1
|
Russell MW, Kilian M, Mestecky J. Role of IgA1 protease-producing bacteria in SARS-CoV-2 infection and transmission: a hypothesis. mBio 2024; 15:e0083324. [PMID: 39207101 PMCID: PMC11492985 DOI: 10.1128/mbio.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Secretory (S) IgA antibodies against severe acute respiratory syndrome (SARS)-CoV-2 are induced in saliva and upper respiratory tract (URT) secretions by natural infection and may be critical in determining the outcome of initial infection. Secretory IgA1 (SIgA1) is the predominant isotype of antibodies in these secretions. Neutralization of SARS-CoV-2 is most effectively accomplished by polymeric antibodies such as SIgA. We hypothesize that cleavage of SIgA1 antibodies against SARS-CoV-2 by unique bacterial IgA1 proteases to univalent Fabα antibody fragments with diminished virus neutralizing activity would facilitate the descent of the virus into the lungs to cause serious disease and also enhance its airborne transmission to others. Recent studies of the nasopharyngeal microbiota of patients with SARS-CoV-2 infection have revealed significant increases in the proportions of IgA1 protease-producing bacteria in comparison with healthy subjects. Similar considerations might apply also to other respiratory viral infections including influenza, possibly explaining the original attribution of influenza to Haemophilus influenzae, which produces IgA1 protease.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, University at Buffalo,
Buffalo, New York, USA
| | - Mogens Kilian
- Department of
Biomedicine, Aarhus University,
Aarhus, Denmark
| | - Jiri Mestecky
- Department of
Microbiology, Heersink School of Medicine, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
- />Institute of
Microbiology, laboratory of Cellular and Molecular Immunology, Czech
Academy of Sciences,
Prague, Czechia
| |
Collapse
|
2
|
Hsu C, Marx F, Guldenpfennig R, Valizadegan N, de Godoy MRC. The effects of hydrolyzed protein on macronutrient digestibility, fecal metabolites and microbiota, oxidative stress and inflammatory biomarkers, and skin and coat quality in adult dogs. J Anim Sci 2024; 102:skae057. [PMID: 38442226 PMCID: PMC10959486 DOI: 10.1093/jas/skae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Research on protein hydrolysates has observed various properties and functionalities on ingredients depending on the type of hydrolysate. The objective of this study was to evaluate the effects of hydrolyzed chicken protein that was incorporated into diets on digestibility, gut health, skin and coat health, oxidative stress, and intestinal inflammation markers in healthy adult dogs. Five complete and balanced diets were manufactured: (1) CONd: 25% chicken meal diet; (2) 5% CLHd: 5% chicken liver and heart hydrolysate plus 20% chicken meal diet; (3) CLHd: 25% chicken liver and heart hydrolysate diet; (4) 5% CHd: 5% chicken hydrolysate plus 20% chicken meal diet; (5) CHd: 25% chicken hydrolysate diet. A replicated 5 × 5 Latin square design was used which included 10 neutered adult Beagles. Each of the 5 periods consisted of a 7-d washout time and a 28-d treatment period. All diets were well accepted by the dogs. Fecal butyrate concentration was higher while fecal isovalerate and total phenol/indole were lower in dogs fed CLHd than CONd (P < 0.05). Dogs fed CHd had higher fecal immunoglobulin A concentration when compared with CLHd (P < 0.05); however, both groups were comparable to the CONd. There was no difference among groups in serum cytokine concentrations, serum oxidative stress biomarkers, or skin and coat health analyses (P > 0.05). Fecal microbiota was shifted by CLHd with higher abundance in Ruminococcus gauvreauii group as well as lower Clostridium sensu stricto 1, Sutterella, Fusobacterium, and Bacteroides when compared with CONd (P < 0.05). There was also a difference in beta diversity of fecal microbiota between CLHd and CHd (P < 0.05). In conclusion, chicken protein hydrolysate could be incorporated into canine extruded diets as a comparable source of protein to traditional chicken meal. The test chicken protein hydrolysates showed the potential to support gut health by modulating immune response and microbiota; however, functional properties of protein hydrolysates are dependent on inclusion level and source.
Collapse
Affiliation(s)
- Clare Hsu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fabio Marx
- Kemin Industries, Inc., Des Moines, IA, 50317, USA
| | | | - Negin Valizadegan
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Wang R, Song S, Qin J, Yoshimura K, Peng F, Chu Y, Li Y, Fan Y, Jin J, Dang M, Dai E, Pei G, Han G, Hao D, Li Y, Chatterjee D, Harada K, Pizzi MP, Scott AW, Tatlonghari G, Yan X, Xu Z, Hu C, Mo S, Shanbhag N, Lu Y, Sewastjanow-Silva M, Fouad Abdelhakeem AA, Peng G, Hanash SM, Calin GA, Yee C, Mazur P, Marsden AN, Futreal A, Wang Z, Cheng X, Ajani JA, Wang L. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 2023; 41:1407-1426.e9. [PMID: 37419119 PMCID: PMC10528152 DOI: 10.1016/j.ccell.2023.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study provides a high-resolution GAC TME atlas and underscores potential targets for further investigation.
Collapse
Affiliation(s)
- Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yating Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghia Tatlonghari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shaowei Mo
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Namita Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matheus Sewastjanow-Silva
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ahmed Adel Fouad Abdelhakeem
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Autumn N Marsden
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| |
Collapse
|
5
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
6
|
Wang YM, Shaw K, Zhang GY, Chung EY, Hu M, Cao Q, Wang Y, Zheng G, Wu H, Chadban SJ, McCarthy HJ, Harris DC, Mackay F, Grey ST, Alexander SI. Interleukin-33 Exacerbates IgA Glomerulonephritis in Transgenic Mice Overexpressing B Cell Activating Factor. J Am Soc Nephrol 2022; 33:966-984. [PMID: 35387873 PMCID: PMC9063894 DOI: 10.1681/asn.2021081145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The cytokine IL-33 is an activator of innate lymphoid cells 2 (ILC2s) in innate immunity and allergic inflammation. B cell activating factor (BAFF) plays a central role in B cell proliferation and differentiation, and high levels of this protein cause excess antibody production, including IgA. BAFF-transgenic mice overexpress BAFF and spontaneously develop glomerulonephritis that resembles human IgA nephropathy. METHODS We administered IL-33 or PBS to wild-type and BAFF-transgenic mice. After treating Rag1-deficient mice with IL-33, with or without anti-CD90.2 to preferentially deplete ILC2s, we isolated splenocytes, which were adoptively transferred into BAFF-transgenic mice. RESULTS BAFF-transgenic mice treated with IL-33 developed more severe kidney dysfunction and proteinuria, glomerular sclerosis, tubulointerstitial damage, and glomerular deposition of IgA and C3. Compared with wild-type mice, BAFF-transgenic mice exhibited increases of CD19+ B cells in spleen and kidney and ILC2s in kidney and intestine, which were further increased by administration of IL-33. Administering IL-33 to wild-type mice had no effect on kidney function or histology, nor did it alter the number of ILC2s in spleen, kidney, or intestine. To understand the role of ILC2s, splenocytes were transferred from IL-33-treated Rag1-deficient mice into BAFF-transgenic mice. Glomerulonephritis and IgA deposition were exacerbated by transfer of IL-33-stimulated Rag1-deficient splenocytes, but not by ILC2 (anti-CD90.2)-depleted splenocytes. Wild-type mice infused with IL-33-treated Rag1-deficient splenocytes showed no change in kidney function or ILC2 numbers or distribution. CONCLUSIONS IL-33-expanded ILC2s exacerbated IgA glomerulonephritis in a mouse model. These findings indicate that IL-33 and ILC2s warrant evaluation as possible mediators of human IgA nephropathy.
Collapse
Affiliation(s)
- Yuan Min Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Karli Shaw
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Edmund Y.M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Huiling Wu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Steven J. Chadban
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Hugh J. McCarthy
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - David C.H. Harris
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Fabienne Mackay
- QIMR, University of Queensland, Brisbane, Queensland, Australia
| | - Shane T. Grey
- Transplantation Immunology Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Induction of Susceptibility to Disseminated Infection with IgA1 Protease-Producing Encapsulated Pathogens Streptococcus pneumoniae, Haemophilus influenzae Type b, and Neisseria meningitidis. mBio 2022; 13:e0055022. [PMID: 35420467 PMCID: PMC9239265 DOI: 10.1128/mbio.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the principal causes of bacterial meningitis. It is unexplained why only occasional individuals develop invasive infection, while the vast majority remain healthy and develop immunity when encountering these pathogens. A capsular polysaccharide and an IgA1 protease are common to these pathogens. We tested the hypothesis that patients are primed to susceptibility to invasive infection by other bacteria that express the same capsular polysaccharide but no IgA1 protease. Thereby, the subsequently colonizing pathogen may protect its surface with IgA1 protease-generated Fab fragments of IgA1 devoid of Fc-mediated effector functions. Military recruits who remained healthy when acquiring meningococci showed a significant response of inhibitory antibodies against the IgA1 protease of the colonizing clone concurrent with serum antibodies against its capsular polysaccharide. At hospitalization, 70.8% of meningitis patients carried fecal bacteria cross-reactive with the capsule of the actual pathogen, in contrast to 6% of controls (P < 0.0001). These were Escherichia coli K100, K1, and K92 in patients with infection caused by H. influenzae type b and N. meningitidis groups B and C, respectively. This concurred with a significant IgA1 response to the capsule but not to the IgA1 protease of the pathogen. The demonstrated multitude of relationships between capsular types and distinct IgA1 proteases in pneumococci suggests an alternative route of immunological priming associated with recombining bacteria. The findings support the model and offer an explanation for the rare occurrence of invasive diseases in spite of the comprehensive occurrence of the pathogens.
Collapse
|
8
|
Connecting the spots: Understanding cheetah reproduction to improve assisted breeding and population management. Theriogenology 2022; 185:70-77. [DOI: 10.1016/j.theriogenology.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022]
|
9
|
Role of B-Cell Activating Factor (BAFF) in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 12:diagnostics12010045. [PMID: 35054212 PMCID: PMC8774757 DOI: 10.3390/diagnostics12010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As early commencement of inflammatory bowel disease (IBD) treatment has been shown to substantially improve outcomes, it is of utmost importance to make a timely diagnosis of this disease. Despite undisputed sensitivity of fecal calprotectin, the most widely accepted IBD biomarker, in discriminating between irritable bowel syndrome (IBS) and IBD, as well as recognized role in monitoring disease activity and response to therapy, perhaps the biggest setback of calprotectin use in IBD is lack of specificity. Therefore, an additional biomarker in IBD is warranted. B-cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) superfamily, recently emerged as a viable candidate for this role. So far, overproduction of BAFF has been observed in various autoimmune diseases, most notably in systemic lupus erythematosus, where BAFF-inhibitor belimumab was approved for treatment. As BAFF levels were also shown to correlate with indices of IBD, in this review we aimed to summarize the current evidence with respect to the role of BAFF in diagnosis and assessing the activity of IBD, as well as putative therapeutic implications that may arise from exploring of this relation.
Collapse
|
10
|
Bohländer F, Weißmüller S, Riehl D, Gutscher M, Schüttrumpf J, Faust S. The Functional Role of IgA in the IgM/IgA-Enriched Immunoglobulin Preparation Trimodulin. Biomedicines 2021; 9:1828. [PMID: 34944644 PMCID: PMC8698729 DOI: 10.3390/biomedicines9121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
In comparison to human immunoglobulin (Ig) G, antibodies of IgA class are not well investigated. In line with this, the functional role of the IgA component in IgM/IgA-enriched immunoglobulin preparations is also largely unknown. In recent years, powerful anti-pathogenic and immunomodulatory properties of human serum IgA especially on neutrophil function were unraveled. Therefore, the aim of our work is to investigate functional aspects of the trimodulin IgA component, a new plasma-derived polyvalent immunoglobulin preparation containing ~56% IgG, ~23% IgM and ~21% IgA. The functional role of IgA was investigated by analyzing the interaction of IgA with FcαRI, comparing trimodulin with standard intravenous IgG (IVIG) preparation and investigating Fc receptor (FcR)-dependent functions by excluding IgM-mediated effects. Trimodulin demonstrated potent immunomodulatory, as well as anti-pathogenic effects in our neutrophil model (neutrophil-like HL-60 cells). The IgA component of trimodulin was shown to induce a strong FcαRI-dependent inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) signaling, counteract lipopolysaccharide-induced inflammation and mediate phagocytosis of Staphylococcus aureus. The fine-tuned balance between immunomodulatory and anti-pathogenic effects of trimodulin were shown to be dose-dependent. Summarized, our data demonstrate the functional role of IgA in trimodulin, highlighting the importance of this immunoglobulin class in immunoglobulin therapy.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Sabrina Weißmüller
- Department of Translational Research, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Dennis Riehl
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Marcus Gutscher
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Jörg Schüttrumpf
- Corporate R&D, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Stefanie Faust
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| |
Collapse
|
11
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
12
|
Is complement the main accomplice in IgA nephropathy? From initial observations to potential complement-targeted therapies. Mol Immunol 2021; 140:1-11. [PMID: 34601376 DOI: 10.1016/j.molimm.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
IgA Nephropathy (IgAN) is the main cause of primary glomerulonephritis, globally. This disease is associated with a wide range of clinical presentations, variable prognosis and a spectrum of histological findings. More than fifty years after its first description, this heterogeneity continues to complicate efforts to understand the pathogenesis. Nevertheless, involvement of the complement system in IgAN was identified early on. Dysfunction of the immunoglobulin A (IgA) system, the principal offender in this disease, including modification of isoforms and glycoforms of IgA1, the nature of immune complexes and autoantibodies to galactose deficient IgA1 might all be responsible for complement activation in IgAN. However, the specific mechanisms engaging complement are still under examination. Research in this domain should allow for identification of patients that may benefit from complement-targeted therapy, in the foreseeable future.
Collapse
|
13
|
Linder M, Pogge von Strandmann E. The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers (Basel) 2021; 13:cancers13184721. [PMID: 34572948 PMCID: PMC8466959 DOI: 10.3390/cancers13184721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The intracellular heat shock protein 70 (HSP70) is essential for cells to respond to stress, for instance, by refolding damaged proteins or inhibiting apoptosis. However, in cancer, HSP70 is overexpressed and can translocate to the extracellular milieu, where it emerged as an important modulator of tumor-associated immune cells. By targeting the tumor microenvironment (TME) through different mechanisms, extracellular HSP70 can trigger pro- or anti-tumorigenic responses. Therefore, understanding the pathways and their consequences is crucial for therapeutically targeting cancer and its surrounding microenvironment. In this review, we summarize current knowledge on the translocation of extracellular HSP70. We further elucidate its functions within the TME and provide an overview of potential therapeutic options. Abstract Extracellular vesicles released by tumor cells (T-EVs) are known to contain danger-associated molecular patterns (DAMPs), which are released in response to cellular stress to alert the immune system to the dangerous cell. Part of this defense mechanism is the heat shock protein 70 (HSP70), and HSP70-positive T-EVs are known to trigger anti-tumor immune responses. Moreover, extracellular HSP70 acts as an immunogen that contributes to the cross-presentation of major histocompatibility complex (MHC) class I molecules. However, the release of DAMPs, including HSP70, may also induce chronic inflammation or suppress immune cell activity, promoting tumor growth. Here, we summarize the current knowledge on soluble, membrane-bound, and EV-associated HSP70 regarding their functions in regulating tumor-associated immune cells in the tumor microenvironment. The molecular mechanisms involved in the translocation of HSP70 to the plasma membrane of tumor cells and its release via exosomes or soluble proteins are summarized. Furthermore, perspectives for immunotherapies aimed to target HSP70 and its receptors for cancer treatment are discussed and presented.
Collapse
|
14
|
Abstract
Extensive experiments performed mostly in a variety of animal models convincingly demonstrated the protective effect of polyclonal or monoclonal antibodies administered by the mucosal route. Because of the independence of the mucosal and systemic compartments of the immune system, antibodies from the circulation are not effectively transported in sufficient quantities into external secretions. Nevertheless, local application of antibodies of the desired specificity to mucosal membranes of the respiratory, gastrointestinal, and female genital tracts protected experimental animals from the subsequent challenge by corresponding viral or bacterial pathogens. Thus, generation of monoclonal antibodies of desired specificity and the selection of delivery systems to extend their otherwise short survival on some mucosal surfaces are essential aims of their usability in humans for the effective prevention of mucosally acquired infectious diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Anti-pig IgE and IgA Antibodies in Naive Primates and Nonhuman Primates With Pig Xenografts. Transplantation 2021; 105:318-327. [PMID: 32796494 DOI: 10.1097/tp.0000000000003408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Natural preformed anti-pig IgM/IgG antibodies in primates play an important role in xenograft rejection. As it is not clear how IgE and IgA engage in the immune system in xenotransplantation, we investigated natural preformed and elicited anti-pig IgE/IgA in naive primates and after xenotransplantation in nonhuman primates. METHODS The binding of IgM/IgG/IgE/IgA antibodies to red blood cells (RBCs) from wild-type (WT), α1,3-galactosyltransferase gene-knockout (GTKO), and GTKO/cytidine monophospho-N-acetylneuraminic acid hydroxylase gene-knockout/β-1,4 N-acetylgalactosaminyltransferase 2 gene-knockout (ie, triple-knockout pigs) pigs were measured by flow cytometry in naive human (n = 50) and baboon (n = 14) sera. Antibody binding to WT and GTKO pig RBCs (pRBCs) was also measured in the sera of baboons (nonsensitized n = 7, sensitized n = 2) and rhesus monkeys (nonsensitized n = 2, sensitized n = 11) following WT or GTKO pig organ/tissue xenotransplantation. Deposition of IgM/IgG/IgE/IgA in the grafts was detected by immunohistochemistry. RESULTS The majority of humans had natural preformed IgM/IgG/IgE/IgA to WT and GTKO pRBCs. In contrast, IgM/IgG/IgE/IgA to triple-knockout pRBCs were present at lower levels and frequency (P < 0.01). Baboons also had IgM/IgG/IgE/IgA antibodies against WT pRBCs, but fewer to GTKO and triple-knockout (P < 0.01). After xenotransplantation into nonhuman primates, when IgM/IgG increased, IgE/IgA also increased, but to a lesser extent. In addition to IgM/IgG, IgE or IgA deposition was observed in rejected pig xenografts. CONCLUSIONS Primates develop serum anti-pig IgE/IgA antibodies both naturally and during xenograft rejection. The pathophysiological role, if any, of anti-pig IgE/IgA antibodies remains unknown.
Collapse
|
16
|
Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol 2020; 11:611337. [PMID: 33329607 PMCID: PMC7733922 DOI: 10.3389/fimmu.2020.611337] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The mucosal immune system is the largest component of the entire immune system, having evolved to provide protection at the main sites of infectious threat: the mucosae. As SARS-CoV-2 initially infects the upper respiratory tract, its first interactions with the immune system must occur predominantly at the respiratory mucosal surfaces, during both inductive and effector phases of the response. However, almost all studies of the immune response in COVID-19 have focused exclusively on serum antibodies and systemic cell-mediated immunity including innate responses. This article proposes that there is a significant role for mucosal immunity and for secretory as well as circulating IgA antibodies in COVID-19, and that it is important to elucidate this in order to comprehend especially the asymptomatic and mild states of the infection, which appear to account for the majority of cases. Moreover, it is possible that mucosal immunity can be exploited for beneficial diagnostic, therapeutic, or prophylactic purposes.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pearay L Ogra
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Herd Protection against Meningococcal Disease through Vaccination. Microorganisms 2020; 8:microorganisms8111675. [PMID: 33126756 PMCID: PMC7693901 DOI: 10.3390/microorganisms8111675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Reduction in the transmission of Neisseria meningitidis within a population results in fewer invasive disease cases. Vaccination with meningococcal vaccines composed of high weight capsular polysaccharide without carrier proteins has minimal effect against carriage or the acquisition of carriage. Conjugate vaccines, however, elicit an enhanced immune response which serves to reduce carriage acquisition and hinder onwards transmission. Since the 1990s, several meningococcal conjugate vaccines have been developed and, when used in age groups associated with higher carriage, they have been shown to provide indirect protection to unvaccinated cohorts. This herd protective effect is important in enhancing the efficiency and impact of vaccination. Studies are ongoing to assess the effect of protein-based group B vaccines on carriage; however, current data cast doubt on their ability to reduce transmission.
Collapse
|
18
|
Proteomic Analysis of Complement Proteins in Membranous Nephropathy. Kidney Int Rep 2020; 5:618-626. [PMID: 32405583 PMCID: PMC7210748 DOI: 10.1016/j.ekir.2020.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in Caucasian adults. Phospholipase A2 receptor (PLA2R)– and exostosin 1 (EXT1)/exostosin 2 (EXT2)–associated MN represent the most common primary and secondary forms of MN. The complement profile using a proteomics approach has not been studied in these 2 common forms of MN. Methods We used laser microdissection and mass spectrometry (MS/MS) to dissect glomeruli and identify glomerular complement proteins in PLA2R-associated (n = 7), EXT1/EXT2-associated MN (n = 21), and 11 control cases (time 0 transplant biopsies). Results MS/MS identified high total spectral counts for PLA2R and EXT1/EXT2 in corresponding cases of PLA2R- and EXT1/EXT2-positive MN. Both PLA2R- and EXT1/EXT2-associated MN had high spectral counts of complement proteins C3, C4, C5, C6, C7, C8, and C9. Complement protein C1 was present in low spectral counts in EXT1/EXT2-associated MN. Regulators of complement activation that were detected in MN included higher spectral counts of FH, FHR-1, FHR-5, clusterin, vitronectin and lower spectral counts of FHR-3, FHR-4, and CD59. Low spectral counts of FB and properdin, key components of the alternative pathway, also were detected. IgG4 and IgG1 were the most abundant IgG subclasses in PLA2R- and EXT1/EXT2-associated MN. Lower spectral counts for C3, C4, and C5 were detected in control cases when compared with MN. Conclusion Significant complement activation is present in MN as evidenced by large spectral counts of complement proteins from C3- and C4-based pathways, including regulatory proteins of complement pathways. These data suggest that anticomplement drugs may be effective in treatment for MN.
Collapse
|
19
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Xiong E, Li Y, Min Q, Cui C, Liu J, Hong R, Lai N, Wang Y, Sun J, Matsumoto R, Takahashi D, Hase K, Shinkura R, Tsubata T, Wang JY. MZB1 promotes the secretion of J-chain-containing dimeric IgA and is critical for the suppression of gut inflammation. Proc Natl Acad Sci U S A 2019; 116:13480-13489. [PMID: 31127044 PMCID: PMC6613140 DOI: 10.1073/pnas.1904204116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IgA is the most abundantly produced antibody in the body and plays a crucial role in gut homeostasis and mucosal immunity. IgA forms a dimer that covalently associates with the joining (J) chain, which is essential for IgA transport into the mucosa. Here, we demonstrate that the marginal zone B and B-1 cell-specific protein (MZB1) interacts with IgA through the α-heavy-chain tailpiece dependent on the penultimate cysteine residue and prevents the intracellular degradation of α-light-chain complexes. Moreover, MZB1 promotes J-chain binding to IgA and the secretion of dimeric IgA. MZB1-deficient mice are impaired in secreting large amounts of IgA into the gut in response to acute inflammation and develop severe colitis. Oral administration of a monoclonal IgA significantly ameliorated the colitis, accompanied by normalization of the gut microbiota composition. The present study identifies a molecular chaperone that promotes J-chain binding to IgA and reveals an important mechanism that controls the quantity, quality, and function of IgA.
Collapse
Affiliation(s)
- Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Yingqian Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Chaoqun Cui
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Jiping Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ryohtaroh Matsumoto
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 105-8512 Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 105-8512 Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 105-8512 Tokyo, Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute of Quantitative Biosciences, University of Tokyo, 113-0032 Tokyo, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China;
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan
| |
Collapse
|
21
|
Corthésy B, Monnerat J, Lötscher M, Vonarburg C, Schaub A, Bioley G. Oral Passive Immunization With Plasma-Derived Polyreactive Secretory-Like IgA/M Partially Protects Mice Against Experimental Salmonellosis. Front Immunol 2018; 9:2970. [PMID: 30619327 PMCID: PMC6305475 DOI: 10.3389/fimmu.2018.02970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023] Open
Abstract
Secretory immunoglobulins have a critical role in defense of the gastrointestinal tract and are known to act by preventing bacterial acquisition. A stringent murine model of bacterial infection with Salmonella enterica Typhimurium was used to examine protection mediated by oral passive immunization with human plasma-derived polyreactive IgA and IgM antibodies (Abs) reconstituted as secretory-like immunoglobulins (SCIgA/M). This reagent has been shown to trigger Salmonella agglutination and to limit the entry of bacterium into intestinal Peyer's patches via immune exclusion. We now demonstrate that upon administration into ligated intestinal loops, SCIgA/M properly anchors in the mucus and is protected from degradation to a better extent that IgA/M or IgG. Moreover, prophylactic oral administration of SCIgA/M before intragastric infection of mice with a virulent strain of S. enterica Typhimurium allows to protect infected animals, as reflected by reduced colonization of both mucosal and systemic compartments, and conserved integrity of intestinal tissues. In comparison with IgA/M or IgG administration, SCIgA/M provided the highest degree of protection. Moreover, such protective efficacy is also observed after therapeutic oral delivery of SCIgA/M. Either prophylactic or therapeutic treatment with passively delivered SCIgA/M ensured survival of up to 50% of infected mice, while untreated animals all died. Our findings unravel the potential of oral passive immunization with plasma-derived polyreactive SCIgA/M Abs to fight gastrointestinal infections.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| | - Justine Monnerat
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| | | | | | | | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| |
Collapse
|
22
|
Coppo R. Treatment of IgA nephropathy: Recent advances and prospects. Nephrol Ther 2018; 14 Suppl 1:S13-S21. [PMID: 29606258 DOI: 10.1016/j.nephro.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
Abstract
IgA nephropathy, identified 50 years ago in France, is the most frequent glomerular disease worldwide. The course is variable, but in most of the cases there is a relentless decline in renal function, reaching end-stage renal failure in 10-60% of the cases after 10 years and in 40% after 20 years. These data justify the interest for finding a suitable therapeutic approach particularly in progressive cases. A supportive care, including renin-angiotensin system inhibitors is the priority in cases with slowly declining renal function, particularly when developing proteinuria. The recent supportive versus immunosuppressive therapy for the treatment of progressive IgA nephropathy (STOP-IgAN) randomized and controlled trial has further stressed the benefit of a strict supportive care including also life-style changes, protein and salt restriction. However, there is clear evidence from observational studies (including the European Validation Study of the Oxford Classification of IgA nephropathy [VALIGA]) and a new randomized and controlled trial (Therapeutic Evaluation of Steroids in IgA Nephropathy Global [TESTING]) of additional benefits of corticosteroid treatment in patients with proteinuric IgA nephropathy. However, the present treatment schedules carry severe side effects, mostly infectious complications, which indicate the need for less toxic interventions. The recent focus on the role of gut-kidney axis in IgA nephropathy has led to the search of corticosteroid formulations targeting the intestinal mucosal immune system (gut-associated lymphoid tissue). The NEFIGAN trial obtained interesting results in terms of reduction of proteinuria and stabilization of renal function using a budesonide formulation allowing a selective drug delivery at intestinal gut-associated lymphoid tissue sites. The adverse events, particularly infections, were found to be not clinically relevant. The possibility of a personalized approach to the treatment according to the renal biopsy lesions (Oxford MEST score) is supported by several uncontrolled studies and deserves great attention in the next future. New treatments options for IgA nephropathy include drugs targeting BAFF, a B-cell factor crucial for IgA synthesis or targeting the complement system, and also the possibility of acting directly on the deposited IgA by selective protease digestion.
Collapse
Affiliation(s)
- Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, 94, Piazza Polonia, 10126 Torino, TO, Italy.
| |
Collapse
|
23
|
Maria APJ, Ayane L, Putarov TC, Loureiro BA, Neto BP, Casagrande MF, Gomes MOS, Glória MBA, Carciofi AC. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. J Anim Sci 2017; 95:2452-2466. [PMID: 28727033 DOI: 10.2527/jas.2016.1302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study compared the effects of diets formulated with fibers of different fermentability and protein sources of animal or vegetable origins on old and adult dogs. The experiment was organized in a 3 (diets) × 2 (ages) factorial arrangement, totaling 6 treatments. Thirty-six Beagle dogs were used (18 old dogs [10.2 ± 1.0 yr] and 18 young adult dogs [2.6 ± 0.9 yr]), with 6 dogs per treatment. Three diets with similar compositions were used: a nonfermentable insoluble fiber source (sugarcane fiber) and chicken byproduct meal (nonfermentable fiber [NFF] diet), a fermentable fiber source (beet pulp) and chicken byproduct meal (fermentable fiber [FF] diet), and soybean meal as a protein and fiber source (soybean meal [SM] diet). Data were evaluated using the MIXED procedure and considering the effects and interactions of block, animal, diets, and age. Means were compared using Tukey's test ( < 0.05). Age × diet interactions were evaluated when < 0.1. Old dogs had a reduced coefficient of total tract apparent digestibility of DM, which was explained by the age and diet interaction of CP and fat digestibility that was lower for old than for adult dogs fed the FF diet ( < 0.05). The SM diet obtained higher DM, OM, CP, and fiber digestibility compared with the NFF diet ( < 0.05). The feces of dogs fed the NFF diet had increased DM content ( < 0.05). The short-chain fatty acids (SCFA) did not change by age group and were higher for dogs fed the FF and SM diets compared with dogs fed the NFF diet ( < 0.05). An age and diet interaction was observed for lactate and was increased in the feces of old dogs compared with adult dogs fed the FF diet ( < 0.05). Fecal putrescine, cadaverine, and spermine were increased for old dogs compared with adult dogs ( < 0.05), and the spermidine fecal concentration was increased for dogs fed the SM diet regardless of age ( < 0.05). Old dogs had reduced peripheral T and B lymphocytes ( < 0.05). An age and diet interaction was observed for fecal IgA ( < 0.001). Adult dogs fed the SM diet had increased IgA in feces compared with animals fed the NFF and FF diets ( < 0.05). However, for old dogs, both the FF and SM diets induced increased IgA compared with the NFF diet ( < 0.05). In conclusion, beet pulp may reduce digestibility and induce increased lactate in the feces of old dogs. The protein and oligosaccharides of soybean meal are digestible by dogs, induce the production of SCFA and spermidine, and increase fecal IgA. Old dogs had increased putrecine, cadaverine, and spermine fecal concentrations.
Collapse
|
24
|
Differential antibody responses to gliadin-derived indigestible peptides in patients with schizophrenia. Transl Psychiatry 2017; 7:e1121. [PMID: 28485731 PMCID: PMC5534957 DOI: 10.1038/tp.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 03/16/2017] [Indexed: 01/21/2023] Open
Abstract
Gluten consumption has previously been implicated in the development of schizophrenia while an immunological link between gluten and schizophrenia was established by the detection of circulating antibodies against gliadin, a major component of wheat gluten. Several studies have reported an increase in circulating antibodies against native gliadin molecules that are unlikely to survive degradation in the digestive system. In this study, therefore, we measured plasma immunoglobulin G (IgG) and IgA antibodies against indigestible gliadin-derived peptide antigens using an in-house enzyme-linked immunosorbent assay (ELISA) among 169 patients with schizophrenia and 236 control subjects. We also examined the plasma levels of IgG and IgA antibodies against the mixture of native gliadins using commercially available ELISA kits. The results showed that patients with schizophrenia had the increased levels of plasma IgG against the γ-gliadin-derived fragment, namely AAQ6C, but decreased levels of plasma IgG against the α- and γ3-gliadin-derived antigens, as compared with control subjects. This study also demonstrated a uniform decrease in plasma IgA antibodies against gliadin-derived antigens. There was no significant difference in the levels of plasma antibodies against native gliadins between the patient group and the control group. Of eight gliadin-derived antigens tested, four showed a sensitivity of >20% against the specificity of ⩾95% for detection of their corresponding antibodies in plasma. These four tests may thus have a potential to serve as biomarkers for the identification of schizophrenia subgroups that may need an alternative therapy or precision treatment. Further investigation with clinical trials should be carried out to explore this possibility.
Collapse
|
25
|
Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig Dis Sci 2016; 61:3407-3424. [PMID: 27655102 DOI: 10.1007/s10620-016-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) involve dysregulated immune responses to gut antigens in genetically predisposed individuals. While a better elucidation of IBD pathophysiology has considerably increased the number of treatment options, the need for more effective therapeutic strategies remains a pressing priority. Defects of both non-hematopoietic (epithelial and stromal) and hematopoietic (lymphoid and myeloid) cells have been described in patients with IBD. Within the lymphoid system, alterations of the T cell compartment are viewed as essential in the pathogenesis of IBD. However, growing evidence points to the additional perturbations of the B cell compartment. Indeed, the intestinal lamina propria from IBD patients shows an increased presence of antibody-secreting plasma cells, which correlates with enhanced pro-inflammatory immunoglobulin G production and changes in the quality of non-inflammatory IgA responses. These B cell abnormalities are compounded by the emergence of systemic antibody responses to various autologous and microbial antigens, which predates the clinical diagnosis of IBD and identifies patients with complicated disease. It is presently unclear whether such antibody responses play a pathogenetic role, as B cell depletion with the CD20-targeting monoclonal antibody rituximab did not ameliorate ulcerative colitis in a clinical trial. However, it must be noted that unresponsiveness to rituximab is also observed also in some patients with autoimmune disorders usually responsive to B cell-depleting therapies. In this review, we discussed mechanistic aspects of B cell-based therapies and their potential role in IBD with a special interest on BAFF and BAFF-targeting therapies buoyed by the success of anti-BAFF treatments in rheumatologic disorders.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Departments of Medicine and Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xavier Treton
- Department of Gastroenterology, Beaujon Hospital, APHP, Denis Diderot University, Paris, France
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
26
|
Abstract
IgA nephropathy (IgAN) is a common chronic glomerular disease that, in most patients, slowly progresses to ESRD. The immune and autoimmune responses that characterize IgAN indicate a potential benefit for corticosteroids. The 2012 Kidney Disease Improving Global Outcome (KDIGO) guidelines suggest giving corticosteroids to patients with rather preserved renal function (GFR>50 ml/min per 1.73 m2) and persistent proteinuria >1 g/d, despite 3-6 months of optimized supportive care with renin-angiotensin system blockers. However, the evidence supporting this guideline was considered of low quality. More recent results from large cohort studies and randomized, controlled trials have provided conflicting messages about the benefits of corticosteroid treatment over supportive care alone, mostly involving optimized renin-angiotensin system blockade, which might generate further uncertainty in the therapeutic choice. Overall, these results indicate that corticosteroids are a powerful tool for treating patients with IgAN; however, treatment success is not universal and mostly occurs in patients who are highly proteinuric with early CKD. In patients with advanced CKD, the side effects of corticosteroids increase, and the renal protection decreases. This brief review aimed at integrating the findings of these recently published reports to provide balanced advice for clinicians as well as suggestions for future trials.
Collapse
Affiliation(s)
- Rosanna Coppo
- Fondazione Ricerca Molinette, Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
27
|
Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J. Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol 2015; 26:1503-12. [PMID: 25694468 DOI: 10.1681/asn.2014101000] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complement activation has a role in the pathogenesis of IgA nephropathy, an autoimmune disease mediated by pathogenic immune complexes consisting of galactose-deficient IgA1 bound by antiglycan antibodies. Of three complement-activation pathways, the alternative and lectin pathways are involved in IgA nephropathy. IgA1 can activate both pathways in vitro, and pathway components are present in the mesangial immunodeposits, including properdin and factor H in the alternative pathway and mannan-binding lectin, mannan-binding lectin-associated serine proteases 1 and 2, and C4d in the lectin pathway. Genome-wide association studies identified deletion of complement factor H-related genes 1 and 3 as protective against the disease. Because the corresponding gene products compete with factor H in the regulation of the alternative pathway, it has been hypothesized that the absence of these genes could lead to more potent inhibition of complement by factor H. Complement activation can take place directly on IgA1-containing immune complexes in circulation and/or after their deposition in the mesangium. Notably, complement factors and their fragments may serve as biomarkers of IgA nephropathy in serum, urine, or renal tissue. A better understanding of the role of complement in IgA nephropathy may provide potential targets and rationale for development of complement-targeting therapy of the disease.
Collapse
Affiliation(s)
- Nicolas Maillard
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama; Université Jean Monnet, Groupe sur l'immunité des Muqueuses et Agents Pathogènes, St. Etienne, Pôle de Recherche et d'Enseignement Supérieur, Université de Lyon, Lyon, France
| | - Robert J Wyatt
- University of Tennessee Health Science Center and Children's Foundation Research at the Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Bruce A Julian
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama
| | - Krzysztof Kiryluk
- Columbia University, Department of Medicine, New York, New York; and
| | - Ali Gharavi
- Columbia University, Department of Medicine, New York, New York; and
| | - Veronique Fremeaux-Bacchi
- Unité Mixte de Recherche en Santé 1138, Team "Complement and Diseases," Cordeliers Research Center, Paris, France
| | - Jan Novak
- University of Alabama at Birmingham, Departments of Microbiology and Medicine, Birmingham, Alabama;
| |
Collapse
|
28
|
|
29
|
|
30
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Sukegawa S, Ihara Y, Yuge K, Rao S, Oka K, Arakawa F, Fujimura T, Murakami H, Kurazono H, Takahashi M, Morimatsu F. Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J 2014; 85:454-60. [PMID: 24450962 DOI: 10.1111/asj.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/29/2013] [Indexed: 12/17/2022]
Abstract
Probiotic bacteria such as lactic acid bacteria (LAB) have recently received attention as candidates for alternative anti-microbial feed additives. We previously isolated Enterococcus faecium strain NHRD IHARA (FERM BP-11090, NHRD IHARA strain) and reported its probiotic efficacy. However, we have not determined the effect of oral administration of heat-killed cells of this strain. Here, we performed two experiments to investigate the effect of oral administration of the heat-killed NHRD IHARA strain on post-weaning piglets. In Experiment 1, there was a significant improvement in growth performance (P = 0.04) and increase in serum immunoglobulin A (IgA) production (P = 0.03) in the group fed heat-killed cells. These results were similar to previous results we obtained with live cells. We also found changes in serum and fecal IgA production that were unrelated to the patterns of microbiotal change. In Experiment 2, we detected a significant improvement in villus growth in the jejunum (P = 0.0002). In conclusion, oral administration of the heat-killed NHRD IHARA strain in post-weaning piglets had the same efficacy as administration of the live strain. The heat-killed NHRD IHARA strain can be used as feed additives to improve pig growth and health on commercial farms.
Collapse
Affiliation(s)
- Shin Sukegawa
- Research and Development Center, Nippon Meat Packers, Inc., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Smallridge WE, Rolin OY, Jacobs NT, Harvill ET. Different effects of whole-cell and acellular vaccines on Bordetella transmission. J Infect Dis 2014; 209:1981-8. [PMID: 24443545 DOI: 10.1093/infdis/jiu030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vaccine development has largely focused on the ability of vaccines to reduce disease in individual hosts, with less attention to assessing the vaccine's effects on transmission between hosts. Current acellular vaccines against Bordetella pertussis are effective in preventing severe disease but have little effect on less severe coughing illness that can mediate transmission. METHODS Using mice that are natural host's of Bordetella bronchiseptica, we determined the effects of vaccination on shedding and transmission of this pathogen. RESULTS Vaccination with heat-killed whole-cell B. bronchiseptica or B. pertussis inhibited shedding of B. bronchiseptica. Differences in neutrophil and B-cell recruitment distinguished sham-vaccine from whole-cell-----vaccine responses and correlated with shedding output. Both B and T cells were essential for vaccine-induced control of shedding. Adoptive transfer of antibodies was able to limit shedding, while depletion of CD4(+) T cells led to increased shedding in vaccinated mice. Finally, whole-cell vaccination was able to prevent transmission, but an acellular vaccine that effectively controls disease failed to control shedding and transmission. CONCLUSIONS Our results highlight discrepancies between whole-cell and acellular vaccination that could contribute to the increased incidence of B. pertussis infection since the transition to the use of acellular vaccination.
Collapse
Affiliation(s)
- William E Smallridge
- Department of Veterinary and Biomedical Sciences Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park
| | - Olivier Y Rolin
- Department of Veterinary and Biomedical Sciences Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park
| | | | - Eric T Harvill
- Department of Veterinary and Biomedical Sciences Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park
| |
Collapse
|
33
|
Brotman RM, Ravel J, Bavoil PM, Gravitt PE, Ghanem KG. Microbiome, sex hormones, and immune responses in the reproductive tract: challenges for vaccine development against sexually transmitted infections. Vaccine 2013; 32:1543-52. [PMID: 24135572 DOI: 10.1016/j.vaccine.2013.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
The female and male reproductive tracts are complex eco-systems where immune cells, hormones, and microorganisms interact. The characteristics of the reproductive tract mucosa are distinct from other mucosal sites. Reproductive tract mucosal immune responses are compartmentalized, unique, and affected by resident bacterial communities and sex hormones. The female and male genital microbiomes are complex environments that fluctuate in response to external and host-associated stimuli. The female vaginal microbiota play an important role in preventing colonization by pathogenic organisms. Sex hormones and their duration of exposure affect the composition and stability of the microbiome as well as systemic and mucosal immune responses. In addition to the characteristics of the pathogen they are targeting, successful vaccines against sexually transmitted pathogens must take into account the differences between the systemic and mucosal immune responses, the compartmentalization of the mucosal immune responses, the unique characteristics of the reproductive tract mucosa, the role of the mucosal bacterial communities, the impact of sex hormones, and the interactions among all of these factors.
Collapse
Affiliation(s)
- Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA.
| | - Patti E Gravitt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Khalil G Ghanem
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Brandtzaeg P. Immune aspects of breast milk: an overview. HANDBOOK OF DIETARY AND NUTRITIONAL ASPECTS OF HUMAN BREAST MILK 2013. [DOI: 10.3920/978-90-8686-764-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- P. Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
35
|
|
36
|
Abstract
Immunoglobulin A (IgA) has a critical role in immune defense particularly at the mucosal surfaces, and is equipped to do so by the unique structural attributes of its heavy chain and by its ability to polymerize. Here, we provide an overview of human IgA structure, describing the distinguishing features of the IgA1 and IgA2 subclasses and mapping the sites of interaction with host receptors important for IgA's functional repertoire. Remarkably, these same interaction sites are targeted by binding proteins and proteases produced by various pathogens as a means to subvert the protective IgA response. As interest in the prospect of therapeutic IgA-based monoclonal antibodies grows, the emerging understanding of the relationship between IgA structure and function will be invaluable for maximizing the potential of these novel reagents.
Collapse
Affiliation(s)
- J M Woof
- Medical Research Institute, University of Dundee Medical School, Dundee, UK.
| | | |
Collapse
|
37
|
Murthy AK, Chaganty BKR, Troutman T, Guentzel MN, Yu JJ, Ali SK, Lauriano CM, Chambers JP, Klose KE, Arulanandam BP. Mannose-containing oligosaccharides of non-specific human secretory immunoglobulin A mediate inhibition of Vibrio cholerae biofilm formation. PLoS One 2011; 6:e16847. [PMID: 21347387 PMCID: PMC3036728 DOI: 10.1371/journal.pone.0016847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
The role of antigen-specific secretory IgA (SIgA) has been studied extensively, whereas there is a limited body of evidence regarding the contribution of non-specific SIgA to innate immune defenses against invading pathogens. In this study, we evaluated the effects of non-specific SIgA against infection with Vibrio cholerae O139 strain MO10 and biofilm formation. Seven day old infant mice deficient in IgA (IgA-/- mice) displayed significantly greater intestinal MO10 burden at 24 hr post-challenge when compared to IgA+/+ pups. Importantly, cross-fostering of IgA-/- pups with IgA+/+ nursing dams reversed the greater susceptibility to MO10 infection, suggesting a role for non-specific SIgA in protection against the infection. Since biofilm formation is associated with virulence of MO10, we further examined the role of human non-specific SIgA on this virulence phenotype of the pathogen. Human non-specific SIgA, in a dose-dependent fashion, significantly reduced the biofilm formation by MO10 without affecting the viability of the bacterium. Such an inhibitory effect was not induced by human serum IgA, IgG, or IgM, suggesting a role for the oligosaccharide-rich secretory component (SC) of SIgA. This was supported by the demonstration that SIgA treated with endoglycosidase H, to cleave the high-mannose containing terminal chitobiose residues, did not induce a reduction in biofilm formation by MO10. Furthermore, the addition of free mannose per se, across a wide dose range, induced significant reduction in MO10 biofilm formation. Collectively, these results suggest that mannose containing oligosacchardies within human non-specific secretory IgA can alter important virulence phenotypes of Vibrio cholerae such as biofilm formation, without affecting viability of the microorganism. Such effects may contribute significantly to innate immune defenses against invading pathogens in vivo in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Bharat K. R. Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Ty Troutman
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Syed Khalid Ali
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Crystal M. Lauriano
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kim GB, Seo Y, Kim C, Paik I. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 2011; 90:75-82. [DOI: 10.3382/ps.2010-00732] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
39
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To review recent findings dealing with the involvement of mucosal immunoglobulin A (IgA) in the gut barrier function and various gastrointestinal diseases. New information will be discussed in the context of previous knowledge in this field. RECENT FINDINGS The epithelial barrier function seems to be central in many mucosal disorders because it is decisive for host-microbial interactions and penetration of soluble antigens into the lamina propria. Secretory IgA contributes to the barrier function and recent evidence strongly supports the notion that such antibodies are involved in immunological homeostasis. SUMMARY Inflammatory bowel disease involves a break of tolerance to the commensal microbiota. Aberrations in the mucosal IgA system may, therefore, be part of the inflammatory bowel disease pathogenesis. In gluten-induced enteropathy, however, it has been suggested that a mucosal IgA response may promote the progression of celiac disease and dermatitis herpetiformis by enhancing the uptake of gluten peptides and inhibiting the enzyme activity of tissue transglutaminase. A mucosal IgA response may also promote gastritis by protecting Helicobacter pylori from complement attack. In food allergy, several facets of the epithelial barrier function may show deficiency, including secretory IgA.
Collapse
|
41
|
Russell MW, Mestecky J. Tolerance and protection against infection in the genital tract. Immunol Invest 2010; 39:500-25. [PMID: 20450289 DOI: 10.3109/08820131003674834] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genital tract is a unique immunological environment that must support the reproductive function and resist infection. Particularly in the female tract, immunoregulatory and immunosuppressive activities that permit the growth of the fetus create an environment that can readily be exploited by microbes that have become well-adapted to this location. Cellular and molecular mediators of immune responses differ from those found at other mucosal surfaces. Mechanisms of immune response induction and delivery, as well as immune effector functions at the genital mucosae need to be considered in the development of vaccines against infections of the genital tract.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
42
|
Lohse S, Peipp M, Beyer T, Valerius T, Dechant M. Impact of human IgA antibodies on complement-dependent cytotoxicity mediated by combinations of EGF-R-directed antibodies. Arch Immunol Ther Exp (Warsz) 2010; 58:303-12. [PMID: 20508996 DOI: 10.1007/s00005-010-0081-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/11/2010] [Indexed: 01/29/2023]
Abstract
Dual combinations of non-crossblocking epidermal growth factor receptor (EGF-R)-directed monoclonal antibodies were demonstrated to effectively induce complement-dependent cytotoxicity (CDC) of tumor cells, whereas individual antibodies were ineffective. Here the modulating effects of different antibody isotypes on CDC were studied by adding them as a third antibody. Two different combinations of non-crossblocking EGF-R antibodies of human IgG1 isotype, 018/003 and 425/005, were investigated against the A431 and A1207 cell lines. As a third antibody, human IgG1, IgA1, and IgA2 isotype variants of the therapeutic EGF-R antibody 225 were employed that bind to an EGF-R epitope distinct from the other EGF-R antibodies. In this model, the human IgG1 antibody proved to further enhance CDC, whereas both IgA antibodies significantly blocked CDC. The IgG1 and IgA variants increased target opsonization at similar levels, but the isotypes differed in their effects on C1q fixation. Addition of IgG1 significantly enhanced complement factor binding on the target surface, whereas both IgA antibodies reduced complement binding. Control experiments revealed this blocking effect to be not specific to IgA antibodies, but to antibody constructs incapable of activating the complement system. Interestingly, the effects caused by the IgA2 isotype were consistently stronger than those by IgA1, which may be caused by stronger steric hindrance due to its reduced hinge flexibility. These results demonstrate that monoclonal IgA antibodies inhibit IgG-mediated complement activation in vitro and suggest that the appearance of IgA antibodies within a polyclonal immune response might inhibit complement activation in vivo.
Collapse
Affiliation(s)
- Stefan Lohse
- Department of Internal Medicine IV, Nephrology and Hypertension, Christian-Albrechts-University, Schittenhelmstr. 12, 24105, Kiel, Germany
| | | | | | | | | |
Collapse
|
43
|
Ogué-Bon E, Gibson GR, Rastall RA. The application of probiotics, prebiotics and synbiotics in companion animals. ACTA ACUST UNITED AC 2010. [DOI: 10.1616/1476-2137.15841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Cleavage of SIgA by gram negative respiratory pathogens enhance neutrophil inflammatory potential. ACTA ACUST UNITED AC 2009; 66:1336-42; discussion 1342. [PMID: 19430236 DOI: 10.1097/ta.0b013e31819dc577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Secretory immunoglobulin A (SIgA), the principle immune defense at respiratory and other mucosal sites in the body, is highly dependant on its molecular structure for effective antibody function. Previous studies have demonstrated that gram-negative but not gram-positive isolates from patients with nosocomial pneumonia have IgA protease activity that contributes to the development of infection. We postulate that SIgA cleavage by bacteria would also affect anti-inflammatory properties of IgA and studied this in vitro. METHODS Sterile filtrates obtained from Pseudomonas, Acinetobacter, and methicillin resistant Staphylococcus aureus (MRSA) held in culture with SIgA were used to challenge polymorphonuclear neutrophils (PMNs) obtained from healthy volunteers. In a second group of experiments, blood monocytes were incubated with lipopolysaccharide (LPS) or LPS + IgA, and the resulting culture supernatants was used to stimulate PMNs in vitro. RESULTS LPS-stimulated monocytes increased CD11b expression, O2-generation and elastase release by PMNs. Secretory IgA but not IgG abrogated this response. Cleavage of SIgA by the gram-negative respiratory isolates, Pseudomonas aeruginosa and Acinetobacter baumanii also led to the loss of cellular effector function noted with intact SIgA. Additionally, PMN cytotoxic potential was similar to that noted with PMNs treated with supernatant from LPS-stimulated monocytes. CONCLUSION IgA cleavage by gram-negative respiratory isolates may lead to the development of pneumonia and the subsequent severity of the infection as a result of uncontrolled inflammatory responses by the host.
Collapse
|
45
|
The Relative Roles of Bacteria and Host Inflammatory Cells in SIgA Degradation. ACTA ACUST UNITED AC 2009; 66:1556-62; discussion 1562-3. [DOI: 10.1097/ta.0b013e3181a4ea7f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Lundell AC, Hesselmar B, Nordström I, Saalman R, Karlsson H, Lindberg E, Åberg N, Adlerberth I, Wold AE, Rudin A. High circulating immunoglobulin A levels in infants are associated with intestinal toxigenicStaphylococcus aureusand a lower frequency of eczema. Clin Exp Allergy 2009; 39:662-70. [DOI: 10.1111/j.1365-2222.2008.03176.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Symposium Proceedings: “IgA and Periodontal Disease” Abstracts of the IADR symposium 26 June 1998, Nice, France. Oral Dis 2008. [DOI: 10.1111/j.1601-0825.1999.tb00065.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Biggs P, Parsons C, Fahey G. The Effects of Several Oligosaccharides on Growth Performance, Nutrient Digestibilities, and Cecal Microbial Populations in Young Chicks. Poult Sci 2007; 86:2327-36. [DOI: 10.3382/ps.2007-00427] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Abstract
Traditionally, the function of immunoglobulins A (IgA), the major type of secreted antibodies, has been thought to be restricted to binding antigens outside the epithelium basal membrane. Therefore, effector mechanisms eliminating IgA-opsonized targets have not been investigated so far. However, some indirect observations of infectious agents penetrating into tissues and blood from the environment suggest such mechanisms (analogous to IgG/IgM-dependent activation of complement and natural killers). In the present review, we examine details of IgA structure that might contribute to elucidation of IgA-dependent effector functions in human and animal immunity. Special attention is given to a putative transduction of signal about antigen binding in the active center of IgA from the Fab- to the Fc-superdomain via intramolecular conformational rearrangements. Different structure of the IgA subclasses (IgA1 and IgA2) is examined taking into account probable divergence of their functions in immune response.
Collapse
Affiliation(s)
- T N Kazeeva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | | |
Collapse
|
50
|
Verlinden A, Hesta M, Hermans JM, Janssens GPJ. The effects of inulin supplementation of diets with or without hydrolysed protein sources on digestibility, faecal characteristics, haematology and immunoglobulins in dogs. Br J Nutr 2007; 96:936-44. [PMID: 17092385 DOI: 10.1017/bjn20061912] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dogs with food allergy are often treated by giving a diet with hydrolysed protein sources. Prebiotics might also be successful in prevention and treatment of allergic disease through their effect on the colonic microflora, analogous to studies on probiotics in allergic children. The present study was set up to investigate the effect of supplementing inulin (IN) to commercial hypoallergenic dog diets on apparent nutrient digestibility, faecal characteristics, haematology and Ig in dogs. Supplementation of 3 % IN did not affect faecal pH, food and water intake and urine production. Compared with the intact protein diet with a limited number of ingredients (L), the diet with a hydrolysed protein source (H) resulted in an increased water intake (P<0·001), which could be due to the osmotic effect of free amino acids. Faeces production was increased by IN due to increased faecal moisture content. Increased faeces production on the H diet was mainly due to a higher DM excretion. Subsequently, the apparent digestibility coefficient (ADC) of DM was lower in the H diet group. A similar result was noted for ADC of diethyl ether extract and crude ash. The ADC of crude protein was higher in the H diet group, whereas IN decreased the ADC of crude protein. Differences in the ADC of crude protein among the different diets disappeared after correction for a higher faecal biomass, except for the dogs fed the L + IN diet. Total faecal IgA concentrations were lower in the H group (P<0·05) because of lower antigenic stimulation of hydrolysed protein, which implies that hydrolysed protein is really hypoallergenic. The present study indicates that the use of hydrolysed protein diets for canine food allergy treatment can affect digestibility and that combination with IN affected apparent protein digestibility but not IgA response.
Collapse
Affiliation(s)
- A Verlinden
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|