance involving tubeworms shifting to algae occurred from early to late succession following experimentally induced disturbance. No such change occurred in refuges where early successional tubeworm populations steadily increased throughout succession. Tubeworm recruitment was reduced in the presence of late successional algae, likely from competition in the non-refuge. The presence of habitats providing refugia from succession may have important consequences, e.g. promoting low but consistent levels of local-scale coexistence of early and late successional taxa observed here even without disturbance. Experimental tests such as these to identify refugia from succession will be useful to apply to larger-scale land/seascapes if, as in this study, the scale of experimentation is optimized for the species and processes of interest. If the inferences from these results are extrapolated to larger-scale systems, they may inform our understanding of spread of early successional species such as weeds with large impacts that are potentially influenced by this landscape feature.
Collapse
Affiliation(s)
- K Liversage
- Centre for Research On Ecological Impacts of Coastal Cities, School of Life and Environmental Sciences, Marine Ecology Laboratories (A11), The University of Sydney, Sydney, NSW, 2006, Australia. .,Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia.
| |
Collapse
|
15
|
Lloyd HB, Cruz‐Motta JJ, Glasby TM, Hutchings PA, Gribben PE. Unusual but consistent latitudinal patterns in macroalgal habitats and their invertebrate communities across two countries. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hannah B. Lloyd
- School of Life Sciences University of Technology Sydney NSW Australia
- Sydney Institute of Marine Science Mosman NSW Australia
| | - Juan J. Cruz‐Motta
- Department of Marine Sciences University of Puerto Rico Mayaguez Puerto Rico
| | - Tim M. Glasby
- New South Wales Department of Primary Industries Port Stephens Fisheries Institute Nelson Bay NSW Australia
| | - Pat A. Hutchings
- Australian Museum Research Institute Australian Museum Sydney NSW Australia
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Paul E. Gribben
- Sydney Institute of Marine Science Mosman NSW Australia
- Centre for Marine Science and Innovation School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| |
Collapse
|
16
|
Lanham BS, Poore AGB, Gribben PE. Facilitation cascades create a predation refuge for biodiversity in a novel connected habitat. Ecosphere 2020. [DOI: 10.1002/ecs2.3053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Brendan S. Lanham
- Centre for Marine Science and Innovation School of Biological, Earth and Environmental Science University of New South Wales Sydney New South Wales Australia
| | - Alistair G. B. Poore
- Centre for Marine Science and Innovation School of Biological, Earth and Environmental Science University of New South Wales Sydney New South Wales Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Science University of New South Wales Sydney New South Wales Australia
| | - Paul E. Gribben
- Centre for Marine Science and Innovation School of Biological, Earth and Environmental Science University of New South Wales Sydney New South Wales Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| |
Collapse
|
17
|
Habitat provided by native species facilitates higher abundances of an invader in its introduced compared to native range. Sci Rep 2020; 10:6385. [PMID: 32286466 PMCID: PMC7156459 DOI: 10.1038/s41598-020-63429-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/23/2020] [Indexed: 11/28/2022] Open
Abstract
The impacts invasive species have on biodiversity and ecosystem function globally have been linked to the higher abundances they often obtain in their introduced compared to native ranges. Higher abundances of invaders in the introduced range are often explained by a reduction in negative species interactions in that range, although results are equivocal. The role of positive interactions in explaining differences in the abundance of invaders between native and invasive ranges has not been tested. Using biogeographic surveys, we showed that the rocky shore porcelain crab, Petrolisthes elongatus, was ~4 times more abundant in its introduced (Tasmania, Australia) compared to its native (New Zealand) range. The habitat of these crabs in the invaded range (underside of intertidal boulders) was extensively covered with the habitat-forming tubeworm Galeolaria caespitosa. We tested whether the habitat provided by the tubeworm facilitates a higher abundance of the invasive crab by creating mimics of boulders with and without the tubeworm physical structure and measured crab colonisation into these habitats at three sites in both Tasmania and New Zealand. Adding the tubeworm structure increased crab abundance by an average of 85% across all sites in both ranges. Our intercontinental biogeographic survey and experiment demonstrate that native species can facilitate invader abundance and that positive interactions can be important drivers of invasion success.
Collapse
|
18
|
Stelling‐Wood TP, Gribben PE, Poore AGB. Habitat variability in an underwater forest: Using a trait‐based approach to predict associated communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Talia P. Stelling‐Wood
- Evolution & Ecology Research Centre UNSW Sydney Sydney NSW Australia
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
| | - Paul E. Gribben
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
- Sydney Institute of Marine Science Mosman NSW Australia
| | - Alistair G. B. Poore
- Evolution & Ecology Research Centre UNSW Sydney Sydney NSW Australia
- Centre of Marine Science and Innovation UNSW Sydney Sydney NSW Australia
| |
Collapse
|
19
|
Uyà M, Bulleri F, Wright JT, Gribben PE. Facilitation of an invader by a native habitat-former increases along interacting gradients of environmental stress. Ecology 2019; 101:e02961. [PMID: 31863455 DOI: 10.1002/ecy.2961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/23/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023]
Abstract
Native habitat-forming species can facilitate invasion by reducing environmental stress or consumer pressure. However, the intensity of one stressor along a local gradient may differ when expanding the scale of observation to encompass major variations in background environmental conditions. In this study, we determined how facilitation of the invasive porcelain crab, Petrolisthes elongatus, by the native tube-forming serpulid, Galeolaria caespitosa, varied with environmental gradients at local (tidal height) and larger (wave exposure) spatial scales. G. caespitosa constructs a complex calcareous matrix on the underside of intertidal boulders and we predicted that its positive effects on P. elongatus density would increase in intensity with shore height and be stronger at wave-sheltered than wave-exposed locations. To test these predictions, we conducted two experiments. First, we determined the effects of serpulid presence (boulders with live or dead serpulid matrix vs. bare boulders) at six shore heights that covered the intertidal distribution of P. elongatus. Second, we determined the effects of serpulid presence (present vs. absent), shore height (high vs. low) and wave exposure (sheltered vs. exposed) on crabs across six locations within the invaded range in northern Tasmania, Australia. In Experiment 1, the presence of serpulids (either dead or alive) enhanced P. elongatus densities at all shore heights, with facilitation intensity (as determined by a relative interaction index; RII) tending to increase with shore height. In Experiment 2, serpulids facilitated P. elongatus across shore heights and wave exposures, although crab densities were lower at high shore levels of wave-sheltered locations. However, the intensity of crab facilitation by serpulids was greater on wave-sheltered than on wave-exposed shores, but only at the high shore level. This study demonstrates that local effects of native habitat-formers on invasive species are dependent on prevailing environmental conditions at larger spatial scales and that, under more stressful conditions, invaders become increasingly reliant on positive interactions with native habitat-formers. Increased strength of local-scale facilitation by native species, dampening broader scale variations in environmental stressors, could enhance the ability of invasive species to establish self-sustaining populations in the invaded range.
Collapse
Affiliation(s)
- Marc Uyà
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126, Pisa, Italy.,Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126, Pisa, Italy.,CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Piazzale Flaminio 9, 00196, Roma, Italy
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 7001, Australia
| | - Paul E Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia.,Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, 2088, New South Wales, Australia
| |
Collapse
|
20
|
Chirgwin E, Marshall DJ, Monro K. Physical and physiological impacts of ocean warming alter phenotypic selection on sperm morphology. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Vic Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Vic Australia
| | - Keyne Monro
- Centre for Geometric Biology/School of Biological Sciences Monash University Melbourne Vic Australia
| |
Collapse
|
21
|
Westerbom M, Kraufvelin P, Erlandsson J, Korpinen S, Mustonen O, Díaz E. Wave stress and biotic facilitation drive community composition in a marginal hard‐bottom ecosystem. Ecosphere 2019. [DOI: 10.1002/ecs2.2883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mats Westerbom
- Tvärminne Zoological Station Helsinki University J. A. Palmensväg 260 Hangö 10900 Finland
| | - Patrik Kraufvelin
- Department of Aquatic Resources Institute of Coastal Research Swedish University of Agricultural Sciences Skolgatan 6 Öregrund 74242 Sweden
| | - Johan Erlandsson
- Miljöförvaltningen Göteborgs Stad, Box 7012 Göteborg 402 31 Sweden
| | - Samuli Korpinen
- Finnish Environment Institute Marine Research Centre Latokartanonkaari 11 Helsinki 00790 Finland
| | - Olli Mustonen
- Tvärminne Zoological Station Helsinki University J. A. Palmensväg 260 Hangö 10900 Finland
| | - Eliecer Díaz
- Department of Environmental Sciences University of Helsinki PO Box 65 (Viikinkaari 1) Helsinki 00014 Finland
| |
Collapse
|
22
|
Figuerola B, Gore DB, Johnstone G, Stark JS. Spatio-temporal variation of skeletal Mg-calcite in Antarctic marine calcifiers. PLoS One 2019; 14:e0210231. [PMID: 31063495 PMCID: PMC6504097 DOI: 10.1371/journal.pone.0210231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/21/2019] [Indexed: 11/29/2022] Open
Abstract
Human driven changes such as increases in oceanic CO2, global warming, petroleum hydrocarbons and heavy metals may negatively affect the ability of marine calcifiers to build their skeletons/shells, especially in polar regions. We examine spatio-temporal variability of skeletal Mg-calcite in shallow water Antarctic marine invertebrates using bryozoan and spirorbids as models in a recruitment experiment of settlement tiles in East Antarctica. Mineralogies were determined for 754 specimens belonging to six bryozoan species (four cheilostome and two cyclostome species) and two spirorbid species from around Casey Station. Intra- and interspecific variability in wt% MgCO3 in calcite among most species was the largest source of variation overall. Therefore, the skeletal Mg-calcite in these taxa seem to be mainly biologically controlled. However, significant spatial variability was also found in wt% MgCO3 in calcite, possibly reflecting local environment variation from sources such as freshwater input and contaminated sediments. Species with high-Mg calcite skeletons (e.g. Beania erecta) could be particularly sensitive to multiple stressors under predictions for near-future global ocean chemistry changes such as increasing temperature, ocean acidification and pollution.
Collapse
Affiliation(s)
- Blanca Figuerola
- Smithsonian Tropical Research Institute (STRI), Panama City, Panama.,Biodiversity Research Institute (IrBIO), University of Barcelona, Barcelona, Catalonia, Spain
| | - Damian B Gore
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Glenn Johnstone
- Antarctic Conservation and Management Program, Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Jonathan S Stark
- Antarctic Conservation and Management Program, Australian Antarctic Division, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Tumolo BB, Albertson LK, Cross WF, Daniels MD, Sklar LS. Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization. Ecosphere 2019. [DOI: 10.1002/ecs2.2734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Benjamin B. Tumolo
- Department of Ecology Montana State University P.O. Box 173460 Bozeman Montana 59717 USA
| | - Lindsey K. Albertson
- Department of Ecology Montana State University P.O. Box 173460 Bozeman Montana 59717 USA
| | - Wyatt F. Cross
- Department of Ecology Montana State University P.O. Box 173460 Bozeman Montana 59717 USA
| | - Melinda D. Daniels
- Stroud Water Research Center 970 Spencer Road Avondale Pennsylvania 19311 USA
| | - Leonard S. Sklar
- Department of Geography, Planning and Environment Concordia University 1455 De Maisonneuve Boulevard West Montreal Quebec Canada
| |
Collapse
|
24
|
Wright JT, Holmes ZC, Byers JE. Stronger positive association between an invasive crab and a native intertidal ecosystem engineer with increasing wave exposure. MARINE ENVIRONMENTAL RESEARCH 2018; 142:124-129. [PMID: 30314636 DOI: 10.1016/j.marenvres.2018.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Ecosystem engineers are predicted to have stronger facilitative effects when environmental stress is higher. Here we examined whether facilitation of the invasive porcelain crab Petrolisthes elongatus by the ecosystem engineering serpulid tube worm Galeolaria caespitosa increased with wave exposure. Petrolisthes occurs beneath intertidal boulders which often have a high cover of Galeolaria on their underside. Surveys across nine sites demonstrated Petrolisthes abundance beneath boulders increased with wave exposure and Galeolaria cover, although only when the habitat matrix beneath boulders was rock or mixed rock and sand. Moreover, as wave exposure increased, the strength of relationship between Petrolisthes abundance and the surface area of Galeolaria also increased. Experimentally, the presence of Galeolaria on the underside of boulders increased Petrolisthes abundance by 50% compared to boulders lacking Galeolaria. Our findings suggest the facilitative role of Galeolaria is stronger at more wave-exposed sites, which appears to contribute to a higher abundance of invasive Petrolisthes.
Collapse
Affiliation(s)
- Jeffrey T Wright
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 7001, Australia.
| | - Zachary C Holmes
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
25
|
Foundation species enhance food web complexity through non-trophic facilitation. PLoS One 2018; 13:e0199152. [PMID: 30169517 PMCID: PMC6118353 DOI: 10.1371/journal.pone.0199152] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/03/2018] [Indexed: 11/24/2022] Open
Abstract
Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species' food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.
Collapse
|