1
|
Ndour PMS, Bidar G, Staes L, Facon N, Laruelle F, Genies L, Tisserant B, Duclercq J, Fontaine J, Lounès-Hadj Sahraoui A. Effect of different composts on the dynamic of soil organic pollutants, microbial network interactions and multifunctionality in an urban garden made from a former brownfield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124951. [PMID: 40101491 DOI: 10.1016/j.jenvman.2025.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Brownfield requalification in urban areas can enable their ecological reclamation by improving their ecosystem services. In this perspective, their transformation into urban farms is underexplored due to the potential risks associated with pollutants transfer into vegetables and their low soil functionality. The current study aims to improve soil quality based on the principles of circular economy and to assess the transfer of organic pollutants into vegetables produced in an urban farm built from a former brownfield. For this purpose, locally available composts made from manure, leaves and fragmented rameal wood (FRW) were applied to a plot of a brownfield being converted into an urban garden in Roubaix (France). Thereafter, mixed vegetables (carrot, onion, radish, zucchini, potato, and chard) were cultivated for six months. After harvest, soil microbial communities were studied using metabarcoding of 16S RNA gene and ITS region, along with the dynamic of organic pollutants (petroleum hydrocarbons, dioxins/furans) in the soils and the produced vegetables. Globally, our results showed that the concentrations of these pollutants in vegetables were similar to those of vegetables originating from non-contaminated soils. Compost applications shaped the composition of soil bacterial communities and improved soil total metabolic activity and richness. Furthermore, amendment with manure and FRW composts improved the proportion of positive interactions between fungal and bacterial communities, suggesting more bacteria-fungi facilitation for SOM decomposition and nutrient recycling. Consistently, the calculated ecosystem service metrics and the soil quality index (T_SQI) showed a higher efficiency for FRW compost, demonstrating a relationship between soil microbial network characteristics and functioning.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France.
| | - Géraldine Bidar
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Laura Staes
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Natacha Facon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Laure Genies
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Benoit Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Jérôme Duclercq
- Unité Écologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039, Amiens, France; Equipe Recherche et Evaluation de Solutions Innovantes pour la Transition agroEcologique (RESISTE, Equipe Mixte Laboratoire Entreprise UPJV-AgroStation), Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université du Littoral Côte d'Opale, F-62228, Calais, Cedex, France.
| |
Collapse
|
2
|
Qu Y, Yang X, Zhang M, Chen J, Sui Y, Zhang X, Zeng Y, Huang M, Gao Y, Ochoa-Hueso R, Shi B, Zhao D, Yang T, Sun W. Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland. Microbiol Res 2025; 293:128075. [PMID: 39862561 DOI: 10.1016/j.micres.2025.128075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions. We also evaluated the impact of drought on ecosystem individual functions (e.g., plant biomass and microbial activity), and on multifunctionality (EMF). Finally, we linked the drought-induced changes in microbial communities with the variations in EMF. Drought significantly increased fungal diversity and intensified species interactions, but it decreased bacterial diversity and species interactions. Both plant and microbial biomass significantly decreased with increasing drought severity, while microbial activity showed the opposite trend. Only the -50 % rainfall treatment notably reduced EMF. Bacterial diversity and species interactions positively correlated with most ecosystem functions. However, fungal parameters were negatively associated with these functions. Structural equation modeling indicated that bacterial diversity had a strong direct positive effect on EMF (standardized path coefficient: 0.52), and that bacterial diversity was indirectly suppressed by drought through decreasing soil water content and bacterial phospholipid fatty acids (PLFAs). In contrast, fungal species interactions had a significant direct negative effect on EMF with the highest standardized path coefficient (-0.6) and were directly enhanced by fungal diversity. Drought had indirect positive effects on fungal diversity by decreasing soil water content and stimulating fungal PLFAs. Our results highlight the importance of considering soil microbial species interactions when evaluating the ecological impacts of drought. Furthermore, the divergent regulatory pathways of bacterial and fungal communities to EMF suggest that improving ecosystem functionality may be achieved by enhancing bacterial diversity while mitigating fungal species interactions through reducing fungal diversity.
Collapse
Affiliation(s)
- Yanan Qu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Minghao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Junda Chen
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yushu Sui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xiaochong Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yizhu Zeng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Muping Huang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yifan Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Baoku Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Daiqi Zhao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China.
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China.
| |
Collapse
|
3
|
Nenzén HK, Moor H, O'Hara RB, Jönsson M, Nordén J, Ottosson E, Snäll T. Combining observational and experimental data to estimate environmental and species drivers of fungal metacommunity dynamics. Ecology 2025; 106:e70014. [PMID: 39918170 PMCID: PMC11804162 DOI: 10.1002/ecy.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 02/11/2025]
Abstract
Understanding the distribution and dynamics of species is central to ecology and important for managing biodiversity. The distributions of species in metacommunities are determined by many factors, including environmental conditions and interactions between species. Yet, it is difficult to quantify the effect of species interactions on metacommunity dynamics from observational data. We present an approach to estimate the importance of species interactions that combines data from two observational presence-absence inventories (providing colonization-extinction data) with data from species interaction experiments (providing informative prior distributions in the Bayesian framework). We further illustrate the approach on wood-decay fungi that interact within a downed log through competition for resources and space, and facilitate the succession of other species by decomposing the wood. Specifically, we estimated the relative importance of species interactions by examining how the presence of a species influenced the colonization and extinction probability of other species. Temporal data on fruit body occurrence of 12 species inventoried twice were jointly analyzed with experimental data from two laboratory experiments that aimed to estimate competitive interactions. Both environmental variables and species interactions affected colonization and extinction dynamics. Late-successional fungi had more colonization interactions with predecessor species than early-successional species. We identified several species interactions, and the presence of certain species changed the probability that later-successional species colonized by -81% to 512%. The presence of certain species increased the probability that other species went extinct from a log by 14%-61%. Including the informative priors from experimental data added two colonization interactions and one extinction interaction for which the observational field data was inconclusive. However, most species had no detectable interactions, either because they did not interact or because of low species occupancy, meaning data limitation. We show how temporal presence-absence data can be combined with experimental data to identify which species influence the colonization-extinction dynamics of others. Accounting for species interactions in metacommunity models, in addition to environmental drivers, is important because interactions can have cascading effects on other species.
Collapse
Affiliation(s)
- Hedvig Kristina Nenzén
- SLU Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
| | - Helen Moor
- Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Robert B. O'Hara
- Department of Mathematical Sciences, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Mari Jönsson
- SLU Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
| | - Jenni Nordén
- Norwegian Institute for Nature Research (NINA)OsloNorway
| | - Elisabet Ottosson
- SLU Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
| | - Tord Snäll
- SLU Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
4
|
Menares E, Saíz H, Schenk N, de la Riva E, Krauss J, Birkhofer K. Co-Occurrence Patterns Do Not Predict Mutualistic Interactions Between Plant and Butterfly Species. Ecol Evol 2024; 14:e70498. [PMID: 39493620 PMCID: PMC11525043 DOI: 10.1002/ece3.70498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024] Open
Abstract
Biotic interactions are crucial for determining the structure and dynamics of communities; however, direct measurement of these interactions can be challenging in terms of time and resources, especially when numerous species are involved. Inferring species interactions from species co-occurrence patterns is increasingly being used; however, recent studies have highlighted some limitations. To our knowledge, no attempt has been made to test the accuracy of the existing methods for detecting mutualistic interactions in terrestrial ecosystems. In this study, we compiled two literature-based, long-term datasets of interactions between butterflies and herbaceous plant species in two regions of Germany and compared them with observational abundance and presence/absence data collected within a year in the same regions. We tested how well the species associations generated by three different co-occurrence analysis methods matched those of empirically measured mutualistic associations using sensitivity and specificity analyses and compared the strength of associations. We also checked whether flower abundance data (instead of plant abundance data) increased the accuracy of the co-occurrence models and validated our results using empirical flower visitation data. The results revealed that, although all methods exhibited low sensitivity, our implementation of the Relative Interaction Intensity index with pairwise null models performed the best, followed by the probabilistic method and Spearman's rank correlation method. However, empirical data showed a significant number of interactions that were not detected using co-occurrence methods. Incorporating flower abundance data did not improve sensitivity but enhanced specificity in one region. Further analysis demonstrated incongruence between the predicted co-occurrence associations and actual interaction strengths, with many pairs exhibiting high interaction strength but low co-occurrence or vice versa. These findings underscore the complexity of ecological dynamics and highlight the limitations of current co-occurrence methods for accurately capturing species interactions.
Collapse
Affiliation(s)
- Esteban Menares
- Department of EcologyBrandenburg University of Technology Cottbus‐SenftenbergCottbusGermany
| | - Hugo Saíz
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Noëlle Schenk
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Enrique G. de la Riva
- Department of EcologyBrandenburg University of Technology Cottbus‐SenftenbergCottbusGermany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
| | - Klaus Birkhofer
- Department of EcologyBrandenburg University of Technology Cottbus‐SenftenbergCottbusGermany
| |
Collapse
|
5
|
Bočaj V, Pongrac P, Grčman H, Šala M, Likar M. Rhizobiome diversity of field-collected hyperaccumulating Noccaea sp. BMC PLANT BIOLOGY 2024; 24:922. [PMID: 39358696 PMCID: PMC11448065 DOI: 10.1186/s12870-024-05605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
- Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| | - Helena Grčman
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
6
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
7
|
Powell-Romero F, Wells K, Clark NJ. Asymmetric Biotic Interactions Cannot Be Inferred Without Accounting for Priority Effects. Ecol Lett 2024; 27:e14509. [PMID: 39354898 DOI: 10.1111/ele.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
Understanding biotic interactions is a crucial goal in community ecology and species distribution modelling, and large strides have been made towards improving multivariate computational methods with the aim of quantifying biotic interactions and improving predictions of species occurrence. Yet, while considerable attention has been given to computational approaches and the interpretation of these quantitative tools, the importance of sampling design to reveal these biotic interactions has received little consideration. This study explores the influential role of priority effects, that is, the order of habitat colonisation, in shaping our ability to detect biotic interactions. Using a simple set of simulations, we demonstrate that commonly used cross-sectional co-occurrence data alone cannot be used to make reliable inferences on asymmetric biotic interactions, even if they perform well in predicting the occurrence of species. We then show how sampling designs that consider priority effects can recover the asymmetric effects that are lost when priority effects are ignored. Based on these findings, we urge for caution when drawing inferences on biotic interactions from cross-sectional binary co-occurrence data, and provide guidance on sampling designs that may provide the necessary data to tackle this longstanding challenge.
Collapse
Affiliation(s)
| | - Konstans Wells
- Department of Biosciences, Swansea University, Swansea, Wales, UK
| | - Nicholas J Clark
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
8
|
Liu Q, Gong S, Zhang H, Su H, Wang J, Ren H. Microbial communities assembly in wastewater treatment plants in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174751. [PMID: 39004372 DOI: 10.1016/j.scitotenv.2024.174751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Community assembly processes determine community structure. Deterministic processes are essential for optimizing activated sludge (AS) bioreactor performance. However, the debate regarding the relative importance of determinism versus stochasticity remains contentious, and the influencing factors are indistinct. This study used large-scale 16S rRNA gene data derived from 252 AS samples collected from 28 cities across China to explore the mechanism of AS community assembly. Results showed that the northern communities possessed lower spatial turnover and more significant dispersal limitation than those in the south, whereas the latter had more substantial deterministic processes than the former (14.46 % v.s. 9.12 %). Meanwhile, the communities in the south exhibited lower network complexity and stability. We utilized a structural equation model to explore the drivers of deterministic processes. Results revealed that low network complexity (r = -0.56, P < 0.05) and high quorum sensing bacteria abundance (r = 0.25, P < 0.001) promoted deterministic assembly, which clarifies why determinism was stronger in southern communities than northern ones. Furthermore, total phosphorus and hydraulic retention time were found to be the primary abiotic drivers. These findings provide evidence to understand the community deterministic assembly, which is crucial for resolving community structure and improving bioreactor performance.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Sai Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Han Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
9
|
Wang S, Gu S, Zhang Y, Deng Y, Qiu W, Sun Q, Zhang T, Wang P, Yan Z. Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100409. [PMID: 38572085 PMCID: PMC10987827 DOI: 10.1016/j.ese.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Songsong Gu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaqun Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Luiselli J, Overcast I, Rominger A, Ruffley M, Morlon H, Rosindell J. Detecting the ecological footprint of selection. PLoS One 2024; 19:e0302794. [PMID: 38848435 PMCID: PMC11161045 DOI: 10.1371/journal.pone.0302794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
The structure of communities is influenced by many ecological and evolutionary processes, but the way these manifest in classic biodiversity patterns often remains unclear. Here we aim to distinguish the ecological footprint of selection-through competition or environmental filtering-from that of neutral processes that are invariant to species identity. We build on existing Massive Eco-evolutionary Synthesis Simulations (MESS), which uses information from three biodiversity axes-species abundances, genetic diversity, and trait variation-to distinguish between mechanistic processes. To correctly detect and characterise competition, we add a new and more realistic form of competition that explicitly compares the traits of each pair of individuals. Our results are qualitatively different to those of previous work in which competition is based on the distance of each individual's trait to the community mean. We find that our new form of competition is easier to identify in empirical data compared to the alternatives. This is especially true when trait data are available and used in the inference procedure. Our findings hint that signatures in empirical data previously attributed to neutrality may in fact be the result of pairwise-acting selective forces. We conclude that gathering more different types of data, together with more advanced mechanistic models and inference as done here, could be the key to unravelling the mechanisms of community assembly and question the relative roles of neutral and selective processes.
Collapse
Affiliation(s)
- Juliette Luiselli
- Département de Biologie, École Normale Supérieure–PSL, Paris, France
- INSA-Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon, France
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, United Kingdom
| | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Andrew Rominger
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Washington, DC, United States of America
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, United Kingdom
| |
Collapse
|
11
|
Umarani MS, Wang D, O'Dwyer JP, D'Andrea R. A Spatial Signal of Niche Differentiation in Tropical Forests. Am Nat 2024; 203:445-457. [PMID: 38489774 DOI: 10.1086/729218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractExplaining diversity in tropical forests remains a challenge in community ecology. Theory tells us that species differences can stabilize communities by reducing competition, while species similarities can promote diversity by reducing fitness differences and thus prolonging the time to competitive exclusion. Combined, these processes may lead to clustering of species such that species are niche differentiated across clusters and share a niche within each cluster. Here, we characterize this partial niche differentiation in a tropical forest in Panama by measuring spatial clustering of woody plants and relating these clusters to local soil conditions. We find that species were spatially clustered and the clusters were associated with specific concentrations of soil nutrients, reflecting the existence of nutrient niches. Species were almost twice as likely to recruit in their own nutrient niche. A decision tree algorithm showed that local soil conditions correctly predicted the niche of the trees with up to 85% accuracy. Iron, zinc, phosphorus, manganese, and soil pH were among the best predictors of species clusters.
Collapse
|
12
|
Cazelles K. Isolating interactions from co-occurrences. Nat Ecol Evol 2024; 8:184-185. [PMID: 38012362 DOI: 10.1038/s41559-023-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Affiliation(s)
- Kevin Cazelles
- College of Biological Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Deng J, Taylor W, Levin SA, Saavedra S. On the limits to invasion prediction using coexistence outcomes. J Theor Biol 2024; 577:111674. [PMID: 38008157 DOI: 10.1016/j.jtbi.2023.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The dynamics of ecological communities in nature are typically characterized by probabilistic processes involving invasion dynamics. Because of technical challenges, however, the majority of theoretical and experimental studies have focused on coexistence dynamics. Therefore, it has become central to understand the extent to which coexistence outcomes can be used to predict analogous invasion outcomes relevant to systems in nature. Here, we study the limits to this predictability under a geometric and probabilistic Lotka-Volterra framework. We show that while individual survival probability in coexistence dynamics can be fairly closely translated into invader colonization probability in invasion dynamics, the translation is less precise between community persistence and community augmentation, and worse between exclusion probability and replacement probability. These results provide a guiding and testable theoretical framework regarding the translatability of outcomes between coexistence and invasion outcomes when communities are represented by Lotka-Volterra dynamics under environmental uncertainty.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Washington Taylor
- Center for Theoretical Physics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| |
Collapse
|
14
|
Houpt NSB, Kassen R. On the De Novo Emergence of Ecological Interactions during Evolutionary Diversification: A Conceptual Framework and Experimental Test. Am Nat 2023; 202:800-817. [PMID: 38033179 DOI: 10.1086/726895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.
Collapse
|
15
|
Cheng K, Wang X, Fu L, Wang W, Liu M, Sun B. Interaction between dissolved organic carbon and fungal network governs carbon mineralization in paddy soil under co-incorporation of green manure and biochar. Front Microbiol 2023; 14:1233465. [PMID: 37675431 PMCID: PMC10477716 DOI: 10.3389/fmicb.2023.1233465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Legume crops in rice cultivation are typically rotated and incorporated into the soil as green manure to improve soil fertility. Biochar has recently been co-incorporated with green manure to simultaneously stimulate soil organic carbon (SOC) mineralization and increase carbon (C) sequestration. However, few studies examine the effects of the co-incorporation of biochar and green manure on C cycling and the underlying microbial mechanisms in paddy fields. In this study, the effects of the co-incorporation of green manure and biochar on C mineralization, dissolved organic carbon (DOC) characteristics, and microbial community structures were investigated. A pot study was conducted with three treatments: inorganic NPK (NPK), inorganic NPK + green manure (GM), and inorganic NPK + green manure + biochar (GMC). Organic amendments significantly increased cumulative C mineralization, with amounts in the order GMC (3,434 mg·kg-1) > GM (2,934 mg·kg-1) > NPK (2,592 mg·kg-1). Fertilizer treatments had similar effects on DOC concentrations, with amounts in the order GMC (279 mg·kg-1) > GM (255 mg·kg-1) > NPK (193 mg·kg-1). According to fluorescence spectra, the highest microbial humic acid-like fraction and biological index were also in GMC. Co-incorporation of green manure and biochar shifted the composition of bacterial and fungal communities but more importantly, increased fungal network complexity and decreased bacterial network complexity. The increase in fungal network complexity with the increase in DOC concentrations and microbially derived components was the dominant factor in promoting C mineralization. Overall, this study reveals the underlying biochemical mechanism, the interaction between DOC and fungal network of C cycling in paddy soil under the co-incorporation of green manure and biochar management, and provides fundamental knowledge for exploring effective approaches to improve soil fertility and health in the future.
Collapse
Affiliation(s)
- Kun Cheng
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Libo Fu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Wei Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
16
|
Menge BA. Community theory: Testing environmental stress models. Ecol Lett 2023. [PMID: 37157930 DOI: 10.1111/ele.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Intensifying climate change and an increasing need for understanding its impacts on ecological communities places new emphasis on testing environmental stress models (ESMs). Using a prior literature search plus references from a more recent search, I evaluated empirical support for ESMs, focusing on whether consumer pressure on prey decreased (consumer stress model; CSM) or increased (prey stress model; PSM) with increasing environmental stress. Applying the criterion that testing ESMs requires conducting research at multiple sites along environmental stress gradients, the analysis found that CSMs were most frequent, with 'No Effect' and PSMs occurring at low but similar frequencies. This result contrasts to a prior survey in which 'No Effect' studies were most frequent, thus suggesting that consumers are generally more suppressed by stress than prey. Thus, increased climate change-induced environmental stress seems likely to reduce, not increase impacts of consumers on prey more often than the reverse.
Collapse
|
17
|
Liu C, Li C, Jiang Y, Zeng RJ, Yao M, Li X. A guide for comparing microbial co-occurrence networks. IMETA 2023; 2:e71. [PMID: 38868345 PMCID: PMC10989802 DOI: 10.1002/imt2.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/14/2024]
Abstract
The article provides a pipeline for comparing microbial co-occurrence networks based on the R microeco package and meconetcomp package. It has high flexibility and expansibility and can help users efficiently compare networks built from different groups of samples or different construction approaches.
Collapse
Affiliation(s)
- Chi Liu
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Yanqiong Jiang
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Raymond J. Zeng
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minjie Yao
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
18
|
Godsoe W, Murray R, Iritani R. Species interactions and diversity: a unified framework using Hill numbers. OIKOS 2022. [DOI: 10.1111/oik.09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- William Godsoe
- Dept of Pest Managament and Conservation, Lincoln Univ. Lincoln New Zealand
| | - Rua Murray
- School of Mathematics and Statistics, Univ. of Canterbury Christchurch New Zealand
| | - Ryosuke Iritani
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Wako Japan
| |
Collapse
|
19
|
Lin C, Huang FY, Zhou SYD, Li H, Zhang X, Su JQ. HiLi-chip: A high-throughput library construction chip for comprehensive profiling of environmental microbial communities. ENVIRONMENTAL RESEARCH 2022; 213:113650. [PMID: 35690091 DOI: 10.1016/j.envres.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Investigating the contribution and associations of environmental microbes to ecological health and human well-being is in great demand with the goal of One Health proposed. To achieve the goal, there is an urgent need for accurate approaches to obtaining a large amount of high-resolution molecular information from various microbes. In this study, we developed a high-throughput library construction chip (HiLi-Chip) for profiling environmental microbial communities and evaluated its performance. The HiLi-Chip showed high conformity with the conventional Pacbio method in terms of α-diversity, community composition of abundant bacteria (>83%), as well as rare taxa (>84%) and human pathogens detection (>67%), indicating its advantages of accuracy, high-throughput, cost-efficiency, and broad practicability. It is suggested that the optimal strategy of the HiLi-Chip was a 2.4 μL PCR mixture per sample (∼2.4 ng DNA) with a 216-sample × 24-replicate format. We have successfully applied the HiLi-Chip to the Jiulongjiang River and identified 51 potential human bacterial pathogens with a total relative abundance of 0.22%. Additionally, under limited nutrients and similar upstream environments, bacteria tended to impose competitive pressures, resulting in a more connected network at the downstream river confluence (RC). Whereas narrow niche breadth of bacteria and upstream environmental heterogeneity probably promoted niche complementary and environment selection leading to fewer links at RC in the midsection of the river. Core bacteria might represent the entire bacterial community and enhance network stability through synergistic interactions with other core bacteria. Collectively, our results demonstrate that the HiLi-Chip is a robust tool for rapid comprehensive profiling of microbial communities in environmental samples and has significant implications for a profound understanding of environmental microbial interactions.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
20
|
Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C. From diversity to complexity: Microbial networks in soils. SOIL BIOLOGY & BIOCHEMISTRY 2022; 169:108604. [PMID: 35712047 PMCID: PMC9125165 DOI: 10.1016/j.soilbio.2022.108604] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/07/2023]
Abstract
Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing microbial networks in soils opens a window to a better understanding of the complexity of microbial communities. However, this approach is unfortunately often used to draw conclusions which are far beyond the scientific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at the same time raise awareness regarding its limitations and the many ways how it can be misused or misinterpreted.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| | - Sean Darcy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eva Simon
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Lauren V. Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alicia Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, 46113, Moncada, Valencia, Spain
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| |
Collapse
|
21
|
Stephenson F, Gladstone‐Gallagher RV, Bulmer RH, Thrush SF, Hewitt JE. Inclusion of biotic variables improves predictions of environmental niche models. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fabrice Stephenson
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- School of Science University of Waikato Hamilton New Zealand
| | | | - Richard H. Bulmer
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
| | - Simon F. Thrush
- Institute of Marine Science University of Auckland Auckland New Zealand
| | - Judi E. Hewitt
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Department of Statistics University of Auckland Auckland New Zealand
| |
Collapse
|
22
|
Weiss‐Lehman CP, Werner CM, Bowler CH, Hallett L, Mayfield MM, Godoy O, Aoyama L, Barabás G, Chu C, Ladouceur E, Larios L, Shoemaker L. Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach. Ecol Lett 2022; 25:1263-1276. [PMID: 35106910 PMCID: PMC9543015 DOI: 10.1111/ele.13977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/07/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species-interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species' intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non-generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters.
Collapse
Affiliation(s)
| | | | - Catherine H. Bowler
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Lauren M. Hallett
- Biology DepartmentUniversity of OregonEugeneOregonUSA
- Environmental Studies ProgramUniversity of OregonEugeneOregonUSA
| | - Margaret M. Mayfield
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Oscar Godoy
- Departamento de BiologíaInstituto Universitario de Investigación Marina (INMAR)Universidad de CádizPuerto RealSpain
| | - Lina Aoyama
- Biology DepartmentUniversity of OregonEugeneOregonUSA
- Environmental Studies ProgramUniversity of OregonEugeneOregonUSA
| | - György Barabás
- Division of Theoretical BiologyDepartment of IFMLinköping UniversityLinköpingSweden
| | - Chengjin Chu
- Department of EcologyState Key Laboratory of Biocontrol and School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐JenaLeipzigGermany
- Department of Physiological DiversityHelmholtz Centre for Environmental Research ‐UFZLeipzigGermany
| | - Loralee Larios
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCaliforniaUSA
| | | |
Collapse
|
23
|
Calcagno V, Cunniffe NJ, Hamelin FM. Metacommunity dynamics and the detection of species associations in co‐occurrence analyses: why patch disturbance matters. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vincent Calcagno
- Université Côte d’Azur INRAE CNRS Institut Sophia Agrobiotech Sophia‐Antipolis France
| | - Nik J. Cunniffe
- Department of Plant Sciences University of Cambridge Cambridge United Kingdom
| | | |
Collapse
|
24
|
Gleich SJ, Cram JA, Weissman JL, Caron DA. NetGAM: Using generalized additive models to improve the predictive power of ecological network analyses constructed using time-series data. ISME COMMUNICATIONS 2022; 2:23. [PMID: 37938660 PMCID: PMC9723797 DOI: 10.1038/s43705-022-00106-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 05/26/2023]
Abstract
Ecological network analyses are used to identify potential biotic interactions between microorganisms from species abundance data. These analyses are often carried out using time-series data; however, time-series networks have unique statistical challenges. Time-dependent species abundance data can lead to species co-occurrence patterns that are not a result of direct, biotic associations and may therefore result in inaccurate network predictions. Here, we describe a generalize additive model (GAM)-based data transformation that removes time-series signals from species abundance data prior to running network analyses. Validation of the transformation was carried out by generating mock, time-series datasets, with an underlying covariance structure, running network analyses on these datasets with and without our GAM transformation, and comparing the network outputs to the known covariance structure of the simulated data. The results revealed that seasonal abundance patterns substantially decreased the accuracy of the inferred networks. In addition, the GAM transformation increased the predictive power (F1 score) of inferred ecological networks on average and improved the ability of network inference methods to capture important features of network structure. This study underscores the importance of considering temporal features when carrying out network analyses and describes a simple, effective tool that can be used to improve results.
Collapse
Affiliation(s)
- Samantha J Gleich
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF, Los Angeles, CA, 90089-0371, USA.
| | - Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD, 21613, USA
| | - J L Weissman
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF, Los Angeles, CA, 90089-0371, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF, Los Angeles, CA, 90089-0371, USA
| |
Collapse
|
25
|
Zbinden ZD. A needle in the haystack? Applying species co-occurrence frameworks with fish assemblage data to identify species associations and sharpen ecological hypotheses. JOURNAL OF FISH BIOLOGY 2022; 100:339-351. [PMID: 33860934 DOI: 10.1111/jfb.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Different species can associate or interact in many ways, and methods exist for inferring associations and underlying mechanisms from incidence data (e.g., co-occurrence frameworks). These methods have received criticism despite their recent resurgence in the literature. However, co-occurrence frameworks for identifying nonrandomly associated species pairs (e.g., aggregated or segregated pairs) have value as heuristic tools for sharpening hypotheses concerning fish ecology. This paper provides a case study examining species co-occurrence across 33 stream fish assemblages in southeastern Oklahoma, USA, which were sampled twice (1974 and 2014). This study sought to determine (a) which species were nonrandomly associated, (b) what processes might have driven these associations and (c) how consistent patterns were across time. Associations among most pairs of species (24 species, 276 unique pairs) were not significantly different from random (>80%). Among all significant, nonrandomly associated species pairs (54 unique pairs), 78% (42 pairs) were aggregated and 22% (12 pairs) segregated. Most of these (28 pairs, 52%) were hypothesized to be driven by nonbiotic mechanisms: habitat filtering (20 pairs, 37%), dispersal limitation (two pairs, 0.4%) or both (six pairs, 11%). The remaining 26 nonrandomly associated pairs (48%) had no detectable signal of spatial or environmental factors involved with the association, therefore the potential for biotic interaction was not refuted. Only five species pairs were consistently associated across both sampling periods: stonerollers Campostoma spp. and orangebelly darter Etheostoma radiosum; red shiner Cyprinella lutrensis and bullhead minnow Pimephales vigilax; bluegill sunfish Lepomis macrochirus and redear sunfish Lepomis microlophus; redfin shiner Lythrurus umbratilis and bluntnose minnow Pimephales notatus; and bigeye shiner Notropis boops and golden shiner Notemigonus crysoleucas. Frameworks for identifying nonrandomly associated species pairs can provide insight into broader mechanisms of species assembly and point to potentially interesting species interactions (out of many possible pairs). However, this approach is best applied as a tool for sharpening hypotheses to be investigated further. Rather than a weakness, the heuristic nature is the strength of such methods, and can help guide biologists toward better questions by employing relatively cheap diversity survey data, which are often already in hand, to reduce complex interaction networks down to their nonstochastic parts which warrant further investigation.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
26
|
Rigal S, Devictor V, Gaüzère P, Kéfi S, Forsman JT, Kajanus MH, Mönkkönen M, Dakos V. Biotic homogenisation in bird communities leads to large‐scale changes in species associations. OIKOS 2021. [DOI: 10.1111/oik.08756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stanislas Rigal
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
| | | | - Pierre Gaüzère
- Univ. Grenoble Alpes, CNRS, Univ. of Savoie Mont Blanc, LECA, Laboratoire d'Écologie Alpine Grenoble France
| | - Sonia Kéfi
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
- Santa Fe Inst. Santa Fe NM USA
| | - Jukka T. Forsman
- Dept of Ecology and Genetics, Univ. of Oulu Oulu Finland
- Natural Resources Inst. Finland Oulu Finland
| | | | - Mikko Mönkkönen
- Dept of Biological and Environmental Science, Univ. of Jyvaskyla Jyväskylä Finland
| | - Vasilis Dakos
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
| |
Collapse
|
27
|
García‐Navas V, Sattler T, Schmid H, Ozgul A. Bird species co‐occurrence patterns in an alpine environment supports the stress‐gradient hypothesis. OIKOS 2021. [DOI: 10.1111/oik.08588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vicente García‐Navas
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
- Dept of Integrative Ecology, Doñana Biological Station CSIC Seville Spain
| | | | - Hans Schmid
- Swiss Ornithological Inst. Sempach Switzerland
| | - Arpat Ozgul
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
| |
Collapse
|
28
|
Douda J, Doudová J, Holeštová A, Boublík K, Havrdová A, Slezák M. Interplay of above‐ and belowground resource limitations: a competition–facilitation shift maintains species coexistence. OIKOS 2021. [DOI: 10.1111/oik.08356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Douda
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Jana Doudová
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Anežka Holeštová
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Karel Boublík
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Alena Havrdová
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Michal Slezák
- Inst. of Forest Ecology, Slovak Academy of Sciences Zvolen Slovakia
| |
Collapse
|
29
|
Sweeny AR, Albery GF, Becker DJ, Eskew EA, Carlson CJ. Synzootics. J Anim Ecol 2021; 90:2744-2754. [PMID: 34546566 DOI: 10.1111/1365-2656.13595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Ecologists increasingly recognise coinfection as an important component of emergent epidemiological patterns, connecting aspects of ecoimmunology, behaviour, ecosystem function and even extinction risk. Building on syndemic theory in medical anthropology, we propose the term 'synzootics' to describe co-occurring enzootic or epizootic processes that produce worse health outcomes in wild animals. Using framing from syndemic theory, we describe how the synzootic concept offers new insights into the ecology and evolution of infectious diseases. We then recommend a set of empirical criteria and lines of evidence that can be used to identify synzootics in nature. We conclude by exploring how synzootics could indirectly drive the emergence of novel pathogens in human populations.
Collapse
Affiliation(s)
- Amy R Sweeny
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, Washington, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Suzuki K, Nakaoka S, Fukuda S, Masuya H. Energy landscape analysis elucidates the multistability of ecological communities across environmental gradients. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenta Suzuki
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology Faculty of Advanced Life Science Hokkaido University Kita‐10 Nishi‐8Kita‐ku Sapporo Hokkaido 060‐0819 Japan
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Shinji Fukuda
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
- Institute for Advanced Biosciences Keio University 246‐2 MizukamiKakuganji Tsuruoka Yamagata 997‐0052 Japan
- Intestinal Microbiota Project Kanagawa Institute of Industrial Science and Technology 3‐25‐13 TonomachiKawasaki‐ku Kawasaki Kanagawa 210‐0821 Japan
- Transborder Medical Research Center University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8575 Japan
| | - Hiroshi Masuya
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| |
Collapse
|
31
|
Bonnaffé W, Danet A, Legendre S, Edeline E. Comparison of size‐structured and species‐level trophic networks reveals antagonistic effects of temperature on vertical trophic diversity at the population and species level. OIKOS 2021. [DOI: 10.1111/oik.08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Willem Bonnaffé
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- Ecological and Evolutionary Dynamics Lab, Dept of Zoology, Univ. of Oxford Oxford UK
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Alain Danet
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN‐CNRS‐Sorbonne Université, Muséum National d'Histoire Naturelle de Paris Paris France
| | - Stéphane Legendre
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Eric Edeline
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- ESE Ecology and Ecosystem Health, INRA, Agrocampus Ouest Rennes France
| |
Collapse
|
32
|
Gao Q, Gao S, Bates C, Zeng Y, Lei J, Su H, Dong Q, Qin Z, Zhao J, Zhang Q, Ning D, Huang Y, Zhou J, Yang Y. The microbial network property as a bio-indicator of antibiotic transmission in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143712. [PMID: 33277004 DOI: 10.1016/j.scitotenv.2020.143712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-fold along the environmental transmission chain from manure samples of swine farms to aerobic compost, compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks became larger in nodes and links with decreasing antibiotic concentrations, likely resulting from lower antibiotics stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while functional networks became more clustered. Modularity, a key topological property that enhances system resilience to antibiotic stress, remained high for functional networks, but the modularity values of bacterial networks were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed microbial network dynamics and suggest that the modularity value of association networks could serve as an important indicator of antibiotic concentrations in the environment.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Colin Bates
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianshu Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Qiuting Zhang
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Génin A, Dutoit T, Danet A, le Priol A, Kéfi S. Grazing and the vanishing complexity of plant association networks in grasslands. OIKOS 2021. [DOI: 10.1111/oik.07850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Thierry Dutoit
- Avignon Univ., Aix Marseille Univ., CNRS, IRD, IMBE Avignon France
| | - Alain Danet
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE Montpellier France
- Centre d'Ecologie et des Sciences de la Conservation, CNRS, MNHN, Sorbonne Univ. Paris France
| | - Alice le Priol
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE Montpellier France
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE Montpellier France
- Santa Fe Inst. Santa Fe NM USA
| |
Collapse
|
34
|
Lurgi M, Galiana N, Broitman BR, Kéfi S, Wieters EA, Navarrete SA. Geographical variation of multiplex ecological networks in marine intertidal communities. Ecology 2020; 101:e03165. [PMID: 32798321 DOI: 10.1002/ecy.3165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Understanding the drivers of geographical variation in species distributions, and the resulting community structure, constitutes one of the grandest challenges in ecology. Geographical patterns of species richness and composition have been relatively well studied. Less is known about how the entire set of trophic and non-trophic ecological interactions, and the complex networks that they create by gluing species together in complex communities, change across geographical extents. Here, we compiled data of species composition and three types of ecological interactions occurring between species in rocky intertidal communities across a large spatial extent (~970 km of shoreline) of central Chile, and analyzed the geographical variability in these multiplex networks (i.e., comprising several interaction types) of ecological interactions. We calculated nine network summary statistics common across interaction types, and additional network attributes specific to each of the different types of interactions. We then investigated potential environmental drivers of this multivariate network organization. These included variation in sea surface temperature and coastal upwelling, the main drivers of productivity in nearshore waters. Our results suggest that structural properties of multiplex ecological networks are affected by local species richness and modulated by factors influencing productivity and environmental predictability. Our results show that non-trophic negative interactions are more sensitive to spatially structured temporal environmental variation than feeding relationships, with non-trophic positive interactions being the least labile to it. We also show that environmental effects are partly mediated through changes in species richness and partly through direct influences on species interactions, probably associated to changes in environmental predictability and to bottom-up nutrient availability. Our findings highlight the need for a comprehensive picture of ecological interactions and their geographical variability if we are to predict potential effects of environmental changes on ecological communities.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, 09200, France.,Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Núria Galiana
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, 09200, France
| | - Bernardo R Broitman
- Departamento de Ciencias, Facultad de Artes Liberales & Bioengineering Innovation Center, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Padre Hurtado 750, Viña del Mar, Chile
| | - Sonia Kéfi
- ISEM, CNRS, IRD, EPHE, Univ. Montpellier, Place Eugène Bataillon, Montpellier, 34095, France
| | - Evie A Wieters
- Estación Costera de Investigaciones Marinas, LINC Global, Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, V Región, 2690000, Chile
| | - Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, LINC Global, Center for Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Osvaldo Marín 1672, Las Cruces, V Región, 2690000, Chile
| |
Collapse
|
35
|
|
36
|
Cerini F, Stellati L, Vignoli L. Segregation structure in Odonata assemblages follows the latitudinal gradient. Oecologia 2020; 194:15-25. [PMID: 32556555 DOI: 10.1007/s00442-020-04687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Latitude is known to deeply affect life with effects generalizable into ecological rules; the increasing species diversity toward tropics is the most paradigmatic. Several hypotheses tested patterns of biotic interactions' intensity along latitude. Negative interactions (i.e. competition and predation) are expected to be among the processes that produce checkerboard distribution of species. However, no relationship between checkerboardness and latitude has been uncovered. We tested Odonata assemblages worldwide for segregation patterns using a faunistic dataset (395 species arranged in 386 natural communities) spanning a wide latitudinal range (87°). We used co-occurrence analyses (C-score index and Standardized Effect Size) as an estimate of checkerboardness then correlated the occurrence of segregation to latitude. Odonata followed the Latitudinal Diversity Gradient at the regional scale (i.e. country scale) within our analyzed assemblages spanning, whereas local richness (i.e. community scale) did not follow the same pattern. Odonata assemblages structured with segregation are more common going from high to low latitudes, and local species richness have no effect on the pattern. We summarized hypotheses on how biotic interactions or ecological and historical processes can influence the spatial patterns in the checkerboards of assemblages and presented promising ways to help to gain a better mechanistic understanding of the drivers of the Latitudinal Diversity Gradient.
Collapse
Affiliation(s)
| | - Luca Stellati
- Dipartimento Di Scienze, Università Roma Tre, Rome, Italy
| | | |
Collapse
|
37
|
Blanchet FG, Cazelles K, Gravel D. Co‐occurrence is not evidence of ecological interactions. Ecol Lett 2020; 23:1050-1063. [DOI: 10.1111/ele.13525] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Kevin Cazelles
- Department of Integrative of Biology University of Guelph GuelphN1G 2W1ON Canada
| | - Dominique Gravel
- Département de biologie Université de Sherbrooke SherbrookeJ1K 2R1QC Canada
| |
Collapse
|
38
|
Sagoff M. Ecological Networks: Response to Segar et al. Trends Ecol Evol 2020; 35:862-863. [PMID: 32408997 DOI: 10.1016/j.tree.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Mark Sagoff
- Institute for Philosophy and Public Policy, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
39
|
Freilich MA, Rebolledo R, Corcoran D, Marquet PA. Reconstructing ecological networks with noisy dynamics. Proc Math Phys Eng Sci 2020; 476:20190739. [PMID: 32523410 DOI: 10.1098/rspa.2019.0739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Ecosystems functioning is based on an intricate web of interactions among living entities. Most of these interactions are difficult to observe, especially when the diversity of interacting entities is large and they are of small size and abundance. To sidestep this limitation, it has become common to infer the network structure of ecosystems from time series of species abundance, but it is not clear how well can networks be reconstructed, especially in the presence of stochasticity that propagates through ecological networks. We evaluate the effects of intrinsic noise and network topology on the performance of different methods of inferring network structure from time-series data. Analysis of seven different four-species motifs using a stochastic model demonstrates that star-shaped motifs are differentially detected by these methods while rings are differentially constructed. The ability to reconstruct the network is unaffected by the magnitude of stochasticity in the population dynamics. Instead, interaction between the stochastic and deterministic parts of the system determines the path that the whole system takes to equilibrium and shapes the species covariance. We highlight the effects of long transients on the path to equilibrium and suggest a path forward for developing more ecologically sound statistical techniques.
Collapse
Affiliation(s)
- Mara A Freilich
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program, Cambridge, MA, USA
| | - Rolando Rebolledo
- Instituto de Ingeniería Matemática, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Derek Corcoran
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile.,The Santa Fe Institute, Santa Fe, NM, USA.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile
| |
Collapse
|
40
|
Barros AL, Curveira-Santos G, Marques TA, Santos-Reis M. Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape. Sci Rep 2020; 10:6651. [PMID: 32313036 PMCID: PMC7170872 DOI: 10.1038/s41598-020-63492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
The patterns of species co-occurrence have long served as a primary approach to explore concepts of interspecific interaction. However, the interpretation of such patterns is difficult as they can result from several complex ecological processes, in a scale-dependent manner. Here, we aim to investigate the co-occurrence pattern between European rabbit and wild boar in an estate in Central Portugal, using two-species occupancy modelling. With this framework, we tested species interaction for occupancy and detection, but also the interdependencies between both parameters. According to our results, the wild boar and European rabbit occurred independently in the study area. However, model averaging of the detection parameters revealed a potential positive effect of wild boar’s presence on rabbit’s detection probability. Upon further analysis of the parameter interdependencies, our results suggested that failing to account for a positive effect on rabbit’s detection could lead to potentially biased interpretations of the co-occurrence pattern. Our study, in spite of preliminary, highlights the need to understand these different pathways of species interaction to avoid erroneous inferences.
Collapse
Affiliation(s)
- Ana Luísa Barros
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Ed. C2, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Gonçalo Curveira-Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Ed. C2, Campo Grande, 1749-016, Lisbon, Portugal
| | - Tiago André Marques
- Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews, KY16 9LZ, Scotland.,Centro de Estatística e Aplicações, Departamento de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Margarida Santos-Reis
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Ed. C2, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
41
|
Opedal ØH, von Numers M, Tikhonov G, Ovaskainen O. Refining predictions of metacommunity dynamics by modeling species non-independence. Ecology 2020; 101:e03067. [PMID: 32299146 DOI: 10.1002/ecy.3067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
Predicting the dynamics of biotic communities is difficult because species' environmental responses are not independent, but covary due to shared or contrasting ecological strategies and the influence of species interactions. We used latent-variable joint species distribution models to analyze paired historical and contemporary inventories of 585 vascular plant species on 471 islands in the southwest Finnish archipelago. Larger, more heterogeneous islands were characterized by higher colonization rates and lower extinction rates. Ecological and taxonomical species groups explained small but detectable proportions of variance in species' environmental responses. To assess the potential influence of species interactions on community dynamics, we estimated species associations as species-to-species residual correlations for historical occurrences, for colorizations, and for extinctions. Historical species associations could to some extent predict joint colonization patterns, but the overall estimated influence of species associations on community dynamics was weak. These results illustrate the benefits of considering metacommunity dynamics within a joint framework, but also suggest that any influence of species interactions on community dynamics may be hard to detect from observational data.
Collapse
Affiliation(s)
- Øystein H Opedal
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikael von Numers
- Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Åbo, FI-20520, Finland
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Altermatt F, Little CJ, Mächler E, Wang S, Zhang X, Blackman RC. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. OIKOS 2020. [DOI: 10.1111/oik.06806] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Florian Altermatt
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Chelsea J. Little
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Elvira Mächler
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| | - Shaopeng Wang
- Inst. of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking Univ. Beijing PR China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing Univ. Nanjing PR China
| | - Rosetta C. Blackman
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Dept of Aquatic Ecology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Winterthurerstr. 190 CH‐8057 Zürich Switzerland
| |
Collapse
|
43
|
Fountain-Jones NM, Clark NJ, Kinsley AC, Carstensen M, Forester J, Johnson TJ, Miller EA, Moore S, Wolf TM, Craft ME. Microbial associations and spatial proximity predict North American moose (Alces alces) gastrointestinal community composition. J Anim Ecol 2020; 89:817-828. [PMID: 31782152 DOI: 10.1111/1365-2656.13154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023]
Abstract
Microbial communities are increasingly recognized as crucial for animal health. However, our understanding of how microbial communities are structured across wildlife populations is poor. Mechanisms such as interspecific associations are important in structuring free-living communities, but we still lack an understanding of how important interspecific associations are in structuring gut microbial communities in comparison with other factors such as host characteristics or spatial proximity of hosts. Here, we ask how gut microbial communities are structured in a population of North American moose Alces alces. We identify key microbial interspecific associations within the moose gut and quantify how important they are relative to key host characteristics, such as body condition, for predicting microbial community composition. We sampled gut microbial communities from 55 moose in a population experiencing decline due to a myriad of factors, including pathogens and malnutrition. We examined microbial community dynamics in this population utilizing novel graphical network models that can explicitly incorporate spatial information. We found that interspecific associations were the most important mechanism structuring gut microbial communities in moose and detected both positive and negative associations. Models only accounting for associations between microbes had higher predictive value compared to models including moose sex, evidence of previous pathogen exposure or body condition. Adding spatial information on moose location further strengthened our model and allowed us to predict microbe occurrences with ~90% accuracy. Collectively, our results suggest that microbial interspecific associations coupled with host spatial proximity are vital in shaping gut microbial communities in a large herbivore. In this case, previous pathogen exposure and moose body condition were not as important in predicting gut microbial community composition. The approach applied here can be used to quantify interspecific associations and gain a more nuanced understanding of the spatial and host factors shaping microbial communities in non-model hosts.
Collapse
Affiliation(s)
| | - Nicholas J Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Amy C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA.,Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Michelle Carstensen
- Minnesota Department of Natural Resources, Wildlife Health Program, Forest Lake, MN, USA
| | - James Forester
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN, USA
| | - Timothy J Johnson
- Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Elizabeth A Miller
- Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Seth Moore
- Department of Biology and Environment, Grand Portage Band of Chippewa, Grand Portage, MN, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
44
|
Progressive Microbial Community Networks with Incremental Organic Loading Rates Underlie Higher Anaerobic Digestion Performance. mSystems 2020; 5:5/1/e00357-19. [PMID: 31911462 PMCID: PMC6946792 DOI: 10.1128/msystems.00357-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biotic interactions among members of microbial communities have been conceived to be crucial for community assembly, it remains unclear how changes in environmental conditions affect microbial interaction and consequently system performance. Here, we adopted a random matrix theory-based network analysis to explore microbial interactions in triplicate anaerobic digestion (AD) systems, which is widely applied for organic pollutant treatments. The digesters were operated with incremental organic loading rates (OLRs) from 1.0 g volatile solids (VS)/liter/day to 1.3 g VS/liter/day and then to 1.5 g VS/liter/day, which increased VS removal and methane production proportionally. Higher resource availability led to networks with higher connectivity and shorter harmonic geodesic distance, suggestive of more intense microbial interactions and quicker responses to environmental changes. Strikingly, a number of topological properties of microbial network showed significant (P < 0.05) correlation with AD performance (i.e., methane production, biogas production, and VS removal). When controlling for environmental parameters (e.g., total ammonia, pH, and the VS load), node connectivity, especially that of the methanogenic archaeal network, still correlated with AD performance. Last, we identified the Methanothermus, Methanobacterium, Chlorobium, and Haloarcula taxa and an unclassified Thaumarchaeota taxon as keystone nodes of the network.IMPORTANCE AD is a biological process widely used for effective waste treatment throughout the world. Biotic interactions among microbes are critical to the assembly and functioning of the microbial community, but the response of microbial interactions to environmental changes and their influence on AD performance are still poorly understood. Using well-replicated time series data of 16S rRNA gene amplicons and functional gene arrays, we constructed random matrix theory-based association networks to characterize potential microbial interactions with incremental OLRs. We demonstrated striking linkage between network topological features of methanogenic archaea and AD functioning independent of environmental parameters. As the intricate balance of multiple microbial functional groups is responsible for methane production, our results suggest that microbial interaction may be an important, previously unrecognized mechanism in determining AD performance.
Collapse
|
45
|
Peel AJ, Wells K, Giles J, Boyd V, Burroughs A, Edson D, Crameri G, Baker ML, Field H, Wang LF, McCallum H, Plowright RK, Clark N. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg Microbes Infect 2020; 8:1314-1323. [PMID: 31495335 PMCID: PMC6746281 DOI: 10.1080/22221751.2019.1661217] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Within host-parasite communities, viral co-circulation and co-infections of hosts are the norm, yet studies of significant emerging zoonoses tend to focus on a single parasite species within the host. Using a multiplexed paramyxovirus bead-based PCR on urine samples from Australian flying foxes, we show that multi-viral shedding from flying fox populations is common. We detected up to nine bat paramyxoviruses shed synchronously. Multi-viral shedding infrequently coalesced into an extreme, brief and spatially restricted shedding pulse, coinciding with peak spillover of Hendra virus, an emerging fatal zoonotic pathogen of high interest. Such extreme pulses of multi-viral shedding could easily be missed during routine surveillance yet have potentially serious consequences for spillover of novel pathogens to humans and domestic animal hosts. We also detected co-occurrence patterns suggestive of the presence of interactions among viruses, such as facilitation and cross-immunity. We propose that multiple viruses may be interacting, influencing the shedding and spillover of zoonotic pathogens. Understanding these interactions in the context of broader scale drivers, such as habitat loss, may help predict shedding pulses of Hendra virus and other fatal zoonoses.
Collapse
Affiliation(s)
- Alison J Peel
- Environmental Futures Research Institute, Griffith University , Nathan , Queensland , Australia
| | - Konstans Wells
- Department of Biosciences, Swansea University , Swansea , Wales , UK
| | - John Giles
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Victoria Boyd
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory , Geelong , Vic , Australia
| | - Amy Burroughs
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory , Geelong , Vic , Australia
| | - Daniel Edson
- Department of Agriculture, Animal Health Policy Branch , Canberra , ACT , Australia
| | - Gary Crameri
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory , Geelong , Vic , Australia
| | - Michelle L Baker
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory , Geelong , Vic , Australia
| | - Hume Field
- EcoHealth Alliance , New York , NY , USA.,School of Veterinary Science, The University of Queensland , Gatton , Queensland , Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School , Singapore
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University , Nathan , Queensland , Australia
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University , Bozeman , Montana , USA
| | - Nicholas Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, the University of Queensland , Gatton , Queensland , Australia
| |
Collapse
|
46
|
Wang R, Dearing JA, Doncaster CP, Yang X, Zhang E, Langdon PG, Yang H, Dong X, Hu Z, Xu M, Zhao Y, Shen J. Network parameters quantify loss of assemblage structure in human-impacted lake ecosystems. GLOBAL CHANGE BIOLOGY 2019; 25:3871-3882. [PMID: 31344301 DOI: 10.1111/gcb.14776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Lake biodiversity is an incomplete indicator of exogenous forcing insofar as it ignores underlying deformations of community structure. Here, we seek a proxy for deformation in a network of diatom assemblages comprising 452 species in 273 lakes across China. We test predictions from network theory that nodes of similar type will tend to self-organize in an unstressed system to a positively skewed frequency distribution of nodal degree. The empirical data reveal shifts in the frequency distributions of species associations across regions, from positive skew in lakes in west China with a history of low human impacts, to predominantly negative skew amongst lakes in highly disturbed regions in east China. Skew values relate strongly to nutrient loading from agricultural activity and urbanization, as measured by total phosphorus in lake water. Reconstructions through time show that positive skew reduces with temporal intensification of human impacts in the lake and surrounding catchments, and rises as lakes recover from disturbance. Our study illustrates how network parameters can track the loss of aquatic assemblage structure in lakes associated with human pressures.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John A Dearing
- School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | | | - Xiangdong Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Peter G Langdon
- School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Hui Yang
- School of Mathematics and Physics, Anhui University of Technology, Ma'anshan, China
| | - Xuhui Dong
- School of Geographical Sciences, Guangzhou University, Guangzhou, China
| | - Zhujun Hu
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Min Xu
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Yanjie Zhao
- School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
47
|
Armitage DW, Jones SE. How sample heterogeneity can obscure the signal of microbial interactions. THE ISME JOURNAL 2019; 13:2639-2646. [PMID: 31249391 PMCID: PMC6794314 DOI: 10.1038/s41396-019-0463-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/08/2022]
Abstract
Microbial community data are commonly subjected to computational tools such as correlation networks, null models, and dynamic models, with the goal of identifying the ecological processes structuring microbial communities. A major assumption of these methods is that the signs and magnitudes of species interactions and vital rates can be reliably parsed from observational data on species' (relative) abundances. However, we contend that this assumption is violated when sample units contain any underlying spatial structure. Here, we show how three phenomena-Simpson's paradox, context-dependence, and nonlinear averaging-can lead to erroneous conclusions about population parameters and species interactions when samples contain heterogeneous mixtures of populations or communities. At the root of this issue is the fundamental mismatch between the spatial scales of species interactions (micrometers) and those of typical microbial community samples (millimeters to centimetres). These issues can be overcome by measuring and accounting for spatial heterogeneity at very small scales, which will lead to more reliable inference of the ecological mechanisms structuring natural microbial communities.
Collapse
Affiliation(s)
- David W Armitage
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN, 46556, USA
| |
Collapse
|
48
|
Yuan Z, Chen Y, Palta JA, Prasad PVV. Editorial: Adaptation of Dryland Plants to a Changing Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:1228. [PMID: 31649698 PMCID: PMC6792300 DOI: 10.3389/fpls.2019.01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Zhiyou Yuan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jairo A. Palta
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- CSIRO Agriculture & Food, Wembley, WA, Australia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
49
|
Goberna M, Montesinos‐Navarro A, Valiente‐Banuet A, Colin Y, Gómez‐Fernández A, Donat S, Navarro‐Cano JA, Verdú M. Incorporating phylogenetic metrics to microbial co‐occurrence networks based on amplicon sequences to discern community assembly processes. Mol Ecol Resour 2019; 19:1552-1564. [DOI: 10.1111/1755-0998.13079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Marta Goberna
- Department of Environment and Agronomy Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Madrid Spain
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| | | | - Alfonso Valiente‐Banuet
- Instituto de Ecología Universidad Nacional Autónoma de México Mexico D.F. Mexico
- Centro de Ciencias de la Complejidad Ciudad Universitaria Universidad Nacional Autónoma de México Mexico D.F. Mexico
| | - Yannick Colin
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| | - Alicia Gómez‐Fernández
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| | - Santiago Donat
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| | - Jose A. Navarro‐Cano
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| | - Miguel Verdú
- Department of Ecology Centro de Investigaciones sobre Desertificación (CIDE ‐ CSIC) Moncada Spain
| |
Collapse
|
50
|
Checkerboard metacommunity structure: an incoherent concept. Oecologia 2019; 190:323-331. [DOI: 10.1007/s00442-019-04420-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|