1
|
Loureiro JP, Vacchini A, Berloffa G, Devan J, Schaefer V, Nosi V, Colombo R, Beshirova A, Montanelli G, Meyer B, Sharpe T, Chancellor A, Recher M, Mori L, De Libero G. Recognition of MR1-antigen complexes by TCR Vγ9Vδ2. Front Immunol 2025; 16:1519128. [PMID: 40040716 PMCID: PMC11876030 DOI: 10.3389/fimmu.2025.1519128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
The TCR-mediated activation of T cells expressing the TCR Vγ9Vδ2 relies on an innate-like mechanism involving the butyrophilin 3A1, 3A2 and 2A1 molecules and phospho-antigens, without the participation of classical antigen-presenting molecules. Whether TCR Vγ9Vδ2 cells also recognize complexes composed of antigens and antigen-presenting molecules in an adaptive-like manner is unknown. Here, we identify MR1-autoreactive cells expressing the TCR Vγ9Vδ2. This MR1-restricted response is antigen- and CDR3δ-dependent and butyrophilin-independent. TCR gene transfer reconstitutes MR1-antigen recognition, and engineered TCR Vγ9Vδ2 tetramers interact with soluble MR1-antigen complexes in an antigen-dependent manner. These cells are present in healthy individuals with low frequency and are mostly CD8+ or CD4-CD8 double negative. We also describe a patient with autoimmune symptoms and TCR γδ lymphocytosis in which ~10% of circulating T cells are MR1-self-reactive and express a TCR Vγ9Vδ2. These cells release pro-inflammatory cytokines, suggesting a possible participation in disease pathogenesis. Thus, MR1-self-antigen complexes can interact with some TCRs Vγ9Vδ2, promoting full cell activation and potentially contributing to diseases.
Collapse
Affiliation(s)
- José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giulia Montanelli
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Benedikt Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | | | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Peng K, Wong W, Zhang Q, La Y, Tian Z, Sun R, Ho L, Yang K, Pan J, Luan J, Niu Z, Zhang Z. Establishment of a Mouse Model for Porokeratosis Due to Mevalonate Diphosphate Decarboxylase Deficiency. Skin Res Technol 2024; 30:e70076. [PMID: 39323215 PMCID: PMC11424814 DOI: 10.1111/srt.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Porokeratosis (PK) is an autoinflammatory keratinization disease (AIKD) characterized by circular or annular skin lesions with a hyperkeratotic rim, pathologically shown as the cornoid lamella. Four genes that cause PK are associated with the mevalonate (MV) pathway. In Chinese PK patients, mevalonate diphosphate decarboxylase (MVD) is the most common causative gene. The lack of an animal model has greatly limited research on PK pathogenesis. MATERIALS AND METHODS In this research, we constructed K14-CreERT2-Mvdfl/fl mice using the Cre-LoxP system to create a mouse model for in-depth studies of PK. The Epidermal Mvd gene was knocked out by intraperitoneal injection of Tamoxifen (TAM). Pathology, immunohistochemistry, RNA-seq, and Western Blot analysis were performed. RESULTS Skin lesions appeared following Mvd deficiency, and pathological examination revealed the characteristic cornoid lamella, as well as cutaneous inflammation. Furthermore, we observed elevated levels of IL-17A and IL-1β, and a decreased Loricrin level in epidermal Mvd-deficient mice. Compared with the wild-type (WT) group, Mvd deficiency activated the expression of lipid metabolism-related proteins. CONCLUSION We developed the first mouse model for PK research, enabling further studies on disease development and treatment approaches.
Collapse
Affiliation(s)
- Kexin Peng
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Wenghong Wong
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Qiaoan Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Yumeng La
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Zhen Tian
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms Center Inc, Shanghai, China
| | - Loksi Ho
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Kaihang Yang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Jiewen Pan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Jing Luan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat Commun 2023; 14:7617. [PMID: 37993425 PMCID: PMC10665462 DOI: 10.1038/s41467-023-41938-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 11/24/2023] Open
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Yiming Jin
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rohit Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT World peace University, Pune, 411038, India
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Andrew J Wiemer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
5
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Firth J, Sun J, George V, Huang JD, Bajaj-Elliott M, Gustafsson K. Bacterial outer-membrane vesicles promote Vγ9Vδ2 T cell oncolytic activity. Front Immunol 2023; 14:1198996. [PMID: 37529036 PMCID: PMC10388717 DOI: 10.3389/fimmu.2023.1198996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Background Increasing evidence suggests the immune activation elicited by bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor immunity, facilitating the recognition and destruction of malignant cells. At present the pathways underlying this response remain poorly understood, though a role for innate-like cells such as γδ T cells has been suggested. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were co-cultured with E. coli MG1655 Δpal ΔlpxM OMVs and corresponding immune activation studied by cell marker expression and cytokine production. OMV-activated γδ T cells were co-cultured with cancer cell lines to determine cytotoxicity. Results The vesicles induced a broad inflammatory response with γδ T cells observed as the predominant cell type to proliferate post-OMV challenge. Notably, the majority of γδ T cells were of the Vγ9Vδ2 type, known to respond to both bacterial metabolites and stress markers present on tumor cells. We observed robust cytolytic activity of Vγ9Vδ2 T cells against both breast and leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated expansion. Conclusions Our findings identify for the first time, that OMV-challenge stimulates the expansion of Vγ9Vδ2 T cells which subsequently present anti-tumor capabilities. We propose that OMV-mediated immune activation leverages the anti-microbial/anti-tumor capacity of Vγ9Vδ2 T cells, an axis amenable for improved future therapeutics.
Collapse
Affiliation(s)
- Jack Firth
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jingjing Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Vaques George
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Kenth Gustafsson
- Department of Biochemical Engineering University College London, London, United Kingdom
| |
Collapse
|
7
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Division of labor and cooperation between different butyrophilin proteins controls phosphoantigen-mediated activation of human γδ T cells. RESEARCH SQUARE 2023:rs.3.rs-2583246. [PMID: 36824912 PMCID: PMC9949253 DOI: 10.21203/rs.3.rs-2583246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Benjamin E Willcox
- 6Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Alice AF, Kramer G, Bambina S, Bahjat KS, Gough MJ, Crittenden MR. Listeria monocytogenes-infected human monocytic derived dendritic cells activate Vγ9Vδ2 T cells independently of HMBPP production. Sci Rep 2021; 11:16347. [PMID: 34381163 PMCID: PMC8358051 DOI: 10.1038/s41598-021-95908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.
Collapse
Affiliation(s)
- Alejandro F Alice
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Gwen Kramer
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Shelly Bambina
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Keith S Bahjat
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.,Astellas Pharma US, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Michael J Gough
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA. .,The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
9
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Castillo-González R, Cibrian D, Sánchez-Madrid F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol 2020; 147:2030-2042. [PMID: 33259837 DOI: 10.1016/j.jaci.2020.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
γδ T cells are much less common than αβ T cells, accounting for 0.5% to 5% of all T lymphocytes in the peripheral blood and lymphoid tissues in mice and humans. However, they are the most abundant T-lymphocyte subset in some epithelial barriers such as mouse skin. γδ T cells are considered innate lymphocytes because of their non-MHC restricted antigen recognition, as well as because of their rapid response to cytokines, invading pathogens, and malignant cells. Exacerbated expansion and activation of γδ T cells in the skin is a common feature of acute and chronic skin inflammation such as psoriasis and contact or atopic dermatitis. Different γδ T-cell subsets showing differential developmental and functional features are found in mouse and human skin. This review discusses the state of the art of research and future perspectives about the role of the different subsets of γδ T-cells detected in the skin in steady-state, psoriasis, dermatitis, infection, and malignant skin diseases. Also, we highlight the differences between human and mouse γδ T cells in skin homeostasis and inflammation, as understanding the differential role of each subtype of skin γδ T cells will improve the discovery of new therapies.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
11
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|
12
|
Yazdanifar M, Barbarito G, Bertaina A, Airoldi I. γδ T Cells: The Ideal Tool for Cancer Immunotherapy. Cells 2020; 9:E1305. [PMID: 32456316 PMCID: PMC7290982 DOI: 10.3390/cells9051305] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
γδ T cells have recently gained considerable attention as an attractive tool for cancer adoptive immunotherapy due to their potent anti-tumor activity and unique role in immunosurveillance. The remarkable success of engineered T cells for the treatment of hematological malignancies has revolutionized the field of adoptive cell immunotherapy. Accordingly, major efforts are underway to translate this exciting technology to the treatment of solid tumors and the development of allogeneic therapies. The unique features of γδ T cells, including their major histocompatibility complex (MHC)-independent anti-cancer activity, tissue tropism, and multivalent response against a broad spectrum of the tumors, render them ideal for designing universal 'third-party' cell products, with the potential to overcome the challenges of allogeneic cell therapy. In this review, we describe the crucial role of γδ T cells in anti-tumor immunosurveillance and we summarize the different approaches used for the ex vivo and in vivo expansion of γδ T cells suitable for the development of novel strategies for cancer therapy. We further discuss the different transduction strategies aiming at redirecting or improving the function of γδ T cells, as well as, the considerations for the clinical applications.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (M.Y.); (G.B.)
| | - Giulia Barbarito
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (M.Y.); (G.B.)
| | - Alice Bertaina
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (M.Y.); (G.B.)
| | - Irma Airoldi
- Laboratorio Cellule Staminali post-natali e Terapie Cellulari, IRCCS G. Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
13
|
Alpaca ( Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Proc Natl Acad Sci U S A 2020; 117:6697-6707. [PMID: 32139608 DOI: 10.1073/pnas.1909474117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.
Collapse
|
14
|
Gu S, Borowska MT, Boughter CT, Adams EJ. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Semin Cell Dev Biol 2018; 84:65-74. [PMID: 29471037 PMCID: PMC6129423 DOI: 10.1016/j.semcdb.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Despite playing critical roles in the immune response and having significant potential in immunotherapy, γδ T cells have garnered little of the limelight. One major reason for this paradox is that their antigen recognition mechanisms are largely unknown, limiting our understanding of their biology and our potential to modulate their activity. One of the best-studied γδ subsets is the human Vγ9Vδ2T cell population, which predominates in peripheral blood and can combat both microbial infections and cancers. Although it has been known for decades that Vγ9Vδ2T cells respond to the presence of small pyrophosphate-based metabolites, collectively named phosphoantigens (pAgs), derived from microbial sources or malignant cells, the molecular basis for this response has been unclear. A major breakthrough in this area came with the identification of the Butyrophilin 3A (BTN3A) proteins, members of the Butyrophilin/Butyrophilin-like protein family, as mediators between pAgs and Vγ9Vδ2T cells. In this article, we review the most recent studies regarding pAg activation of human Vγ9Vδ2T cells, mainly focusing on the role of BTN3A as the pAg sensing molecule, as well as its potential impact on downstream events of the activation process.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA
| | | | - Erin J Adams
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Mother-to-newborn transmission of mycobacterial L-forms and Vδ2 T-cell response in placentobiome of BCG-vaccinated pregnant women. Sci Rep 2017; 7:17366. [PMID: 29234108 PMCID: PMC5727158 DOI: 10.1038/s41598-017-17644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
The ability of bacteria to exist as a population of self-replicating forms with defective or entirely missing cell wall (L-forms) is an adaptive mechanism for their survival and reproduction under unfavorable conditions. Bacterial mother-to-fetus transfer is a universal phenomenon in the animal kingdom. However, data about vertical transfer of L bacterial forms are extremely scarce. Bacille Calmette-Guérin is an attenuated strain of M. bovis and the only licensed vaccine used for tuberculosis prevention. We already have shown that filterable L-forms of BCG exist freely in the vaccine and are able to reproduce and to form colonies. The present study was focused on the placental microbiome in the context of mother's BCG vaccination. Here we report an isolation of filterable mycobacterial L-form cultures from gestational tissues and blood of healthy newborns delivered by healthy BCG-vaccinated mothers after normal pregnancy. Of note, vertically transmitted mycobacterial L-forms as a part of placentobiome of the pregnant women didn't influence the number of resident pathogen-reactive Vδ2 cells. Placenta colonization with mycobacterial L-forms occurs by maternal blood-to-decidua transfer very early in gestation. Together, these data showed that BCG L-forms have the capacity to pass trans-placental barrier and that maternal BCG vaccination affects the placentobiome.
Collapse
|
16
|
E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner. Sci Rep 2017; 7:2805. [PMID: 28584241 PMCID: PMC5459831 DOI: 10.1038/s41598-017-02886-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli.
Collapse
|
17
|
Immune-mediated syndromes following intravenous bisphosphonate therapy. Inflammopharmacology 2017; 25:665-671. [PMID: 28567535 DOI: 10.1007/s10787-017-0365-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Intravenous (IV) infusion of aminobisphosphonates (ABP) induces cytokine release by peripheral blood Vγ9δ2 T cells, resulting in an immediate short-term inflammatory response in up to 50% of patients. We evaluated possible long-term pro-inflammatory effects of IV ABP. METHODS Retrospective case-series study from one rheumatology specialist's clinic. 2261 electronic charts were reviewed for administration of 'zoledronate' or different brand names of zoledronic acid, and relevant clinical data was retrieved for patients who had received the infusion. RESULTS Thirteen patients had recieved zoledronate. In six, new-onset or exacerbation of a previous inflammatory/autoimmune disorder was diagnosed within 3 months following infusion. Of these, one patient developed new-onset rheumatoid arthritis (RA), two polymyalgia rheumatica (PMR), two suffered a flare of Crohn's disease-related and aromatase inhibitor-induced arthralgias, and one patient acquired autoimmune hemophilia. Pre-existing malignancy and immediate inflammatory response following zoledronate were more frequent in patients experiencing new or worsening immunologic manifestations (3/6 vs. 0/7, and 5/6 vs. 2/7, respectively). CONCLUSIONS Intravenous ABP may trigger induction of persistent autoimmune syndromes, especially when accompanied by an immediate adverse reaction or pre-existing malignancy.
Collapse
|
18
|
Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2 + γδ T cell cytotoxicity in a perforin-dependent manner. Cancer Immunol Immunother 2017; 66:1205-1215. [PMID: 28501938 PMCID: PMC5579165 DOI: 10.1007/s00262-017-2011-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022]
Abstract
Vδ2+ T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2+ T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2+ T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C–C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2+ T cell cytotoxicity. Vδ2+ T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive—at least in part—to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2+ T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy.
Collapse
|
19
|
Yang J, Jones MS, Ramos RI, Chan AA, Lee AF, Foshag LJ, Sieling PA, Faries MB, Lee DJ. Insights into Local Tumor Microenvironment Immune Factors Associated with Regression of Cutaneous Melanoma Metastases by Mycobacterium bovis Bacille Calmette-Guérin. Front Oncol 2017; 7:61. [PMID: 28424760 PMCID: PMC5380679 DOI: 10.3389/fonc.2017.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium bovis bacille Calmette–Guérin (BCG) is listed as an intralesional (IL) therapeutic option for inoperable stage III in-transit melanoma in the National Comprehensive Cancer Network Guidelines. Although the mechanism is unknown, others have reported up to 50% regression of injected lesions, and 17% regression of uninjected lesions in immunocompetent patients after direct injection of BCG into metastatic melanoma lesions in the skin. BCG and other mycobacteria express ligands capable of stimulating the γ9δ2 T cells. Therefore, we hypothesized that γ9δ2 T cells play a role in promoting BCG-mediated antitumor immunity in patients treated with IL-BCG for in-transit cutaneous melanoma metastases. Indeed, we found γ9δ2 T cell infiltration in melanoma skin lesions during the course of IL-BCG treatment. Gene expression analysis revealed that BCG injection elicits the expression of a vast array of chemokines in tumor lesions, including strong expression of CXCL9, 10, and 11, a set of chemokines that attract T cells expressing the CXCR3 chemokine receptor. In corroboration with our hypothesis, approximately 85% of γδ T cells express high levels of CXCR3 on their surface. Importantly, the injected tumor lesions also express genes whose protein products are the antigenic ligands for γδ T cells (BTN3A1 and MICB), and the cytokines that are the typical products of activated γδ T cells. Interestingly, we also found that γδ T cells infiltrate the regressed lesions that did not receive BCG injections. Our study suggests that γ9δ2 T cells may contribute to melanoma regression induced by IL-BCG treatment.
Collapse
Affiliation(s)
- Junbao Yang
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Maris S Jones
- Division of Surgical Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Alfred A Chan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Division of Dermatology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Agnes F Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Leland J Foshag
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Peter A Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Translational Immunology, NantBioscience, Inc., Culver City, CA, USA
| | - Mark B Faries
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Division of Dermatology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
20
|
Haralambieva IH, Ovsyannikova IG, Kennedy RB, Zimmermann MT, Grill DE, Oberg AL, Poland GA. Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine 2016; 34:3993-4002. [PMID: 27317456 PMCID: PMC5520794 DOI: 10.1016/j.vaccine.2016.06.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies suggest that the recall-based humoral immune responses to influenza A/H1N1 originates from activated memory B cells. The aim of this study was to identify baseline, early and late blood transcriptional signatures (in peripheral blood mononuclear cells/PBMCs) associated with memory B cell response following influenza vaccination. METHODS We used pre- and post-vaccination mRNA-Seq transcriptional profiling on samples from 159 subjects (50-74years old) following receipt of seasonal trivalent influenza vaccine containing the A/California/7/2009/H1N1-like virus, and penalized regression modeling to identify associations with influenza A/H1N1-specific memory B cell ELISPOT response after vaccination. RESULTS Genesets and genes (p-value range 7.92E(-08) to 0.00018, q-value range 0.00019-0.039) demonstrating significant associations (of gene expression levels) with memory B cell response suggest the importance of metabolic (cholesterol and lipid metabolism-related), cell migration/adhesion, MAP kinase, NF-kB cell signaling (chemokine/cytokine signaling) and transcriptional regulation gene signatures in the development of memory B cell response after influenza vaccination. CONCLUSION Through an unbiased transcriptome-wide profiling approach, our study identified signatures of memory B cell response following influenza vaccination, highlighting the underappreciated role of metabolic changes (among the other immune function-related events) in the regulation of influenza vaccine-induced immune memory.
Collapse
Affiliation(s)
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
22
|
Santori FR. Nuclear hormone receptors put immunity on sterols. Eur J Immunol 2015; 45:2730-41. [PMID: 26222181 PMCID: PMC4651655 DOI: 10.1002/eji.201545712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
McCarthy NE, Hedin CR, Sanders TJ, Amon P, Hoti I, Ayada I, Baji V, Giles EM, Wildemann M, Bashir Z, Whelan K, Sanderson I, Lindsay JO, Stagg AJ. Azathioprine therapy selectively ablates human Vδ2⁺ T cells in Crohn's disease. J Clin Invest 2015; 125:3215-25. [PMID: 26168223 DOI: 10.1172/jci80840] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived and bacterial phosphoantigens are recognized by unconventional lymphocytes that express a Vγ9Vδ2 T cell receptor (Vδ2 T cells) and mediate host protection against microbial infections and malignancies. Vδ2 T cells are absent in rodents but readily populate the human intestine, where their function is largely unknown. Here, we assessed Vδ2 T cell phenotype and function by flow cytometry in blood and intestinal tissue from Crohn's disease patients (CD patients) and healthy controls. Blood from CD patients included an increased percentage of gut-tropic integrin β7-expressing Vδ2 T cells, while "Th1-committed" CD27-expressing Vδ2 T cells were selectively depleted. A corresponding population of CD27+ Vδ2 T cells was present in mucosal biopsies from CD patients and produced elevated levels of TNFα compared with controls. In colonic mucosa from CD patients, Vδ2 T cell production of TNFα was reduced by pharmacological blockade of retinoic acid receptor-α (RARα) signaling, indicating that dietary vitamin metabolites can influence Vδ2 T cell function in inflamed intestine. Vδ2 T cells were ablated in blood and tissue from CD patients receiving azathioprine (AZA) therapy, and posttreatment Vδ2 T cell recovery correlated with time since drug withdrawal and inversely correlated with patient age. These results indicate that human Vδ2 T cells exert proinflammatory effects in CD that are modified by dietary vitamin metabolites and ablated by AZA therapy, which may help resolve intestinal inflammation but could increase malignancy risk by impairing systemic tumor surveillance.
Collapse
|
24
|
Santori FR. The immune system as a self-centered network of lymphocytes. Immunol Lett 2015; 166:109-16. [PMID: 26092524 DOI: 10.1016/j.imlet.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
This essay makes a brief historical and comparative review of selective and network theories of the immune system which is presented as a chemical sensory system with immune and non-immune functions. The ontogeny of immune networks is the result of both positive and negative selection of lymphocytes to self-epitopes that serve as a "template" for the recognition of foreign antigens. The development of immune networks progresses from single individual clones in early ontogeny into complex "information processing networks" in which lymphocytes are linked to inhibitory and stimulatory immune cells. The results of these regulatory interactions modulate immune responses and tolerance.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
De Libero G, Lau SY, Mori L. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones. Front Immunol 2015; 5:679. [PMID: 25642230 PMCID: PMC4295553 DOI: 10.3389/fimmu.2014.00679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023] Open
Abstract
The mechanistic requirements of antigen recognition by T cells expressing a γδ TCR has revealed important differences with those of αβ TCR cells and, despite impressive new data generated in the very recent years, they remain poorly understood. Based on the structure of the TCR chains and the tissue distribution, γδ cells are represented in a variety of populations. The major subset of human peripheral blood γδ cells express Vγ9Vδ2 TCR heterodimers and are all stimulated by phosphorylated metabolites (commonly called phosphoantigens). Phosphoantigens are molecules with a very small mass and only stimulate Vγ9Vδ2 cells in the presence of antigen-presenting cells, suggesting a strict requirement for dedicated antigen-presenting molecules. Recent studies have identified butyrophilin (BTN) 3A1 as the molecule necessary to stimulate Vγ9Vδ2 cells. BTN3A1 extracellular, transmembrane, and cytoplasmic domains have different functions, including cognate interaction with the Vγ9Vδ2 TCR, binding of the phosphoantigens, and interaction with cytoplasmic proteins. This review mainly discusses the known molecular mechanisms of BTN3A1-mediated antigen presentation to γδ cells and proposes a model of phosphoantigen presentation, which integrates past and recent studies.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Sze-Yi Lau
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Department of Biomedicine, University of Basel , Basel , Switzerland
| |
Collapse
|
26
|
Karunakaran MM, Herrmann T. The Vγ9Vδ2 T Cell Antigen Receptor and Butyrophilin-3 A1: Models of Interaction, the Possibility of Co-Evolution, and the Case of Dendritic Epidermal T Cells. Front Immunol 2014; 5:648. [PMID: 25566259 PMCID: PMC4271611 DOI: 10.3389/fimmu.2014.00648] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominant TCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδ TCR-V genes used by murine dendritic epithelial T cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murine Vγ3, Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species.
Collapse
Affiliation(s)
- Mohindar M Karunakaran
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| | - Thomas Herrmann
- Department of Medicine, Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| |
Collapse
|
27
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
28
|
Frencher JT, Shen H, Yan L, Wilson JO, Freitag NE, Rizzo AN, Chen CY, Chen ZW. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol 2014; 96:957-67. [PMID: 25114162 DOI: 10.1189/jlb.6hi1213-632r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactA ΔGCPE: prfA* mutant. The HMBPP-deficient ΔGCPE: mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention.
Collapse
Affiliation(s)
- James T Frencher
- Microbiology and Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Hongbo Shen
- Microbiology and Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Lin Yan
- Microbiology and Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | | | | | | | - Crystal Y Chen
- Microbiology and Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zheng W Chen
- Microbiology and Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Bergman PW, Björkhem-Bergman L. Is there a role for statins in fungal infections? Expert Rev Anti Infect Ther 2014; 11:1391-400. [DOI: 10.1586/14787210.2014.856755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Abstract
γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.
Collapse
|
31
|
A fat story-antigen presentation by butyrophilin 3A1 to γδ T cells. Cell Mol Immunol 2013; 11:5-7. [PMID: 24097036 DOI: 10.1038/cmi.2013.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 11/09/2022] Open
|
32
|
McCarthy NE, Bashir Z, Vossenkämper A, Hedin CR, Giles EM, Bhattacharjee S, Brown SG, Sanders TJ, Whelan K, MacDonald TT, Lindsay JO, Stagg AJ. Proinflammatory Vδ2+ T Cells Populate the Human Intestinal Mucosa and Enhance IFN-γ Production by Colonic αβ T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2752-63. [DOI: 10.4049/jimmunol.1202959] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, Beddoe T, Theodossis A, Williams NK, Gostick E, Price DA, Soudamini DU, Voon KK, Olivo M, Rossjohn J, Mori L, De Libero G. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol 2013; 14:908-16. [PMID: 23872678 DOI: 10.1038/ni.2665] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ciaglia E, Pisanti S, Picardi P, Laezza C, Malfitano AM, DˈAlessandro A, Gazzerro P, Vitale M, Carbone E, Bifulco M. N6-isopentenyladenosine, an endogenous isoprenoid end product, directly affects cytotoxic and regulatory functions of human NK cells through FDPS modulation. J Leukoc Biol 2013; 94:1207-19. [DOI: 10.1189/jlb.0413190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
35
|
Tripartite immune cell co-operation in the Bacillus Calmette Guérin-induced activation of γδ T cells. Immunol Cell Biol 2013; 91:461-8. [PMID: 23797069 DOI: 10.1038/icb.2013.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Accepted: 05/24/2013] [Indexed: 01/11/2023]
Abstract
γδ T cells contribute to immunosurveillance of pathogenic infections and malignant transformations; however, mechanisms of activation have yet to be fully defined. In this study we demonstrate a novel mechanism by which human Vδ2(+) γδ T cells are activated by the model pathogen Bacillus Calmette Guérin (BCG). We show in vitro that Vδ2 cell cytokine production and cytotoxic activity in response to BCG are dependent on both dendritic cells (DCs) and memory CD4(+) αβ T cells (CD4 T cells). We found that Vδ2 cells are indirectly activated by BCG in an interleukin (IL)-12p70-dependent manner, and that DC production of the IL-12p70 responsible for Vδ2 cell activation requires Toll-like receptor 2/4 ligands from BCG and interferon (IFN)-γ from memory CD4 T cells. Our data suggest that Vδ2 cell responses to BCG are dependent on the activation of IFN-γ-producing memory CD4 T cells, and provide novel insight into the complex interplay between cells of the innate and adaptive immune response.
Collapse
|
36
|
Vδ2 T cell deficiency in granulomatosis with polyangiitis (Wegener's granulomatosis). Clin Immunol 2013; 149:65-72. [PMID: 23891739 DOI: 10.1016/j.clim.2013.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/11/2022]
Abstract
Previous studies have characterized phenotypic and functional alterations within T-cell receptor αβ-expressing T cells in patients with granulomatosis with polyangiitis (GPA). We analyzed the frequency, subset composition and in vitro activation of blood γδ T cells in GPA patients. We observed a significant reduction of γδ T cell numbers, due to the selective depletion of the Vδ2 subset which remained consistent over time upon repeated analysis. The loss of Vδ2 T cells was not due to migration into the inflamed lesions as very few γδ T cells were detected in inflammatory infiltrates. The memory subset distribution did not differ among Vδ2 T cells from healthy donors and GPA patients. Importantly, the remaining Vδ2 T cells were capable of responding to phosphoantigen stimulation in vitro. The marked depletion of blood Vδ2 T cells in GPA suggests cellular exhaustion, possibly due to chronic exposure to and continuous overstimulation by microbial phosphoantigens.
Collapse
|
37
|
Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T cell-mediated cytotoxicity. PLoS One 2013; 8:e65145. [PMID: 23762301 PMCID: PMC3675136 DOI: 10.1371/journal.pone.0065145] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
Colon cancer comprises a small population of cancer initiating stem cells (CIC) that is responsible for tumor maintenance and resistance to anti-cancer therapies, possibly allowing for tumor recapitulation once treatment stops. Combinations of immune-based therapies with chemotherapy and other anti-tumor agents may be of significant clinical benefit in the treatment of colon cancer. However, cellular immune-based therapies have not been experimented yet in the population of colon CICs. Here, we demonstrate that treatment with low concentrations of commonly used chemotherapeutic agents, 5-fluorouracyl and doxorubicin, sensitize colon CICs to Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell cytotoxicity was largely mediated by TRAIL interaction with DR5, following NKG2D-dependent recognition of colon CIC targets. We conclude that in vivo activation of Vγ9Vδ2 T cells or adoptive administration of ex-vivo expanded Vγ9Vδ2 T cells at suitable intervals after chemotherapy may substantially increase anti-tumor activities and represent a novel strategy for colon cancer immunotherapy.
Collapse
|
38
|
Thurnher M, Gruenbacher G, Nussbaumer O. Regulation of mevalonate metabolism in cancer and immune cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1009-15. [PMID: 23524243 DOI: 10.1016/j.bbalip.2013.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 01/28/2023]
Abstract
The mevalonate pathway is a highly conserved metabolic cascade and provides isoprenoid building blocks for the biosynthesis of vital cellular products such as cholesterol or prenyl pyrophosphates that serve as substrates for the posttranslational prenylation of numerous proteins. The pathway, which is frequently hyperactive in cancer cells, is considered an important target in cancer therapy, since prenylated members of the Ras superfamily are crucially involved in the control of proliferation, survival, invasion and metastasis of tumour cells. Upstream accumulation and downstream depletion of mevalonate pathway intermediates as induced for instance by aminobisphosphonates translate into different effects in cancer and immune cells. Thus, mevalonate pathway regulation can affect tumour biology either directly or exhibit indirect antitumour effects through stimulating cancer immune surveillance. The present review summarizes major effects of pharmacologic mevalonate pathway regulation in cancer and immune cells that may collaboratively contribute to the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Martin Thurnher
- Department of Urology, Innsbruck Medical University, Austria.
| | | | | |
Collapse
|
39
|
An in vitro model of mycobacterial granuloma to investigate the immune response in brain-injured patients. Crit Care Med 2013; 41:245-54. [PMID: 23128384 DOI: 10.1097/ccm.0b013e3182676052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We investigated the overall immune response to pathogens in brain-injured patients, and assessed its relationship to nosocomial pneumonia. DESIGN Observational study. SETTING Two surgical ICUs of a single institution. PATIENTS Severe brain-injured patients (n = 32) requiring mechanical ventilation and sex- and age-matched healthy donors (n = 25). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We evaluated, ex vivo, the ability of peripheral blood mononuclear cells from brain injury patients to develop an effective granulomatous response to mycobacteria. Thirty-two consecutive patients (25 traumatic brain injured and seven subarachnoid hemorrhage) were included. Median Glasgow Coma Scale was 7 (5-8). Thirteen (41%) patients developed nosocomial pneumonia. Peripheral blood mononuclear cells from brain-injured patients with nosocomial pneumonia generated significantly fewer mature granulomas compared with brain-injured patients without nosocomial pneumonia and with healthy donors. The percentage of multinucleated giant cells was lower in brain-injured patients without nosocomial pneumonia (1% [range: 0%-7%]) and in brain-injured patients with nosocomial pneumonia (4% [range: 2%-5%]) compared with healthy donors (20% [range: 15%-28%]). The blood levels of γδ T cells were significantly increased in brain-injured patients without nosocomial pneumonia (66% [range: 34%-69%]) compared with healthy donors (23% [range: 8%-61%]) and was not altered in brain-injured patients with nosocomial pneumonia (31% [range: 12%-44%]). The percentage of γδ T cells in granulomas was significantly decreased in brain injury patients with nosocomial pneumonia (5% [range: 4%-43%]) compared with healthy donors (43% [range: 19%-54%]) and was not significantly altered in brain-injured patients without nosocomial pneumonia (26% [range: 10%-41%]). The blood levels of natural killer cells were not altered in brain-injured patients. The percentage of natural killer cells in granulomas was significantly decreased in brain-injured patients with nosocomial pneumonia (3% [range: 1%-9%]) compared with brain-injured patients without nosocomial pneumonia (16% [range: 6%-29%]) and with healthy donors (17% [range: 10%-29%]). CONCLUSIONS Brain-injured patients experienced a maturation defect of the ex vivo granulomatous response involving monocytes as well as natural killer cells and γδ T cells.
Collapse
|
40
|
Abstract
γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology. But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions. We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions. This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity.
Collapse
|
41
|
Cordova A, Toia F, La Mendola C, Orlando V, Meraviglia S, Rinaldi G, Todaro M, Cicero G, Zichichi L, Donni PL, Caccamo N, Stassi G, Dieli F, Moschella F. Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas. PLoS One 2012; 7:e49878. [PMID: 23189169 PMCID: PMC3506540 DOI: 10.1371/journal.pone.0049878] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
T lymphocytes are often induced naturally in melanoma patients and infiltrate tumors. Given that γδ T cells mediate antigen-specific killing of tumor cells, we studied the representation and the in vitro cytokine production and cytotoxic activity of tumor infiltrating γδ T cells from 74 patients with primary melanoma. We found that γδ T cells represent the major lymphocyte population infiltrating melanoma, and both Vδ1(+) and Vδ2(+) cells are involved. The majority of melanoma-infiltrating γδ cells showed effector memory and terminally-differentiated phenotypes and, accordingly, polyclonal γδ T cell lines obtained from tumor-infiltrating immune cells produced IFN-γ and TNF-α and were capable of killing melanoma cell lines in vitro. The cytotoxic capability of Vδ2 cell lines was further improved by pre-treatment of tumor target cells with zoledronate. Moreover, higher rate of γδ T cells isolation and percentages of Vδ2 cells correlate with early stage of development of melanoma and absence of metastasis. Altogether, our results suggest that a natural immune response mediated by γδ T lymphocytes may contribute to the immunosurveillance of melanoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunologic Memory
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Middle Aged
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adriana Cordova
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesca Toia
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Carmela La Mendola
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Valentina Orlando
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Leonardo Zichichi
- Unità Operativa di Dermatologia, Azienda Ospedaliera “S. Antonio Abate”, Trapani, Italy, 4 Dipartimento di Scienze Economiche, Aziendali e Finanziarie, Università di Palermo, Palermo, Italy
| | | | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francesco Moschella
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
42
|
Riganti C, Massaia M, Davey MS, Eberl M. Human γδ T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur J Immunol 2012; 42:1668-76. [PMID: 22806069 DOI: 10.1002/eji.201242492] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Upon receiving the Nobel Prize in Physiology or Medicine in 1987, Susumu Tonegawa referred to the then recent discovery of the γδ T-cell receptor and stated that "while the function of the T cells bearing this receptor is currently unknown (…) these T cells may be involved in an entirely new aspect of immunity". [Tonegawa, S., Scand. J. Immunol. 1993. 38: 303-319]. Twenty-five years of intense research later this ambivalent view still holds true. Immunologists now appreciate that γδ T cells indeed represent a highly intriguing "new aspect of immunity" that is unique and distinct from conventional lymphocytes, yet even scientists in the field still struggle to understand the molecular basis of γδ T-cell responses, especially with respect to the enigmatic mode of antigen recognition. Here, we portray the peculiar responsiveness of human Vγ9/Vδ2 T cells to microorganisms, tumor cells and aminobisphosphonates, in an attempt to integrate the corresponding - and at times confusing - findings into a "theory of everything" that may help explain how such diverse stimuli result in similar γδ T-cell responses via the recognition of soluble low molecular weight phosphoantigens.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, Torino, Italy
| | | | | | | |
Collapse
|
43
|
Kabelitz D, He W. The multifunctionality of human Vγ9Vδ2 γδ T cells: clonal plasticity or distinct subsets? Scand J Immunol 2012; 76:213-22. [PMID: 22670577 DOI: 10.1111/j.1365-3083.2012.02727.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dominant subset of γδ T cells in human peripheral blood expresses Vγ9 paired with Vδ2 as variable TCR elements. Vγ9Vδ2 T cells recognize pyrophosphates derived from the microbial non-mevalonate isoprenoid biosynthesis pathway at pico- to nanomolar concentrations. Structurally related pyrophosphates are generated in eukaryotic cells through the mevalonate pathway involved in protein prenylation and cholesterol synthesis. However, micromolar concentrations of endogenous pyrophosphates are required to be recognized by Vγ9Vδ2 T cells. Such concentrations are not produced by normal cells but can accumulate upon cellular stress and transformation. Therefore, many tumour cells are susceptible to γδ T cell-mediated lysis owing to the overproduction of endogenous pyrophosphates. This explains why Vγ9Vδ2 T cells contribute to both anti-infective and anti-tumour immunity. Ex vivo analysed Vγ9Vδ2 T cells can be subdivided on the basis of additional surface markers, including chemokine receptors and markers for naïve and memory T cells. At the functional level, Vγ9Vδ2 T cells produce a broad range of cytokines, display potent cytotoxic activity, regulate αβ T cell responses, and - quite surprisingly - can act as professional antigen-presenting cells. Thus, an exceptional range of effector functions has been assigned to a population of T cells, which all recognize invariant exogenous or endogenous pyrophosphates that are not seen by any other immune cell. Here, we discuss whether this plethora of effector functions reflects the plasticity of individual Vγ9Vδ2 T cells or can be assigned to distinct subsets.
Collapse
Affiliation(s)
- D Kabelitz
- Institute of Immunology, University of Kiel, Kiel, Germany.
| | | |
Collapse
|
44
|
Role of gamma-delta T-cells in cancer: another opening door to immunotherapy. Clin Transl Oncol 2012; 14:891-5. [PMID: 23054752 DOI: 10.1007/s12094-012-0935-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/26/2012] [Indexed: 12/28/2022]
Abstract
The gamma-delta (γδ) T-cells are a subset of T-lymphocytes characterized by the presence of a surface antigen recognition complex type 2. Those γδ T-cells represent 2-5 % of peripheral T-cells only, but they are common in organs and mucosae, acting as a first defense system in the entries to the organism. The γδ T-cells take part on immune response by direct cytolysis, development of memory phenotypes, and modulation of immune cells, and they have been implied in autoimmune disorders, immune deficiencies, infections, and tumor diseases. We reported the role of γδ T-cells in oncology, focusing in their potential applications for cancer treatment. Experimental designs and clinical trials in the treatment of solid malignancies are extensively reviewed.
Collapse
|
45
|
Fowler DW, Copier J, Wilson N, Dalgleish AG, Bodman-Smith MD. Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy. Cancer Immunol Immunother 2011; 61:535-47. [PMID: 22002242 PMCID: PMC3310139 DOI: 10.1007/s00262-011-1121-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/23/2011] [Indexed: 11/29/2022]
Abstract
Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer.
Collapse
Affiliation(s)
- Daniel W Fowler
- Department of Clinical Sciences, St. George's University of London, Cranmer Terrace, Tooting Broadway, London, SW17 0RE, UK.
| | | | | | | | | |
Collapse
|
46
|
Marischen L, Wesch D, Oberg HH, Rosenstiel P, Trad A, Shomali M, Grötzinger J, Janssen O, Tchikov V, Schütze S, Kabelitz D. Functional expression of NOD2 in freshly isolated human peripheral blood γδ T cells. Scand J Immunol 2011; 74:126-34. [PMID: 21410503 DOI: 10.1111/j.1365-3083.2011.02560.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
γδ T cells play an important role in anti-infective immunity. The major subset of human γδ T cells selectively recognizes phosphorylated bacterial metabolites of the isoprenoid biosynthesis pathway, so-called phosphoantigens. The activation of γδ T cells is modulated by functionally expressed innate immune receptors, notably Toll-like receptor 2 and 3. It was also reported that in vitro expanded γδ T cells respond to muramyl dipeptide (MDP), the minimal peptidoglycan motif activating the nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, although it is unknown whether ex vivo isolated human γδ T cells express functional NOD2. Here, we report that freshly isolated, highly purified peripheral blood γδ T cells express NOD2 mRNA and detectable amounts of NOD2 protein. The biologically active MDP L-D isomer but not the inactive D-D isomer augmented the interferon-γ (IFN-γ) secretion in phosphoantigen-stimulated peripheral blood mononuclear cells. Moreover, a moderate but reproducible and statistically significant increase in IFN-γ secretion was also observed when highly purified peripheral blood γδ T cells were activated by T cell receptor cross-linking in the presence of MDP. Taken together, our results indicate that in addition to the T cell receptor and Toll-like receptors, circulating human γδ T cells express NOD2 as a third class of pattern recognition receptor for sensing bacterial products.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Davey MS, Lin CY, Roberts GW, Heuston S, Brown AC, Chess JA, Toleman MA, Gahan CGM, Hill C, Parish T, Williams JD, Davies SJ, Johnson DW, Topley N, Moser B, Eberl M. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog 2011; 7:e1002040. [PMID: 21589907 PMCID: PMC3093373 DOI: 10.1371/journal.ppat.1002040] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/11/2011] [Indexed: 11/18/2022] Open
Abstract
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches. The immune system of all jawed vertebrates harbors three distinct lymphocyte populations – αβ T cells, γδ T cells and B cells – yet only higher primates including humans possess so-called Vγ9/Vδ2 T cells, an enigmatic γδ T cell subset that uniformly responds to the majority of bacterial pathogens. For reasons that are not understood, this responsiveness is absent in all other animals although they too are constantly exposed to a plethora of potentially harmful micro-organisms. We here investigated how Vγ9/Vδ2 T cells respond to live microbes by mimicking physiological conditions in acute disease. Our experiments demonstrate that Vγ9/Vδ2 T cells recognize a small common molecule released when invading bacteria become ingested and killed by other white blood cells. The stimulation of Vγ9/Vδ2 T cells at the site of infection amplifies the inflammatory response and has important consequences for pathogen clearance and the development of microbe-specific immunity. However, if triggered at the wrong time or the wrong place, this rapid reaction toward bacteria may also lead to inflammation-related damage. These findings improve our insight into the complex cellular interactions in early infection, identify novel biomarkers of diagnostic and predictive value and highlight new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Martin S. Davey
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chan-Yu Lin
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gareth W. Roberts
- Institute of Nephrology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sinéad Heuston
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Amanda C. Brown
- Centre for Immunology and Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - James A. Chess
- Department of Nephrology, Morriston Hospital, Swansea, United Kingdom
| | - Mark A. Toleman
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Cormac G. M. Gahan
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | - Tanya Parish
- Centre for Immunology and Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - John D. Williams
- Institute of Nephrology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon J. Davies
- Department of Nephrology, University Hospital of North Staffordshire, Keele University, Stoke-on-Trent, United Kingdom
| | - David W. Johnson
- Department of Nephrology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
- Australia and New Zealand Dialysis Transplant Registry, University of Adelaide, Adelaide, Australia
| | - Nicholas Topley
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bernhard Moser
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
49
|
Chiplunkar S, Dhar S, Wesch D, Kabelitz D. gammadelta T cells in cancer immunotherapy: current status and future prospects. Immunotherapy 2011; 1:663-78. [PMID: 20635991 DOI: 10.2217/imt.09.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gammadelta T lymphocytes are a distinct T-cell subset that display unique features with respect to T-cell receptor (TCR) gene usage, tissue tropism and antigen recognition. Phosphoantigens contributed by a dysregulated mevalonate pathway or the bacterial nonmevalonate pathway and aminobisphosphonates are capable of activating Vgamma9Vdelta2 T cells. With the aid of synthetic phosphoantigens, large-scale expansion of gammadelta T cells and their adoptive transfer into human hosts is now possible. The present review summarizes triumphs and tribulations of clinical trials using gammadelta T-cell immunotherapy. Adoptive transfer of phosphoantigen-activated gammadelta T cells or coadministration with aminobisphosphonates/cytokines/monoclonal antibodies appear to be promising approaches for cancer immunotherapy. It can be predicted that a comprehensive understanding of the molecular interactions of this unique T-cell subset with other key immune regulators (dendritic cells and regulatory T cells) will provide an impetus to bring this modality of treatment from bench to bedside.
Collapse
Affiliation(s)
- Shubhada Chiplunkar
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| | | | | | | |
Collapse
|
50
|
Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Périgaud C, Peyrottes S, Champagne E. F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6920-8. [PMID: 20483757 DOI: 10.4049/jimmunol.0904024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vgamma9Vdelta2 T lymphocytes are activated by phosphoantigens provided exogenously or produced by tumors and infected cells. Activation requires a contact between Vgamma9Vdelta2 cells and neighboring cells. We previously reported a role for cell surface F1-adenosine triphosphatase (ATPase) in T cell activation by tumors and specific interactions between Vgamma9Vdelta2 TCRs and purified F1-ATPase. 721.221 cells do not express surface F1-ATPase and do not support phosphoantigen responses unless they are rendered apoptotic by high doses of zoledronate, a treatment that promotes F1-expression as well as endogenous phosphoantigen production. By monitoring calcium flux in single cells, we show in this study that contact of T cells with F1-ATPase on polystyrene beads can partially replace the cell-cell contact stimulus during phosphoantigen responses. Triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester, an adenylated derivative of isopentenyl pyrophosphate, can stably bind to F1-ATPase-coated beads and promotes TCR aggregation, lymphokine secretion, and activation of the cytolytic process provided that nucleotide pyrophosphatase activity is present. It also acts as an allosteric activator of F1-ATPase. In the absence of Vgamma9Vdelta2 cells, triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester immobilized on F1-ATPase is protected from nucleotide pyrophosphatase activity, as is the antigenic activity of stimulatory target cells. Our experiments support the notion that Vgamma9Vdelta2 T cells are dedicated to the recognition of phosphoantigens on cell membranes in the form of nucleotide derivatives that can bind to F1-ATPase acting as a presentation molecule.
Collapse
Affiliation(s)
- Jayati Mookerjee-Basu
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U563, France
| | | | | | | | | | | | | | | |
Collapse
|