1
|
Cai R, Yang Q, Liao Y, Qin L, Han J, Gao R. Immune Treatment Strategies in Unexplained Recurrent Pregnancy Loss. Am J Reprod Immunol 2025; 93:e70060. [PMID: 39967400 DOI: 10.1111/aji.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Recurrent pregnancy loss (RPL) is characterized by the occurrence of two or more consecutive pregnancy losses. Approximately half of these cases lack a clear etiology and are termed unexplained recurrent pregnancy loss (URPL). Maternal-fetal immune dysfunction is thought to be involved in causing URPL. Increased human leukocyte antigen compatibility, susceptibility genes, lack of blocking antibodies, and dysfunction of immune cells can all disrupt the immune tolerance environment of the maternal-fetal interface. To correct the maternal-fetal immune imbalances, some immunotherapies were recently tried to be used for patients with URPL. This review summarizes the characteristics and mechanisms of the immune microenvironment at the maternal-fetal interface of URPL patients, and the present immunotherapies for URPL patients, to serve as a reference for future research.
Collapse
Affiliation(s)
- Rui Cai
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiaoran Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yingjun Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jinbiao Han
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T. Stimulation of Angiotensin II Receptor Subtype 2 Reduces Preeclampsia-like Symptoms in a Mouse Model of Preeclampsia. Curr Issues Mol Biol 2024; 46:9760-9771. [PMID: 39329931 PMCID: PMC11430795 DOI: 10.3390/cimb46090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Angiotensin II (AngII) receptor subtype 1 (AT1R) is involved in the pathogenesis of preeclampsia (PE). Angiotensin II receptor subtype 2 (AT2R) can antagonize the effects of AT1R, but its effects during pregnancy are not known. We investigated the effect of AT2R on the pathogenesis of PE using a mouse model and recently developed AT2R agonist (compound 21 [C21]). Blastocysts collected from pregnant imprinting control region (ICR) mice were incubated with adenovirus containing the CD40L gene and transferred into the uterine horns of pseudo-pregnant ICR mice to express PE-like features. Osmotic pumps were placed subcutaneously on the dorsal side with C21 or saline. C21 reduced the plasma soluble fms-like tyrosine kinase 1 (sFlt-1) concentration, ameliorating hypertension. The splenic T and B cell profiles in model mice were analyzed by flow cytometry. The gated percentage of IFN-γ-positive Th cells was significantly increased and the percentage of plasma cells in B cells was significantly decreased; however, the percentages were not altered by C21. sFlt-1 and soluble endoglin concentrations in plasma were measured with an enzyme-linked immunosorbent assay, and sFlt-1 was reduced. C21 could become a candidate PE drug as it ameliorated the pathophysiology of PE as a result of decreased production of sFlt-1.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| |
Collapse
|
3
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
4
|
Tsuneyoshi N, Hosoya T, Takeno Y, Saitoh K, Murai H, Amimoto N, Tatsumi R, Watanabe S, Hasegawa Y, Kikkawa E, Goto K, Nishigaki F, Tamura K, Kimura H. Hypoimmunogenic human iPSCs expressing HLA-G, PD-L1, and PD-L2 evade innate and adaptive immunity. Stem Cell Res Ther 2024; 15:193. [PMID: 38956724 PMCID: PMC11218117 DOI: 10.1186/s13287-024-03810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity. The hypoimmunogenic cell strategy is allogenic cell therapy without using immune suppressants. Advances in gene engineering technology now permit the generation of hypoimmunogenic cells to avoid allogeneic immune rejection. In this study, we generated a hypoimmunogenic hiPSC (HyPSC) clone that had diminished expression of human leukocyte antigen (HLA) class Ia and class II and expressed immune checkpoint molecules and a safety switch. METHODS First, we generated HLA class Ia and class II double knockout (HLA class Ia/II DKO) hiPSCs. Then, a HyPSC clone was generated by introducing exogenous β-2-microglobulin (B2M), HLA-G, PD-L1, and PD-L2 genes, and the Rapamycin-activated Caspase 9 (RapaCasp9)-based suicide gene as a safety switch into the HLA class Ia/II DKO hiPSCs. The characteristics and immunogenicity of the HyPSCs and their derivatives were analyzed. RESULTS We found that the expression of HLA-G on the cell surface can be enhanced by introducing the exogenous HLA-G gene along with B2M gene into HLA class Ia/II DKO hiPSCs. The HyPSCs retained a normal karyotype and had the characteristics of pluripotent stem cells. Moreover, the HyPSCs could differentiate into cells of all three germ layer lineages including CD45+ hematopoietic progenitor cells (HPCs), functional endothelial cells, and hepatocytes. The HyPSCs-derived HPCs exhibited the ability to evade innate and adaptive immunity. Further, we demonstrated that RapaCasp9 could be used as a safety switch in vitro and in vivo. CONCLUSION The HLA class Ia/II DKO hiPSCs armed with HLA-G, PD-L1, PD-L2, and RapaCasp9 molecules are a potential source of stem cells for allogeneic transplantation.
Collapse
Affiliation(s)
- Norihiro Tsuneyoshi
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Tomonori Hosoya
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuriko Takeno
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kodai Saitoh
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Hidetaka Murai
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Naoki Amimoto
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Rie Tatsumi
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Sono Watanabe
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yudai Hasegawa
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Eri Kikkawa
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kumiko Goto
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Fusako Nishigaki
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kouichi Tamura
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| | - Hironobu Kimura
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
5
|
Koenig MR, Vazquez J, Leyva Jaimes FB, Mitzey AM, Stanic AK, Golos TG. Decidual leukocytes respond to African lineage Zika virus infection with mild anti-inflammatory changes during acute infection in rhesus macaques. Front Immunol 2024; 15:1363169. [PMID: 38515747 PMCID: PMC10954895 DOI: 10.3389/fimmu.2024.1363169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) can be vertically transmitted during pregnancy resulting in a range of adverse pregnancy outcomes. The decidua is commonly found to be infected by ZIKV, yet the acute immune response to infection remains understudied in vivo. We hypothesized that in vivo African-lineage ZIKV infection induces a pro-inflammatory response in the decidua. To test this hypothesis, we evaluated the decidua in pregnant rhesus macaques within the first two weeks following infection with an African-lineage ZIKV and compared our findings to gestationally aged-matched controls. Decidual leukocytes were phenotypically evaluated using spectral flow cytometry, and cytokines and chemokines were measured in tissue homogenates from the decidua, placenta, and fetal membranes. The results of this study did not support our hypothesis. Although ZIKV RNA was detected in the decidual tissue samples from all ZIKV infected dams, phenotypic changes in decidual leukocytes and differences in cytokine profiles suggest that the decidua undergoes mild anti-inflammatory changes in response to that infection. Our findings emphasize the immunological state of the gravid uterus as a relatively immune privileged site that prioritizes tolerance of the fetus over mounting a pro-inflammatory response to clear infection.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Aleksandar K. Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Liu M, Tang Y, Du Y, Zhang J, Hu F, Zou Y, Li Y, Zhu L, He J, Guo J, Li Z. Leukocyte Ig-like receptor A3 facilitates inflammation, migration and invasion of synovial tissue-derived fibroblasts via ERK/JNK activation. Rheumatology (Oxford) 2024; 63:846-855. [PMID: 37462532 DOI: 10.1093/rheumatology/kead359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVE Leukocyte Ig-like receptor A3 (LILRA3) is a soluble receptor belongs to the immunoglobulin superfamily. Our previous studies demonstrated that LILRA3 is a common genetic risk for multiple autoimmune diseases, including RA. Functional LILRA3 conferred increased risk of joint destruction in patients with early RA. We undertook this study to further investigate the pathological role of LILRA3 in joint inflammation of RA. METHODS Soluble LILRA3 was measured by ELISA. LILRA3 plasmids were transfected into human fibroblast-like synoviocytes (FLSs) using electroporation. Activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was determined by western blots. Cytokine transcripts were quantified by real-time PCR. Migratory and invasive capacities of FLSs were evaluated using transwell migration and Matrigel invasion assays. FLS apoptosis was analysed using flow cytometry. Colocalization of LILRA3, LILRB1 and HLA-G in RA-FLSs was visualized by immunofluorescence staining. RESULTS Soluble LILRA3 was specifically expressed in synovial fluid and serum LILRA3 was significantly increased and positively correlated with disease activity/severity in RA patients. LILRA3 induced an increased expression of IL-6, IL-8 and MMP3 in RA-FLSs. In vitro LILRA3 stimulation or overexpression promoted RA-FLS migration and invasion, and enhanced phosphorylation of ERK/JNK. Inhibition of ERK/JNK resulted in suppression of IL-6/IL-8 expression in LILRA3-stimulated RA-FLSs. LILRA3 was co-localized with its homologue LILRB1 and shared ligand HLA-G in RA-FLSs. CONCLUSION The present study provides the first evidence that soluble LILRA3 is a novel proinflammatory mediator involved in synovial inflammation by promoting RA-FLS activation, migration and invasion, probably through the ERK/JNK signalling pathways.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yundi Tang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yan Du
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yundong Zou
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
7
|
Hu C, Deng J, Liu M, Ni T, Chen ZJ, Yan J, Li Y. Endometrial BMP2 Deficiency Impairs ITGB3-Mediated Trophoblast Invasion in Women With Repeated Implantation Failure. Endocrinology 2024; 165:bqae002. [PMID: 38195194 DOI: 10.1210/endocr/bqae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal-fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. METHODS Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. RESULTS We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin β3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin β3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. CONCLUSION Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.
Collapse
Affiliation(s)
- Cuiping Hu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Jianye Deng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Mingxi Liu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Tianxiang Ni
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, 250012, China
| | - Junhao Yan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Yan Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| |
Collapse
|
8
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Lancaster T, Tabrizi MEA, Repici M, Gupta J, Gross SR. An Extracellular/Membrane-Bound S100P Pool Regulates Motility and Invasion of Human Extravillous Trophoblast Lines and Primary Cells. Biomolecules 2023; 13:1231. [PMID: 37627296 PMCID: PMC10452538 DOI: 10.3390/biom13081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Whilst S100P has been shown to be a marker for carcinogenesis, we have shown, in non-physio-pathological states, that its expression promotes trophoblast motility and invasion but the mechanisms explaining these cellular processes are unknown. Here we identify the presence of S100P in the plasma membrane/cell surface of all trophoblast cells tested, whether lines, primary extravillous (EVT) cells, or section tissue samples using either biochemical purification of plasma membrane material, cell surface protein isolation through biotinylation, or microscopy analysis. Using extracellular loss of function studies, through addition of a specific S100P antibody, our work shows that inhibiting the cell surface/membrane-bound or extracellular S100P pools significantly reduces, but importantly only in part, both cell motility and cellular invasion in different trophoblastic cell lines, as well as primary EVTs. Interestingly, this loss in cellular motility/invasion did not result in changes to the overall actin organisation and focal adhesion complexes. These findings shed new light on at least two newly characterized pathways by which S100P promotes trophoblast cellular motility and invasion. One where cellular S100P levels involve the remodelling of focal adhesions whilst another, an extracellular pathway, appears to be focal adhesion independent. Both pathways could lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
Affiliation(s)
- Tara Lancaster
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Maral E. A. Tabrizi
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Mariaelena Repici
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Janesh Gupta
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham B15 2TT, UK;
- Fetal Medicine Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Stephane R. Gross
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| |
Collapse
|
10
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
11
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
12
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
13
|
Moffett A, Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat Rev Immunol 2023; 23:222-235. [PMID: 36192648 PMCID: PMC9527719 DOI: 10.1038/s41577-022-00777-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 02/02/2023]
Abstract
The role of the maternal immune system in reproductive success in humans remains controversial. Here we focus on the events that occur in the maternal decidua during the first few weeks of human pregnancy, because this is the site at which maternal leukocytes initially interact with and can recognize fetal trophoblast cells, potentially involving allorecognition by both T cells and natural killer (NK) cells. NK cells are the dominant leukocyte population in first-trimester decidua, and genetic studies point to a role of allorecognition by uterine NK cells in establishing a boundary between the mother and the fetus. By contrast, definitive evidence that allorecognition by decidual T cells occurs during the first trimester is lacking. Thus, our view is that during the crucial period when the placenta is established, damaging T cell-mediated adaptive immune responses towards placental trophoblast are minimized, whereas NK cell allorecognition contributes to successful implantation and healthy pregnancy.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
INPP5A/HLA-G1/IL-10/MMP-21 Axis in Progression of Esophageal Squamous Cell Carcinoma. IRANIAN BIOMEDICAL JOURNAL 2022; 26:440-53. [PMID: 36437782 PMCID: PMC9841225 DOI: 10.52547/ibj.3716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Background: Type I inositol polyphosphate-5-phosphatase A (INPP5A) is involved in different cellular events, including cell proliferation. Since INPP5A, HLAG1, IL-10, and matrix metalloproteinases (MMP)-21 genes play fundamental roles in esophageal squamous cell carcinoma (ESCC) tumorigenesis, we aimed in this study to clarify the possible interplay of these genes and explore the potential of these chemistries as a predictor marker for diagnosis in ESCC disease. Methods Methods: Gene expression analysis of INPP5A, HLAG-1, IL-10, and MMP-21 was performed using relative comparative real-time PCR in 56 ESCCs compared to their margin normal tissues. Immunohistochemical staining was accomplished for INPP5A in ESCCs. Analysis of ROC curves and the AUC were applied to evaluate the diagnostic capability of the candidate genes. Results Results: High levels of HLA-G1, MMP-21, and IL-10 were detected in nearly 23.2%, 62.5%, and 53.5% of ESCCs compared to the normal tissues, respectively, whereas INPP5A underexpression was detected in 19.6% of ESCCs, which all tested genes indicated significant correlations with each other. The protein expression level of INPP5A in ESCC tissues was significantly lower than that of the non-tumor esophageal tissues (p = 0.001). Interestingly, the concomitant expression of the INPP5A/HLA-G1, INPP5A/MMP-21, INPP5A/IL-10, HLA-G1/MMP-21, HLA-G1/IL-10, and MMP-21/IL-10 was significantly correlated with several clinicopathological variables. INPP5A, HLA-G1, MMP-21, and IL-10 showed to be the most appropriate candidates to discriminate tumor/non-tumor groups due to the total AUCs of all combinations (>60%). Conclusion Conclusion: Our results represent a new regulatory axis containing INPP5A/HLAG-1/IL-10/MMP-21 markers in ESCC development and may provide novel insight into the mechanism of immune evasion mediated
by the INPP5A/HLAG-1/IL-10/MMP-21 regulatory network in the disease.
Collapse
|
15
|
Lin XX, Xie YM, Zhao SJ, Liu CY, Mor G, Liao AH. Human leukocyte antigens: the unique expression in trophoblasts and their crosstalk with local immune cells. Int J Biol Sci 2022; 18:4043-4052. [PMID: 35844794 PMCID: PMC9274495 DOI: 10.7150/ijbs.73616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Trophoblasts differentiate and form the placenta during pregnancy in a complex and finely orchestrated process, which is dependent on the establishment of maternal-fetal immune tolerance and the proper function of trophoblasts. Trophoblasts express HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G). Numerous studies have shown that the unique expression pattern of the HLA molecules is closely linked to the successful acceptance of allogeneic fetus by the mother during pregnancy. However, some controversies still exist concerning the exact expression and recognition patterns of HLA molecules in different trophoblast subpopulations and cell lines. Thus, we summarize three types of trophoblast subpopulations as well as the common trophoblast lineages. Then, the classification and structural characteristics of HLA molecules were elucidated. Finally, the presence of HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G) in various trophoblasts and cell lines, as well as their potential role in establishing and maintaining normal pregnancy were also discussed. Together, this review will help people comprehensively understand the complex immune interactions between maternal and fetal crosstalk during pregnancy and ultimately better understand the physiological and pathological etiologies of pregnancy.
Collapse
Affiliation(s)
- Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying-Ming Xie
- Department of Obstetrics, Maternity and Child health care hospital Hubei, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
16
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
17
|
Cornish EF, McDonnell T, Williams DJ. Chronic Inflammatory Placental Disorders Associated With Recurrent Adverse Pregnancy Outcome. Front Immunol 2022; 13:825075. [PMID: 35529853 PMCID: PMC9072631 DOI: 10.3389/fimmu.2022.825075] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory placental disorders are a group of rare but devastating gestational syndromes associated with adverse pregnancy outcome. This review focuses on three related conditions: villitis of unknown etiology (VUE), chronic histiocytic intervillositis (CHI) and massive perivillous fibrin deposition (MPFD). The hallmark of these disorders is infiltration of the placental architecture by maternal immune cells and disruption of the intervillous space, where gas exchange between the mother and fetus occurs. Currently, they can only be detected through histopathological examination of the placenta after a pregnancy has ended. All three are associated with a significant risk of recurrence in subsequent pregnancies. Villitis of unknown etiology is characterised by a destructive infiltrate of maternal CD8+ T lymphocytes invading into the chorionic villi, combined with activation of fetal villous macrophages. The diagnosis can only be made when an infectious aetiology has been excluded. VUE becomes more common as pregnancy progresses and is frequently seen with normal pregnancy outcome. However, severe early-onset villitis is usually associated with fetal growth restriction and recurrent pregnancy loss. Chronic histiocytic intervillositis is characterised by excessive accumulation of maternal CD68+ histiocytes in the intervillous space. It is associated with a wide spectrum of adverse pregnancy outcomes including high rates of first-trimester miscarriage, severe fetal growth restriction and late intrauterine fetal death. Intervillous histiocytes can also accumulate due to infection, including SARS-CoV-2, although this infection-induced intervillositis does not appear to recur. As with VUE, the diagnosis of CHI requires exclusion of an infectious cause. Women with recurrent CHI and their families are predisposed to autoimmune diseases, suggesting CHI may have an alloimmune pathology. This observation has driven attempts to prevent CHI with a wide range of maternal immunosuppression. Massive perivillous fibrin deposition is diagnosed when >25% of the intervillous space is occupied by fibrin, and is associated with fetal growth restriction and late intrauterine fetal death. Although not an inflammatory disorder per se, MPFD is frequently seen in association with both VUE and CHI. This review summarises current understanding of the prevalence, diagnostic features, clinical consequences, immune pathology and potential prophylaxis against recurrence in these three chronic inflammatory placental syndromes.
Collapse
Affiliation(s)
- Emily F. Cornish
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom,*Correspondence: Emily F. Cornish,
| | - Thomas McDonnell
- Faculty of Engineering Science, Department of Biochemical Engineering, University College London, London, United Kingdom
| | - David J. Williams
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom
| |
Collapse
|
18
|
Zhou J, Chen H, Xu X, Liu Y, Chen S, Yang S, He F, Yu B. Uterine damage induces placenta accreta and immune imbalance at the maternal-fetal interface in the mouse. Placenta 2022; 119:8-16. [PMID: 35066308 DOI: 10.1016/j.placenta.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Placenta accreta spectrum (PAS) disorder is one of the major complications resulting in maternal death and serious adverse pregnancy outcomes. Uterine damage - principally that associated with cesarean section - is the leading risk factor for the development of PAS. However, the underlying pathogenesis of PAS related to uterine damage remains unclear. METHODS For this study, we constructed a mouse PAS model using hysterotomy to simulate a cesarean section in humans. Pregnant mice were sacrificed on embryonic days 12.5 (E12.5) and E17.5. Trophoblast invasion and placental vascularization were analyzed using Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC), and the proportions of immune cells at the maternal-fetal interface were analyzed using flow cytometry. We analyzed the expressions of genes in the decidua and placenta using RNA sequencing and subsequent validation by QPCR, and measured serum angiogenic factors by ELISA. RESULTS Uterine damage led to increased trophoblast invasion and placental vascularization, with extensive changes to the immune-cell profiles at the maternal-fetal interface. The proportions of T and NK cells in the deciduas diminished significantly, with the decidual NK cells and M - 2 macrophages showing the greatest decline. The expression of TNF-α and IL4 was upregulated in the deciduas, while that of IFN-γ and IL10 was downregulated significantly. The expression of Mmp2, Mmp9, Mmp3, and Dock4 was significantly elevated in the placenta, and the serum levels of anti-angiogenic factors were significantly attenuated. DISCUSSION Uterine damage can cause immune imbalance at the maternal-fetal interface, which may contribute to abnormal trophoblast invasion and enhanced vascularization of the mouse placenta.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huanpeng Chen
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Xu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyun Liu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengzhu Chen
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Yang
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang He
- Department of Obstetrics and Gynecology, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, China; BioResource Research Center, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
21
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
22
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. mBio 2021; 12:e0184921. [PMID: 34399615 PMCID: PMC8406333 DOI: 10.1128/mbio.01849-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pregnant women are highly susceptible to infection by the bacterial pathogen Listeria monocytogenes, leading to miscarriage, premature birth, and neonatal infection. L. monocytogenes is thought to breach the placental barrier by infecting trophoblasts at the maternal/fetal interface. However, the fate of L. monocytogenes within chorionic villi and how infection reaches the fetus are unsettled. Hofbauer cells (HBCs) are fetal placental macrophages and the only leukocytes residing in healthy chorionic villi, forming a last immune barrier protecting fetal blood from infection. Little is known about the HBCs’ antimicrobial responses to pathogens. Here, we studied L. monocytogenes interaction with human primary HBCs. Remarkably, despite their M2 anti-inflammatory phenotype at basal state, HBCs phagocytose and kill non-pathogenic bacteria like Listeria innocua and display low susceptibility to infection by L. monocytogenes. However, L. monocytogenes can exploit HBCs to spread to surrounding placental cells. Transcriptomic analyses by RNA sequencing revealed that HBCs undergo pro-inflammatory reprogramming upon L. monocytogenes infection, similarly to macrophages stimulated by the potent M1-polarizing agents lipopolysaccharide (LPS)/interferon gamma (IFN-γ). Infected HBCs also express pro-inflammatory chemokines known to promote placental infiltration by maternal leukocytes. However, HBCs maintain the expression of a collection of tolerogenic genes and secretion of tolerogenic cytokines, consistent with their tissue homeostatic role in prevention of fetal rejection. In conclusion, we propose a previously unrecognized model in which HBCs promote the spreading of L. monocytogenes among placental cells and transition to a pro-inflammatory state likely to favor innate immune responses, while maintaining the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity.
Collapse
|
24
|
Fournier SB, D'Errico JN, Stapleton PA. Uterine Vascular Control Preconception and During Pregnancy. Compr Physiol 2021; 11:1871-1893. [PMID: 34061977 DOI: 10.1002/cphy.c190015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on systemic adaptation and endometrial preparation through decidualization, embryonic implantation, trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations occur through responsiveness to endocrine signaling and local uteroplacental mediators. The purpose of this article is to highlight the current knowledge associated with vascular remodeling and responsivity during uterine preparation for and during pregnancy. We focus on maternal cardiovascular systemic and uterine modifications, endometrial decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction during pregnancy. © 2021 American Physiological Society. Compr Physiol 11:1-23, 2021.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
25
|
Genebrier S, Tarte K. The flawless immune tolerance of pregnancy. Joint Bone Spine 2021; 88:105205. [PMID: 33962032 DOI: 10.1016/j.jbspin.2021.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Genebrier
- Unité Inserm U1236, Faculté de médecine, Université de Rennes 1, 2, avenue du Pr Léon Bernard, 35043 Rennes, France; CHU de Rennes, Pôle Biologie, Rennes, France
| | - Karin Tarte
- Unité Inserm U1236, Faculté de médecine, Université de Rennes 1, 2, avenue du Pr Léon Bernard, 35043 Rennes, France; CHU de Rennes, Pôle Biologie, Rennes, France.
| |
Collapse
|
26
|
Molecular characteristics of established trophoblast-derived cell lines. Placenta 2021; 108:122-133. [PMID: 33810901 DOI: 10.1016/j.placenta.2021.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Research on human placental development and function lacks a conclusive in vivo model. To investigate the intracellular molecular mechanisms in trophoblast cells, different cell lines have been established during the last decades. So far, none of these accomplishes all features of primary trophoblast, thus their suitability as well as the transferability of the results has been discussed. The aim of this study is to assess molecular markers and features matching different trophoblast subpopulations in trophoblastic cell lines to provide orientation on their suitability and relevance for distinct research questions. METHODS The commonly used trophoblastic cell lines, BeWo, JEG-3, HTR-8/SVneo, AC1-M59, AC1-M32, ACH-3P and Swan71 were selected. qPCR and immunoblotting were used to determine expression of characteristic molecular markers. C14MC, C19MC and miR-371-3 miRNA expression were investigated by real time PCR. Proliferation, migration and network stabilization assays were performed. Hormone secretion was determined by chemiluminescent-immunoassays. DNA profiles were obtained by Short Tandem Repeat (STR)-genotyping. RESULTS Immortalized cell lines differ from choriocarcinoma-derived ones in the expression of HLA-G, E-cadherin, N-cadherin, VE-cadherin, cadherin-11, cytokeratin 7, vimentin, ADAM12 and PRG2. Compared to choriocarcinoma-derived cell lines, expression of C19MC and hormone secretion were almost absent in immortalized cell lines. Conversely, they express C14MC and exhibit higher migration and network stabilization. DISCUSSION The data presented will help justify the use of a cell line to evaluate distinct features of trophoblast biology and pathology. In general, characteristics and markers of choriocarcinoma derived cell lines seem to be more similar to in vivo trophoblast than immortalized cell lines and thus might be regarded as more suitable models.
Collapse
|
27
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Immune Tolerance of the Human Decidua. J Clin Med 2021; 10:jcm10020351. [PMID: 33477602 PMCID: PMC7831321 DOI: 10.3390/jcm10020351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The endometrium is necessary for implantation, complete development of the placenta, and a successful pregnancy. The endometrium undergoes repeated cycles of proliferation, decidualization (differentiation), and shedding during each menstrual cycle. The endometrium—including stromal, epithelial, vascular endothelial, and immune cells—is both functionally and morphologically altered in response to progesterone, causing changes in the number and types of immune cells. Immune cells make up half of the total number of endometrial cells during implantation and menstruation. Surprisingly, immune tolerant cells in the endometrium (uterine natural killer cells, T cells, and macrophages) have two conflicting functions: to protect the body by eliminating pathogenic microorganisms and other pathogens and to foster immunological change to tolerate the embryo during pregnancy. One of the key molecules involved in this control is the cytokine interleukin-15 (IL-15), which is secreted by endometrial stromal cells. Recently, it has been reported that IL-15 is directly regulated by the transcription factor heart- and neural crest derivatives-expressed protein 2 in endometrial stromal cells. In this review, we outline the significance of the endometrium and immune cell population during menstruation and early pregnancy and describe the factors involved in immune tolerance and their involvement in the establishment and maintenance of pregnancy.
Collapse
|
29
|
Arns T, Antunes DA, Abella JR, Rigo MM, Kavraki LE, Giuliatti S, Donadi EA. Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G. Front Immunol 2020; 11:575076. [PMID: 33240264 PMCID: PMC7677236 DOI: 10.3389/fimmu.2020.575076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 02/01/2023] Open
Abstract
HLA-G is considered to be an immune checkpoint molecule, a function that is closely linked to the structure and dynamics of the different HLA-G isoforms. Unfortunately, little is known about the structure and dynamics of these isoforms. For instance, there are only seven crystal structures of HLA-G molecules, being all related to a single isoform, and in some cases lacking important residues associated to the interaction with leukocyte receptors. In addition, they lack information on the dynamics of both membrane-bound HLA-G forms, and soluble forms. We took advantage of in silico strategies to disclose the dynamic behavior of selected HLA-G forms, including the membrane-bound HLA-G1 molecule, soluble HLA-G1 dimer, and HLA-G5 isoform. Both the membrane-bound HLA-G1 molecule and the soluble HLA-G1 dimer were quite stable. Residues involved in the interaction with ILT2 and ILT4 receptors (α3 domain) were very close to the lipid bilayer in the complete HLA-G1 molecule, which might limit accessibility. On the other hand, these residues can be completely exposed in the soluble HLA-G1 dimer, due to the free rotation of the disulfide bridge (Cys42/Cys42). In fact, we speculate that this free rotation of each protomer (i.e., the chains composing the dimer) could enable alternative binding modes for ILT2/ILT4 receptors, which in turn could be associated with greater affinity of the soluble HLA-G1 dimer. Structural analysis of the HLA-G5 isoform demonstrated higher stability for the complex containing the peptide and coupled β2-microglobulin, while structures lacking such domains were significantly unstable. This study reports for the first time structural conformations for the HLA-G5 isoform and the dynamic behavior of HLA-G1 molecules under simulated biological conditions. All modeled structures were made available through GitHub (https://github.com/KavrakiLab/), enabling their use as templates for modeling other alleles and isoforms, as well as for other computational analyses to investigate key molecular interactions.
Collapse
Affiliation(s)
- Thais Arns
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Jayvee R. Abella
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M. Rigo
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo A. Donadi
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Xu X, Zhou Y, Wei H. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front Immunol 2020; 11:592010. [PMID: 33193435 PMCID: PMC7642459 DOI: 10.3389/fimmu.2020.592010] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, the maternal uterus and fetus form a special microenvironment at the maternal-fetal interface to support fetal development. Extravillous trophoblasts (EVTs), differentiated from the fetus, invade into the decidua and interact with maternal cells. Human leukocyte antigen (HLA)-G is a non-classical MHC-I molecule that is expressed abundantly and specifically on EVTs in physiological conditions. Soluble HLA-G (sHLA-G) is also found in maternal blood, amniotic fluid, and cord blood. The abnormal expression and polymorphisms of HLA-G are related to adverse pregnancy outcomes such as preeclampsia (PE) and recurrent spontaneous abortion (RSA). Here we summarize current findings about three main roles of HLA-G during pregnancy, namely its promotion of spiral artery remodeling, immune tolerance, and fetal growth, all resulting from its interaction with immune cells. These findings are not only of great significance for the treatment of pregnancy-related diseases but also provide clues to tumor immunology research since HLA-G functions as a checkpoint in tumors.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Eastman AJ, Vrana EN, Grimaldo MT, Jones AD, Rogers LM, Alcendor DJ, Aronoff DM. Cytotrophoblasts suppress macrophage-mediated inflammation through a contact-dependent mechanism. Am J Reprod Immunol 2020; 85:e13352. [PMID: 32969101 DOI: 10.1111/aji.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Gestational membrane (GM) infection provokes inflammation and can result in preterm prelabor rupture of membranes (PPROM). The choriodecidual layer of the GM includes decidual stromal cells (DSC), cytotrophoblasts (CTB), and macrophages (Mφ). Our laboratory has previously shown that DSCs suppress Mφ TNF-α production through secreted prostaglandin E2 . We hypothesized that CTBs would also inhibit Mφ cytokine expression through secreted mediators. METHOD OF STUDY THP.1 Mφ-like cells with an NF-κB reporter construct or human blood monocyte-derived Mφ were co-cultured with the Jeg3 CTB cell line or primary human CTBs and challenged with group B streptococcus (GBS) or Toll-like receptor (TLR) agonists. Conditioned medium generated from CTB cultures was applied to Mφ cultures before infection or treatment. Alternatively, CTBs were co-incubated with, but physically separated from, Mφ and GBS or TLR-stimulated. NF-κB was assessed via alkaline phosphatase assay, and proinflammatory mediators were assessed by qRT-PCR and ELISA. RESULTS CTBs suppressed GBS- or TLR-stimulated Mφ NF-κB activity, and TNF-α and MMP9 production. Direct physical contact between CTBs and Mφ was required for full immunosuppression. Immunosuppression could be overcome by increasing the ratio of Mφ to CTB. CONCLUSIONS CTBs limit Mφ NF-κB activation and production of TNF-α and MMP9 through an as-yet unknown, cell-to-cell contact-mediated mechanism. This suppression is distinct from the PGE2 -mediated Mφ TNF-α suppression by DSC, suggesting that DSCs and CTBs regulate Mφ inflammation through distinct mechanisms. How Mφ integrates these signals in an intact GM will be paramount to determining causes and prevention of PPROM.
Collapse
Affiliation(s)
- Alison J Eastman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin N Vrana
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN, USA
| | - Maria T Grimaldo
- Texas A&M University, College of Agriculture and Life Sciences, College Station, TX, USA
| | - Amanda D Jones
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David M Aronoff
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
32
|
Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020; 11:572567. [PMID: 33101294 PMCID: PMC7556209 DOI: 10.3389/fimmu.2020.572567] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic fetus but also increase maternal susceptibility to infection. At implantation, the endometrial stroma, glands, arteries and immune cells undergo anatomical and functional transformation to create the decidua, the specialized secretory endometrium of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a dynamic junction that facilitates a complex immunological dialogue between the two. The decidual and peripheral immune systems together assume a pivotal role in regulating the critical balance between tolerance and defense against infection. Throughout pregnancy, this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in pregnancy is associated with a wide spectrum of adverse consequences for both mother and fetus. Vertical transmission from mother to fetus can cause developmental anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed to heightened morbidity and maternal death. A rapid, effective response to invasive pathogens is therefore essential in order to avoid overwhelming maternal infection and consequent fetal compromise. This sentinel response is mediated by the innate immune system: a heritable, highly evolutionarily conserved system comprising physical barriers, antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils, macrophages, dendritic cells, and natural killer cells—which express pattern-receptors that detect invariant molecular signatures unique to pathogenic micro-organisms. Recognition of these signatures during acute infection triggers signaling cascades that enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory cytokines and activation of the complement system. As well as coordinating the initial immune response, macrophages and dendritic cells present microbial antigens to lymphocytes, initiating and influencing the development of specific, long-lasting adaptive immunity. Despite extensive progress in unraveling the immunological adaptations of pregnancy, pregnant women remain particularly susceptible to certain acute viral infections and continue to experience mortality rates equivalent to those observed in pandemics several decades ago. Here, we focus specifically on the pregnancy-induced vulnerabilities in innate immunity that contribute to the disproportionately high maternal mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease (EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.
Collapse
Affiliation(s)
- Emily F Cornish
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Fredrika Åsenius
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David J Williams
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Thomas McDonnell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
33
|
Wuerfel FM, Huebner H, Häberle L, Gass P, Hein A, Jud SM, Hack CC, Wunderle M, Schulz-Wendtland R, Erber R, Hartmann A, Ekici AB, Beckmann MW, Fasching PA, Ruebner M. HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment. Sci Rep 2020; 10:15750. [PMID: 32978482 PMCID: PMC7519664 DOI: 10.1038/s41598-020-72837-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The immunosuppressive human leukocyte antigens HLA-G and HLA-F are expressed on trophoblast and malignant cells. Four membrane-bound and three soluble HLA-G protein isoforms have been described, which have different immunosuppressive potentials. HLA-F has three transcript variants, resulting in three different protein isoforms. The aim of this study was to evaluate the prognostic and predictive value of HLA-G and HLA-F protein isoform expression patterns in patients with breast cancer. Core biopsies were taken at diagnosis in patients with HER2+ (n = 28), luminal B-like (n = 49) and triple-negative (n = 38) breast cancers who received neoadjuvant chemotherapy. Expression levels of HLA-F and -G were correlated with the pathological complete response (pCR). Protein expression was determined by Western blot analysis, using two antibodies for each HLA, specific for different isoforms. The protein expression of HLA isoforms did not significantly differ between breast cancer subtypes. However, some initial indications were found for an association between the soluble HLA-G6 protein isoform and pCR in HER2+ breast cancer. The study provides preliminary evidence for the evaluation of HLA-G isoform expression, in particular HLA-G6, as a possible new marker for pCR in HER2+ breast cancer.
Collapse
Affiliation(s)
- Franziska M Wuerfel
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Paul Gass
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Alexander Hein
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Sebastian M Jud
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Carolin C Hack
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Marius Wunderle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Rüdiger Schulz-Wendtland
- Institute of Diagnostic Radiology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
| |
Collapse
|
34
|
Yeboah M, Papagregoriou C, Jones DC, Chan HC, Hu G, McPartlan JS, Schiött T, Mattson U, Mockridge CI, Tornberg UC, Hambe B, Ljungars A, Mattsson M, Tews I, Glennie MJ, Thirdborough SM, Trowsdale J, Frendeus B, Chen J, Cragg MS, Roghanian A. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Insight 2020; 5:141593. [PMID: 32870822 PMCID: PMC7526549 DOI: 10.1172/jci.insight.141593] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.
Collapse
Affiliation(s)
- Muchaala Yeboah
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Charys Papagregoriou
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Des C. Jones
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - H.T. Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Justine S. McPartlan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - C. Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | - Ivo Tews
- Institute for Life Sciences and
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Stephen M. Thirdborough
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S. Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Cho K, Kook H, Kang S, Lee J. Study of immune-tolerized cell lines and extracellular vesicles inductive environment promoting continuous expression and secretion of HLA-G from semiallograft immune tolerance during pregnancy. J Extracell Vesicles 2020; 9:1795364. [PMID: 32944184 PMCID: PMC7480490 DOI: 10.1080/20013078.2020.1795364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An immune reaction is a protector of our body but a target to be overcome for all non-self-derived medicine. Extracellular Vesicles (EVs), noted as a primary alternative to cell therapy products that exhibit immune rejection due to mismatching-major histocompatibility complex (MHC), were discovered to have excellent curative effects through the delivery of various biologically active substances. Although EVs are sure to incur immune reaction by immunogenicity due to alloantigens from their parental cells, their immune rejection is rarely known. Hence, to develop cell lines and EVs as medicines with no immune rejection, we noted the immune tolerance where the foetus, as semi-allograft, is perfectly protected from the maternal immune system. We designed the ex-vivo culture systems to simulate in-vivo environmental factors inducing extravillous trophoblast (EVT)-specific Human Leukocyte Antigen-G (HLA-G) expression and secretion of HLA-G-bearing EVs at the mother-foetus interface. Using them, we confirmed that immune-tolerized stem cells (itSCs) continuously expressing and secreting HLA-G like EVTs during pregnancy can be induced. Also, EVs secreted from itSCs are verified as immune-tolerized EVs (itSC-EVs) containing HLA-G and not causing immune rejection through various analytical methods. These findings can provide a new perspective on the local and extensive immune tolerance environment where HLA-G is expressed and secreted by pregnancy-related hormones and different biological conditions. Furthermore, they show the new way to develop itSCs-EVs-based therapeutics that are free from time, space, and donor limitation causing immune rejection. Abbreviations CFSE: carboxyfluorescein succinimidyl ester; DC: dendritic cells; ELISA: enzyme-linked immunosorbent assay; EV: extracellular vesicles; EVT: extravillous trophoblast; FSH: follicle stimulating hormone; HA: hyaluronic acid; hCG: human chorionic gonadotropin; HLA-G: human leukocyte antigen G; iPSC: induced pluripotent stem cells; itSC-EVs: immune-tolerized extracellular vesicles from itSCs; itTBC-EVs: immune-tolerized extracellular vesicles from itTBCs; itSCs: immune tolerized stem cells; itTBCs: immune-tolerized trophoblast cells; LH: luteinizing hormone; MHC: major histocompatibility complex; MSC: mesenchymal stem cells; NK: natural killer cells; NTA: nanoparticle tracking analysis; PBMC: peripheral blood mononuclear cells; PHA: phytohemagglutinin; SP-IRIS: single particle interferometric reflectance imaging sensing; STB: syncytiotrophoblast
Collapse
Affiliation(s)
- Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| | - Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, Republic of Korea
| |
Collapse
|
36
|
Abstract
Pregnancy is a natural process that poses an immunological challenge because non-self fetus must be accepted. During the pregnancy period, the fetus as 'allograft' inherits maternal and also paternal antigens. For successful and term pregnancy, the fetus is tolerated and nurtured enjoying immune privileges that minimize the risk of being rejected by maternal immune system. Multiple mechanisms contribute to tolerate the semi-allogeneic fetus. Here, we summarize the recent progresses on how the maternal immune system actively collaborates to maintain the immune balance and maternal-fetal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Zhou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Fang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,International College, University of the Chinese Academy of Sciences, Beijing, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Abstract
Brazilian-born British biologist Dr. Peter Medawar played an integral role in developing the concepts of immunologic rejection and tolerance, which led to him receiving the Nobel Prize "for the discovery of acquired immunologic tolerance" and eventually made organ transplantation a reality. However, at the time of his early work in tolerance, a paradox to his theories was brought to his attention; how was pregnancy possible? Pregnancy resembles organ transplantation in that the fetus, possessing paternal antigens, is a semi-allogeneic graft that can survive without immunosuppression for 9 months. To answer this question, Medawar proposed three hypotheses of how a mother supports her fetus in utero, now known as "Medawar's Paradox." The mechanisms that govern fetomaternal tolerance are still incompletely understood but may provide critical insight into how to achieve immune tolerance in organ transplantation. Here, we review current understanding of the immune factors responsible for fetomaternal tolerance during pregnancy and discuss the potential implications for advances in transplantation science.
Collapse
Affiliation(s)
- Victoria Rendell
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Natalie M Bath
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
39
|
Kuroki K, Matsubara H, Kanda R, Miyashita N, Shiroishi M, Fukunaga Y, Kamishikiryo J, Fukunaga A, Fukuhara H, Hirose K, Hunt JS, Sugita Y, Kita S, Ose T, Maenaka K. Structural and Functional Basis for LILRB Immune Checkpoint Receptor Recognition of HLA-G Isoforms. THE JOURNAL OF IMMUNOLOGY 2019; 203:3386-3394. [PMID: 31694909 DOI: 10.4049/jimmunol.1900562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/05/2019] [Indexed: 01/30/2023]
Abstract
Human leukocyte Ig-like receptors (LILR) LILRB1 and LILRB2 are immune checkpoint receptors that regulate a wide range of physiological responses by binding to diverse ligands, including HLA-G. HLA-G is exclusively expressed in the placenta, some immunoregulatory cells, and tumors and has several unique isoforms. However, the recognition of HLA-G isoforms by LILRs is poorly understood. In this study, we characterized LILR binding to the β2-microglobulin (β2m)-free HLA-G1 isoform, which is synthesized by placental trophoblast cells and tends to dimerize and multimerize. The multimerized β2m-free HLA-G1 dimer lacked detectable affinity for LILRB1, but bound strongly to LILRB2. We also determined the crystal structure of the LILRB1 and HLA-G1 complex, which adopted the typical structure of a classical HLA class I complex. LILRB1 exhibits flexible binding modes with the α3 domain, but maintains tight contacts with β2m, thus accounting for β2m-dependent binding. Notably, both LILRB1 and B2 are oriented at suitable angles to permit efficient signaling upon complex formation with HLA-G1 dimers. These structural and functional features of ligand recognition by LILRs provide novel insights into their important roles in the biological regulations.
Collapse
Affiliation(s)
- Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Haruki Matsubara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryo Kanda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Naoyuki Miyashita
- RIKEN, Kobe 650-0047, Japan.,Department of Computational Systems Biology, Kindai University, Kinokawa 649-6493, Japan
| | - Mitsunori Shiroishi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Fukunaga
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Kamishikiryo
- Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Japan; and
| | - Atsushi Fukunaga
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kaoru Hirose
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Joan S Hunt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan;
| |
Collapse
|
40
|
Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the
in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with
in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.
Collapse
Affiliation(s)
- Judith N Bulmer
- Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
41
|
Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity 2019; 48:951-962.e5. [PMID: 29768178 DOI: 10.1016/j.immuni.2018.03.030] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/20/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.
Collapse
|
42
|
Bastidas-Legarda LY, Khakoo SI. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology 2019; 156:319-328. [PMID: 30570753 DOI: 10.1111/imm.13039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system with essential roles during viral infections. NK cell functions are mediated through a repertoire of non-rearranging inhibitory and activating receptors that interact with major histocompatibility complex (MHC)-peptide complexes on the surface of infected cells. Recent work studying the conserved CD94-NKG2A and variable killer cell immunoglobulin-like receptor-MHC systems suggest that these two receptor families may have subtly different properties in terms of interactions with MHC class I bound peptides, and in recognition of down-regulation of MHC class I. In this review, we discuss how these properties generate diversity in the NK cell response to viruses.
Collapse
Affiliation(s)
- Leidy Y Bastidas-Legarda
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
43
|
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol 2019; 4:eaat6114. [PMID: 30635356 PMCID: PMC6744611 DOI: 10.1126/sciimmunol.aat6114] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Pregnancy poses an immunological challenge because a genetically distinct (nonself) fetus must be supported within the pregnant female for the required gestational period. Placentation, or the establishment of the fetally derived placenta, is a common strategy used by eutherian mammals to protect the fetus and promote its growth. However, the substantial morphological differences of the placental architecture among species suggest that the process of placentation results from convergent evolution. Although there are considerable similarities in placental function across placental mammals, there are important differences that arise owing to species-specific immunological (and other biological) constraints. This Review focuses on the immunological similarities and differences that occur at the maternal-fetal interface in the context of human and mouse pregnancies. We discuss how the decidua and placenta of these different species form key immunological barriers that sustain maternal tolerance yet generate innate immune responses that prevent microbial infections.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- R. K. Mellon Pediatric Research Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
44
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Su N, Wang H, Zhang B, Kang Y, Guo Q, Xiao H, Yang H, Liao S. Maternal natural killer cell immunoglobulin receptor genes and human leukocyte antigen-C ligands influence recurrent spontaneous abortion in the Han Chinese population. Exp Ther Med 2018; 15:327-337. [PMID: 29387191 PMCID: PMC5769230 DOI: 10.3892/etm.2017.5406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanism of recurrent spontaneous abortion (RSA) has remained elusive for many years. Several previous studies have suggested that the killer cell immunoglobulin receptor (KIR) gene family is associated with RSA, however, it is not clear exactly how. The present study detected KIR and human leukocyte antigen-C (HLA-C) genes in 110 Han Chinese women with unexplained RSA and 105 Han Chinese healthy females. The aim of the present study was to determine if certain genotypes were more susceptible to the occurrence of miscarriage. The frequency of KIR genes and different KIR haplotypes in the 2 groups demonstrated no statistical differences. However, in women who had miscarried ≥3 times, the frequency of KIR3DL1 was significantly reduced and the BB haplotype frequency was significantly higher compared with the control group. HLA-C2C2 was significantly increased in the KIR AB and KIR BB groups in the RSA groups compared with the control group. The women in the RSA group who had a homozygous HLA-C2C2 had a significantly higher frequency of the 2DS1 gene compared with the control group. The reduction of inhibitory gene and increased activation combinations may induce the activation of uterine natural killer cells, which may reduce the probability of fetal survival. To the best of our knowledge, the present study is the first report demonstrating the association between maternal KIR and HLA-C genes and RSA in women of a Han Chinese ethnicity. The present study revealed that females who miscarry ≥3 times may be used as selection criteria for RSA and so may exhibit higher research value.
Collapse
Affiliation(s)
- Ning Su
- Department of Obstetrics and Gynecology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hongdan Wang
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bowei Zhang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Yiqing Kang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Qiannan Guo
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hai Xiao
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hecai Yang
- International Office for Research and Development, Henan Red Cross Blood Center, Zhengzhou, Henan 450000, P.R. China
| | - Shixiu Liao
- Henan Medical Genetics Institute, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
46
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
48
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
50
|
Nardi FDS, König L, Wagner B, Giebel B, Santos Manvailer LF, Rebmann V. Soluble monomers, dimers and HLA-G-expressing extracellular vesicles: the three dimensions of structural complexity to use HLA-G as a clinical biomarker. HLA 2016; 88:77-86. [PMID: 27440734 DOI: 10.1111/tan.12844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
The HLA-G molecule belongs to the family of nonclassical human leukocyte antigen (HLA) class I. At variance to classical HLA class I, HLA-G displays (i) a low number of nucleotide variations within the coding region, (ii) a high structural diversity, (iii) a restricted peptide repertoire, (iv) a limited tissue distribution and (v) strong immune-suppressive properties. The physiological HLA-G surface expression is restricted to the maternal-fetal interface and to immune-privileged adult tissues. Soluble forms of HLA-G (sHLA-G) are detectable in various body fluids. Cellular activation and pathological processes are associated with an aberrant or a neo-expression of HLA-G/sHLA-G. Functionally, HLA-G and its secreted forms are considered to be key players in the induction of short- and long-term tolerance. Thus, its unique expression profile and tolerance-inducing functions render HLA-G/sHLA-G an attractive biomarker to monitor the systemic health/disease status and disease activity/progression for clinical approaches in disease management and treatments. Here, we place emphasis on (i) the current status of the tolerance-inducing functions by HLA-G/sHLA-G, (ii) the current complexity to implement this molecule as a meaningful clinical biomarker regarding the three dimensions of structural diversity (monomers, dimers and HLA-G-expressing extracellular vesicles) with its functional implications, and (iii) novel and future approaches to detect and quantify sHLA-G structures and functions.
Collapse
Affiliation(s)
- F da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, Genetics Department, Curitiba, Brazil.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - L König
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - B Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - B Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - L F Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Ministry of Education of Brazil, Capes Foundation, Brasília, Brazil
| | - V Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|