1
|
Wenzek C, Siemes D, Hönes GS, Pastille E, Härting N, Kaiser F, Moeller LC, Engel DR, Westendorf AM, Führer D. Lack of canonical thyroid hormone receptor α signaling changes regulatory T cell phenotype in female mice. iScience 2024; 27:110547. [PMID: 39175769 PMCID: PMC11340620 DOI: 10.1016/j.isci.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The immune system has emerged as an important target of thyroid hormones (THs); however, the role of TH in T cells has so far remained elusive. In this study, we assessed the effect of TH receptor α (TRα) signaling on activation and function of T cells. Our findings show that lack of canonical TRα action not only increased the frequency of regulatory T cells (Treg) but propelled an activated and migratory Treg phenotype and nuclear factor κB (NF-κB) activation in Treg. Conversely, canonical TRα action reduced activation of the NF-κB pathway previously shown to play a pivotal role in Treg differentiation and function. Taken together, our findings demonstrate that TRα impacts T cell differentiation and phenotype. Given the well-known interaction of inflammation, immune responses, and TH axis in e.g., severe illness, altered TH-TRα signaling may have an important role in regulating T cell responses during disease.
Collapse
Affiliation(s)
- Christina Wenzek
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Devon Siemes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - G. Sebastian Hönes
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Nina Härting
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Frank Kaiser
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Lars C. Moeller
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Daniel R. Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
3
|
Carter NM, Pomerantz JL. CARD11 signaling in regulatory T cell development and function. Adv Biol Regul 2022; 84:100890. [PMID: 35255409 PMCID: PMC9149070 DOI: 10.1016/j.jbior.2022.100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
Regulatory T cells (Tregs) are a critical subset of CD4 T cells that modulate the immune response to prevent autoimmunity and chronic inflammation. CARD11, a signaling hub and scaffold protein that links antigen receptor engagement to activation of NF-κB and other downstream signaling pathways, is essential for the development and function of thymic Tregs. Mouse models with deficiencies in CARD11 and CARD11-associated signaling components generally have Treg defects, but some mouse models develop overt autoimmunity and inflammatory disease whereas others do not. Inhibition of CARD11 signaling in Tregs within the tumor microenvironment can potentially promote anti-tumor immunity. In this review, we summarize evidence for the involvement of CARD11 signaling in Treg development and function and discuss key unanswered questions and future research opportunities.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Abstract
Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector–related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.
Collapse
Affiliation(s)
- Joshua D. Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Di Pilato M, Kim EY, Cadilha BL, Prüßmann JN, Nasrallah MN, Seruggia D, Usmani SM, Misale S, Zappulli V, Carrizosa E, Mani V, Ligorio M, Warner RD, Medoff BD, Marangoni F, Villani AC, Mempel TR. Targeting the CBM complex causes T reg cells to prime tumours for immune checkpoint therapy. Nature 2019; 570:112-116. [PMID: 31092922 PMCID: PMC6656391 DOI: 10.1038/s41586-019-1215-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Abstract
Solid tumors are infiltrated by effector T cells (Teff) with the potential to control or reject them, as well as by regulatory T cells (Treg) that restrict the function of Teff and thereby promote tumor growth.1 The anti-tumor activity of Teff can be therapeutically unleashed and is now being exploited for the treatment of some forms of human cancer. However, weak tumor-associated inflammatory responses and the immune-suppressive function of Treg remain major hurdles to broader effectiveness of tumor immunotherapy.2 Here we show that upon disruption of the CARMA1-BCL10-MALT1 (CBM) signalosome complex, the majority of tumor-infiltrating Treg produce IFN-γ, followed by stunted tumor growth. Remarkably, genetic deletion of both or even just one allele of Carma1 in only a fraction of Treg, which avoided systemic autoimmunity, was sufficient to produce this anti-tumor effect, showing that not mere loss of suppressive function, but gain of effector activity by Treg initiates tumor control. Treg-production of IFN-γ was accompanied by macrophage activation and up-regulation of MHC-I on tumor cells. However, tumor cells also up-regulated expression of PD-L1, indicating activation of adaptive immune resistance.3 Consequently, PD-1 blockade concomitant with CARMA1-deletion caused rejection of tumors that otherwise do not respond to anti-PD-1 monotherapy. This effect was reproduced by pharmacological inhibition of the CBM protein MALT1. Our results demonstrate that partial disruption of the CBM complex and induction of IFN-γ-secretion in the preferentially self-reactive Treg pool does not cause systemic autoimmunity but is sufficient to prime the tumor environment for successful immune checkpoint therapy.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Edward Y Kim
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Bruno L Cadilha
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jasper N Prüßmann
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mazen N Nasrallah
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Harvard Medical School, Boston, MA, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Shariq M Usmani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Sandra Misale
- Harvard Medical School, Boston, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Esteban Carrizosa
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Matteo Ligorio
- Harvard Medical School, Boston, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Ross D Warner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci 2018; 19:E730. [PMID: 29510522 PMCID: PMC5877591 DOI: 10.3390/ijms19030730] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
T helper type 17 (Th17) cells and pTreg cells, which share a common precursor cell (the naïve CD4 T cell), require a common tumor growth factor (TGF)-β signal for initial differentiation. However, terminally differentiated cells fulfill opposite functions: Th17 cells cause autoimmunity and inflammation, whereas Treg cells inhibit these phenomena and maintain immune homeostasis. Thus, unraveling the mechanisms that affect the Th17/Treg cell balance is critical if we are to better understand autoimmunity and tolerance. Recent studies have identified many factors that influence this balance; these factors range from signaling pathways triggered by T cell receptors, costimulatory receptors, and cytokines, to various metabolic pathways and the intestinal microbiota. This review article summarizes recent advances in our understanding of the Th17/Treg balance and its implications with respect to autoimmune disease.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| |
Collapse
|
8
|
Fischer JC, Otten V, Kober M, Drees C, Rosenbaum M, Schmickl M, Heidegger S, Beyaert R, van Loo G, Li XC, Peschel C, Schmidt-Supprian M, Haas T, Spoerl S, Poeck H. A20 Restrains Thymic Regulatory T Cell Development. THE JOURNAL OF IMMUNOLOGY 2017; 199:2356-2365. [PMID: 28842469 PMCID: PMC5617121 DOI: 10.4049/jimmunol.1602102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/31/2017] [Indexed: 01/30/2023]
Abstract
Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (Treg) cells in the thymus. Activation of NF-κB transcription factors is critically required for Treg cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells. In naive CD4+ T cells, A20 prevents kinase RIPK3-dependent necroptosis. Using mice deficient for A20 in T lineage cells, we show that thymic and peripheral Treg cell compartments are quantitatively enlarged because of a cell-intrinsic developmental advantage of A20-deficient thymic Treg differentiation. A20-deficient thymic Treg cells exhibit reduced dependence on IL-2 but unchanged rates of proliferation and apoptosis. Activation of the NF-κB transcription factor RelA was enhanced, whereas nuclear translocation of c-Rel was decreased in A20-deficient thymic Treg cells. Furthermore, we found that the increase in Treg cells in T cell–specific A20-deficient mice was already observed in CD4+ single-positive CD25+ GITR+ Foxp3− thymic Treg cell progenitors. Treg cell precursors expressed high levels of the tumor necrosis factor receptor superfamily molecule GITR, whose stimulation is closely linked to thymic Treg cell development. A20-deficient Treg cells efficiently suppressed effector T cell–mediated graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, suggesting normal suppressive function. Holding thymic production of natural Treg cells in check, A20 thus integrates Treg cell activity and increased effector T cell survival into an efficient CD4+ T cell response.
Collapse
Affiliation(s)
- Julius Clemens Fischer
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Vera Otten
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Maike Kober
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Christoph Drees
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Marc Rosenbaum
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Martina Schmickl
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Simon Heidegger
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| | - Xian Chang Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX 77030; and.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065
| | - Christian Peschel
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Marc Schmidt-Supprian
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Tobias Haas
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany;
| | - Silvia Spoerl
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany;
| | - Hendrik Poeck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany;
| |
Collapse
|
9
|
Camirand G, Riella LV. Treg-Centric View of Immunosuppressive Drugs in Transplantation: A Balancing Act. Am J Transplant 2017; 17:601-610. [PMID: 27581661 DOI: 10.1111/ajt.14029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023]
Abstract
Regulatory CD4+ Foxp3+ T cells (Tregs) are critical in controlling immunity and tolerance. Thus, preserving Treg numbers and function in transplanted patients is essential for the successful minimization of maintenance immunosuppression. Multiple cellular signals control the development, differentiation, and function of Tregs. Many of these signals are shared with conventional Foxp3- T cells (Tconv) and are targeted by immunosuppressive drugs, negatively affecting both Tregs and Tconv. Because intracellular signals vary in optimal intensity in different T cell subsets, improved specificity in immunosuppressive regimens must occur to benefit long-term transplant outcomes. In this regard, recent advances are gradually uncovering differences in the signals required in Tregs and Tconv biology, opening the door to new potential therapeutic approaches to either enhance or spare Tregs. In this review, we will explain the prominent cell signaling pathways critical for Treg maintenance and function, while reporting the effects of immunosuppressive drugs targeting these signaling pathways in clinical transplantation settings.
Collapse
Affiliation(s)
- G Camirand
- Department of Surgery, University of Pittsburgh Medical School, The Thomas E. Starzl Transplantation Institute, Pittsburgh, PA
| | - L V Riella
- Renal Division, Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
11
|
Okamura K, Kitamura A, Sasaki Y, Chung DH, Kagami S, Iwai K, Yasutomo K. Survival of mature T cells depends on signaling through HOIP. Sci Rep 2016; 6:36135. [PMID: 27786304 PMCID: PMC5081559 DOI: 10.1038/srep36135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023] Open
Abstract
T cell development in the thymus is controlled by a multistep process. The NF-κB pathway regulates T cell development as well as T cell activation at multiple differentiation stages. The linear ubiquitin chain assembly complex (LUBAC) is composed of Sharpin, HOIL-1L and HOIP, and it is crucial for regulating the NF-κB and cell death pathways. However, little is known about the roles of LUBAC in T-cell development and activation. Here, we show that in T-HOIPΔlinear mice lacking the ubiquitin ligase activity of LUBAC, thymic CD4+ or CD8+ T cell numbers were markedly reduced with severe defects in NKT cell development. HOIPΔlinear CD4+ T cells failed to phosphorylate IκBα and JNK through T cell receptor-mediated stimulation. Mature CD4+ and CD8+ T cells in T-HOIPΔlinear mice underwent apoptosis more rapidly than control T cells, and it was accompanied by lower CD127 expression on CD4+CD24low and CD8+CD24low T cells in the thymus. The enforced expression of CD127 in T-HOIPΔlinear thymocytes rescued the development of mature CD8+ T cells. Collectively, our results showed that LUBAC ligase activity is key for the survival of mature T cells, and suggest multiple roles of the NF-κB and cell death pathways in activating or maintaining T cell-mediated adaptive immune responses.
Collapse
Affiliation(s)
- Kazumi Okamura
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Pediatrics, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Akiko Kitamura
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Shoji Kagami
- Department of Pediatrics, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yasutomo
- Department of Immunology &Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
12
|
T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol 2016; 16:220-33. [PMID: 27026074 DOI: 10.1038/nri.2016.26] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self tolerance and inflammatory responses. Recent studies have revealed a discrete mode of T cell receptor (TCR) signalling that regulates TReg cell differentiation, maintenance and function and that affects gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of TReg cells in the context of their function in health and disease.
Collapse
|
13
|
Redecke V, Chaturvedi V, Kuriakose J, Häcker H. SHARPIN controls the development of regulatory T cells. Immunology 2016; 148:216-26. [PMID: 26931177 DOI: 10.1111/imm.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/17/2016] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be independent of SHARPIN.
Collapse
Affiliation(s)
- Vanessa Redecke
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vandana Chaturvedi
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeeba Kuriakose
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans Häcker
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
14
|
Liu X, Berry CT, Ruthel G, Madara JJ, MacGillivray K, Gray CM, Madge LA, McCorkell KA, Beiting DP, Hershberg U, May MJ, Freedman BD. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry. J Biol Chem 2016; 291:8440-52. [PMID: 26826124 DOI: 10.1074/jbc.m115.713008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/18/2022] Open
Abstract
T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.
Collapse
Affiliation(s)
| | - Corbett T Berry
- From the Departments of Pathobiology and the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | | | - Carolyn M Gray
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Lisa A Madge
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Kelly A McCorkell
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | | - Uri Hershberg
- the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Michael J May
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | |
Collapse
|
15
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
16
|
Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Mol Immunol 2015; 68:546-57. [PMID: 26260210 PMCID: PMC4679546 DOI: 10.1016/j.molimm.2015.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Naïve T-cell activation requires signals from both the T-cell receptor (TCR) and the costimulatory molecule CD28. A central mediator of the TCR and CD28 signals is the scaffold protein CARMA1, which functions by forming a complex with partner proteins, Bcl10 and MALT1. A well-known function of the CARMA1 signaling complex is to mediate activation of IκB kinase (IKK) and its target transcription factor NF-κB, thereby promoting T-cell activation and survival. Recent evidence suggests that CARMA1 also mediates TCR/CD28-stimulated activation of the IKK-related kinase TBK1, which plays a role in regulating the homeostasis and migration of T cells. Moreover, the CARMA1 complex connects the TCR/CD28 signals to the activation of mTORC1, a metabolic kinase regulating various aspects of T-cell functions. This review will discuss the mechanism underlying the activation of the CARMA1-dependent signaling pathways and their roles in regulating T-cell functions.
Collapse
Affiliation(s)
- Jian-hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding 071000, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
17
|
van Nieuwenhuijze A, Liston A. The Molecular Control of Regulatory T Cell Induction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:69-97. [PMID: 26615093 DOI: 10.1016/bs.pmbts.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are characterized by the expression of the master transcription factor forkhead box P3 (Foxp3). Although Foxp3 expression is widely used as a marker of the Treg lineage, recent data show that the Treg fate is determined by a multifactorial signaling pathway, involving cytokines, nuclear factors, and epigenetic modifications. Foxp3 expression and the Treg phenotype can be acquired by T cells in the periphery, illustrating that the Treg fate is not necessarily conferred during thymic development. The two main Treg populations in vivo, thymic Tregs and peripheral Tregs, differ in the pathways followed for their maturation. This chapter discusses the molecular control of Treg induction, in the thymus as well as the periphery.
Collapse
Affiliation(s)
- Annemarie van Nieuwenhuijze
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Chang JH, Hu H, Sun SC. Survival and maintenance of regulatory T cells require the kinase TAK1. Cell Mol Immunol 2015; 12:572-9. [PMID: 25891214 PMCID: PMC4579655 DOI: 10.1038/cmi.2015.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/28/2015] [Accepted: 02/28/2015] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells play a central role in regulating peripheral immune tolerance and preventing autoimmunity. Despite the extensive studies on the development of Treg cells, the molecular mechanisms that maintain the population of committed Treg cells remain poorly understood. We show here that Treg-conditional ablation of the kinase TAK1 reduced the number of Treg cells in the peripheral lymphoid organs, causing abnormal activation of conventional T cells and autoimmune symptoms. Using an inducible gene knockout approach, we further demonstrate that TAK1 is crucial for the survival of Treg cells. Expression of a constitutively active IκB kinase partially restored the level of Treg cells in the TAK1Treg-KO mice. These results suggest a crucial role for TAK1 for maintaining the survival of committed Treg cells under physiological conditions.
Collapse
Affiliation(s)
- Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
- Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
19
|
Omenn syndrome associated with a functional reversion due to a somatic second-site mutation in CARD11 deficiency. Blood 2015; 126:1658-69. [PMID: 26289640 DOI: 10.1182/blood-2015-03-631374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023] Open
Abstract
Omenn syndrome (OS) is a severe immunodeficiency associated with erythroderma, lymphoproliferation, elevated IgE, and hyperactive oligoclonal T cells. A restricted T-cell repertoire caused by defective thymic T-cell development and selection, lymphopenia with homeostatic proliferation, and lack of regulatory T cells are considered key factors in OS pathogenesis. We report 2 siblings presenting with cytomegalovirus (CMV) and Pneumocystis jirovecii infections and recurrent sepsis; one developed all clinical features of OS. Both carried homozygous germline mutations in CARD11 (p.Cys150*), impairing NF-κB signaling and IL-2 production. A somatic second-site mutation reverting the stop codon to a missense mutation (p.Cys150Leu) was detected in tissue-infiltrating T cells of the OS patient. Expression of p.Cys150Leu in CARD11-deficient T cells largely reconstituted NF-κB signaling. The reversion likely occurred in a prethymic T-cell precursor, leading to a chimeric T-cell repertoire. We speculate that in our patient the functional advantage of the revertant T cells in the context of persistent CMV infection, combined with lack of regulatory T cells, may have been sufficient to favor OS. This first observation of OS in a patient with a T-cell activation defect suggests that severely defective T-cell development or homeostatic proliferation in a lymphopenic environment are not required for this severe immunopathology.
Collapse
|
20
|
mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol 2015; 68:536-45. [PMID: 26253278 DOI: 10.1016/j.molimm.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/09/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT) cells, which express the invariant Vα14Jα18 TCR that recognizes lipid antigens, have the ability to rapidly respond to agonist stimulation, producing a variety of cytokines that can shape both innate and adaptive immunity. iNKT cells have been implicated in host defense against microbial infection, in anti-tumor immunity, and a multitude of diseases such as allergies, asthma, graft versus host disease, and obesity. Emerging evidence has demonstrated crucial role for mammalian target of rapamycin (mTOR) in immune cells, including iNKT. In this review we will discuss current understanding of how mTOR and its tight regulation control iNKT cell development, effector lineage differentiation, and function.
Collapse
|
21
|
Gao P, Han X, Zhang Q, Yang Z, Fuss IJ, Myers TG, Gardina PJ, Zhang F, Strober W. Dynamic changes in E-protein activity regulate T reg cell development. ACTA ACUST UNITED AC 2014; 211:2651-68. [PMID: 25488982 PMCID: PMC4267236 DOI: 10.1084/jem.20132681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gao et al. show that E-box proteins dampen the generation and function of Foxp3+ regulatory T cells in part by inhibiting IL-2Rα expression and IL-2 responsiveness. E-proteins are TCR-sensitive transcription factors essential for intrathymic T cell transitions. Here, we show that deletion of E-proteins leads to both enhanced peripheral TGF-β–induced regulatory T (iT reg) cell and thymic naturally arising T reg cell (nT reg cell) differentiation. In contrast, deletion of Id proteins results in reduced nT reg cell differentiation. Mechanistic analysis indicated that decreased E-protein activity leads to de-repression of signaling pathways that are essential to Foxp3 expression. Decreased E-protein binding to an IL-2Rα enhancer locus facilitated TCR-induced IL-2Rα expression. Similarly, decreased E-protein activity facilitated TCR-induced NF-κB activation and generation of c-Rel. Consistent with this, microarray analysis indicated that cells with E-protein depletion that are not yet expressing Foxp3 exhibit activation of the IL-2 and NF-κB signaling pathways as well as enhanced expression of many of the genes associated with Foxp3 induction. Finally, studies using Nur77-GFP mice to monitor TCR signaling showed that TCR signaling strength sufficient to induce Foxp3 differentiation is accompanied by down-regulation of E-protein levels. Collectively, these data suggest that TCR stimulation acts in part through down-regulation of E-protein activity to induce T reg cell lineage development.
Collapse
Affiliation(s)
- Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaojuan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qi Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhiqiong Yang
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Timothy G Myers
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul J Gardina
- Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Warren Strober
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China Mucosal Immunity Section, Laboratory of Host Defenses; Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Jaworski M, Marsland BJ, Gehrig J, Held W, Favre S, Luther SA, Perroud M, Golshayan D, Gaide O, Thome M. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J 2014; 33:2765-81. [PMID: 25319413 PMCID: PMC4282555 DOI: 10.15252/embj.201488987] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/22/2023] Open
Abstract
The protease activity of the paracaspase Malt1 has recently gained interest as a drug target for immunomodulation and the treatment of diffuse large B-cell lymphomas. To address the consequences of Malt1 protease inactivation on the immune response in vivo, we generated knock-in mice expressing a catalytically inactive C472A mutant of Malt1 that conserves its scaffold function. Like Malt1-deficient mice, knock-in mice had strong defects in the activation of lymphocytes, NK and dendritic cells, and the development of B1 and marginal zone B cells and were completely protected against the induction of autoimmune encephalomyelitis. Malt1 inactivation also protected the mice from experimental induction of colitis. However, Malt1 knock-in mice but not Malt1-deficient mice spontaneously developed signs of autoimmune gastritis that correlated with an absence of Treg cells, an accumulation of T cells with an activated phenotype and high serum levels of IgE and IgG1. Thus, removal of the enzymatic activity of Malt1 efficiently dampens the immune response, but favors autoimmunity through impaired Treg development, which could be relevant for therapeutic Malt1-targeting strategies.
Collapse
Affiliation(s)
- Maike Jaworski
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Ben J Marsland
- Centre Hospitalier Universitaire Vaudois, Service de Pneumologie, Lausanne, Switzerland
| | - Jasmine Gehrig
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Mai Perroud
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Déla Golshayan
- Centre Hospitalier Universitaire Vaudois, Transplantation Centre, Lausanne, Switzerland
| | - Olivier Gaide
- Centre Hospitalier Universitaire Vaudois, Service de Dermatologie et Vénéréologie, Lausanne, Switzerland
| | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
23
|
Salisbury EM, Wang L, Choi O, Rutschmann S, Ashton-Rickardt PG. N-Ethyl-N-nitrosourea mutagenesis in the mouse provides strong genetic and in vivo evidence for the role of the Caspase Recruitment Domain (CARD) of CARD-MAGUK1 in T regulatory cell development. Immunology 2014; 141:446-56. [PMID: 24383645 DOI: 10.1111/imm.12207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 01/07/2023] Open
Abstract
Natural regulatory T (nTreg) cells generated in the thymus are essential throughout life for the maintenance of T-cell homeostasis and the prevention of autoimmunity. T-cell receptor (TCR)/CD28-mediated activation of nuclear factor-κB and (J)un (N)-terminal kinase pathways is known to play a key role in nTreg cell development but many of the predicted molecular interactions are based on extrapolations from non-Treg cell TCR stimulation with non-physiological ligands. For the first time, we provide strong genetic evidence of a scaffold function for the Caspase Recruitment Domain (CARD) of the TCR signalling protein CARD-MAGUK1 (CARMA1) in nTreg cell development in vivo. We report two, new, N-ethyl-N-nitrosourea-derived mutant mice, Vulpo and Zerda, with a profound block in the development of nTreg cells in the thymus as well as impaired inducible Treg cell differentiation in the periphery. Despite independent heritage, both mutants harbour different point mutations in the CARD of the CARMA1 protein. Mutations in vulpo and zerda do not affect expression levels of CARMA1 but still impair signalling through the TCR due to defective downstream Bcl-10 recruitment by the mutated CARD of CARMA1. Phenotypic differences observed between Vulpo and Zerda mutants suggest a role for the CARD of CARMA1 independent of Bcl-10 activation of downstream pathways. We conclude that our forward genetic approach demonstrates a critical role for the CARD function of CARMA1 in Treg cell development in vivo.
Collapse
Affiliation(s)
- Emma M Salisbury
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
24
|
Pan F, Barbi J. Ubiquitous points of control over regulatory T cells. J Mol Med (Berl) 2014; 92:555-69. [PMID: 24777637 DOI: 10.1007/s00109-014-1156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
Posttranslational modification by ubiquitin tagging is crucial for regulating the stability, activity and cellular localization of many target proteins involved in processes including DNA repair, cell cycle progression, protein quality control, and signal transduction. It has long been appreciated that ubiquitin-mediated events are important for certain signaling pathways leading to leukocyte activation and the stimulation of effector function. Now it is clear that the activities of molecules and pathways central to immune regulation are also modified and controlled by ubiquitin tagging. Among the mechanisms of immune control, regulatory T cells (or Tregs) are themselves particularly sensitive to such regulation. E3 ligases and deubiquitinases both influence Tregs through their effects on the signaling pathways pertinent to these cells or through the direct, posttranslational regulation of Foxp3. In this review, we will summarize and discuss several examples of ubiquitin-mediated control over multiple aspects of Treg biology including the generation, function and phenotypic fidelity of these cells. Fully explored and exploited, these potential opportunities for Treg modulation may lead to novel immunotherapies for both positive and negative fine-tuning of immune restraint.
Collapse
Affiliation(s)
- Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
25
|
Schreiber L, Pietzsch B, Floess S, Farah C, Jänsch L, Schmitz I, Huehn J. The Treg-specific demethylated region stabilizes Foxp3 expression independently of NF-κB signaling. PLoS One 2014; 9:e88318. [PMID: 24505473 PMCID: PMC3914969 DOI: 10.1371/journal.pone.0088318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023] Open
Abstract
Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs.
Collapse
Affiliation(s)
- Lisa Schreiber
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carla Farah
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Research Group Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Schmitz
- Research Group Systems-oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
26
|
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein-1 (CARMA1), a member of the membrane associated guanylate kinase (MAGUK) family of kinases, is essential for T lymphocyte activation and proliferation via T-cell receptor (TCR) mediated NF-κB activation. Recent studies suggest a broader role for CARMA1 regulating other T-cell functions as well as a role in non-TCR-mediated signaling pathways important for lymphocyte development and functions. In addition, CARMA1 has been shown to be an important component in the pathogenesis of several human diseases. Thus, comprehensively defining its mechanisms of action and regulation could reveal novel therapeutic targets for T-cell-mediated diseases and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Marly I Roche
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
27
|
Delacher M, Schreiber L, Richards DM, Farah C, Feuerer M, Huehn J. Transcriptional control of regulatory T cells. Curr Top Microbiol Immunol 2014; 381:83-124. [PMID: 24831347 DOI: 10.1007/82_2014_373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) constitute unique T cell lineage that plays a key role for immunological tolerance. Tregs are characterized by the expression of the forkhead box transcription factor Foxp3, which acts as a lineage-specifying factor by determining the unique suppression profile of these immune cells. Here, we summarize the recent progress in understanding how Foxp3 expression itself is epigenetically and transcriptionally controlled, how the Treg-specific signature is achieved and how unique properties of Treg subsets are defined by other transcription factors. Finally, we will discuss recent studies focusing on the molecular targeting of Tregs to utilize the specific properties of this unique cell type in therapeutic settings.
Collapse
Affiliation(s)
- Michael Delacher
- Immune Tolerance, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Passerini L, Santoni de Sio FR, Roncarolo MG, Bacchetta R. Forkhead box P3: the peacekeeper of the immune system. Int Rev Immunol 2013; 33:129-45. [PMID: 24354325 DOI: 10.3109/08830185.2013.863303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ten years ago Forkhead box P3 (FOXP3) was discovered as master gene driving CD4(+)CD25(+) T cell regulatory (Treg) function. Since then, several layers of complexity have emerged in the regulation of its expression and function, which is not only exerted in Treg cells. While the mechanisms leading to the highly selective expression of FOXP3 in thymus-derived Treg cells still remain to be elucidated, we review here the current knowledge on the role of FOXP3 in the development of Treg cells and the direct and indirect consequences of FOXP3 mutations on multiple arms of the immune response. Finally, we summarize the newly acquired knowledge on the epigenetic regulation of FOXP3, still largely undefined in human cells.
Collapse
Affiliation(s)
- Laura Passerini
- 1Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
29
|
Thymic regulatory T cell development: role of signalling pathways and transcription factors. Clin Dev Immunol 2013; 2013:617595. [PMID: 24187564 PMCID: PMC3803129 DOI: 10.1155/2013/617595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/21/2013] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.
Collapse
|
30
|
Luo CT, Li MO. Transcriptional control of regulatory T cell development and function. Trends Immunol 2013; 34:531-9. [PMID: 24016547 PMCID: PMC7106436 DOI: 10.1016/j.it.2013.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
Abstract
An intermediate amount of T cell stimulation induces Foxp3 transcription. Treg cell lineage factor Foxp3 cooperates with its partners to promote Treg cell function. Cell signaling-regulated Foxo1 is indispensable for Treg cell function.
Regulatory T (Treg) cells differentiate from thymocytes or peripheral T cells in response to host and environmental cues, culminating in induction of the transcription factor forkhead box P3 (Foxp3) and the Treg cell-specific epigenome. An intermediate amount of antigen stimulation is required to induce Foxp3 expression by engaging T cell receptor (TCR)-activated [e.g., nuclear factor (NF)-κB] and TCR-inhibited (e.g., Foxo) transcription factors. Furthermore, Treg cell differentiation is associated with attenuated Akt signaling, resulting in enhanced nuclear retention of Foxo1, which is indispensable for Treg cell function. These findings reveal that Treg cell lineage commitment is not only controlled by genetic and epigenetic imprinting, but also modulated by transcriptional programs responding to extracellular signals.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Chong T. Luo
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan–Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
31
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays important roles in various biological processes including apoptosis, stress response, immunity, and inflammation. NF-κB signaling is involved in both immune cell development and function, and it is critical in modulation of the immune response through the transcriptional regulation of cytokine and chemokine expression. An area of great interest in T-cell-mediated adaptive immunity is the ability of naive CD4(+) T cells generated in the thymus to differentiate into various subsets including T-helper 1 (Th1), Th2, Th17, Th9, follicular helper T (Tfh), Th22, and regulatory T (Treg) cells, upon encountering different pathogens and microenvironments. In this review, we discuss the role of NF-κB pathway in the development and functional divergence of the different helper T-cell subsets as well as in regulatory T cells.
Collapse
Affiliation(s)
- Hyunju Oh
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | | |
Collapse
|
32
|
Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, Cohen S, Shachar I, Miosge LA, Schlesier M, Fuchs I, Enders A, Eibel H, Grimbacher B, Warnatz K. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol 2013; 131:477-85.e1. [PMID: 23374270 DOI: 10.1016/j.jaci.2012.11.050] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. OBJECTIVE We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. METHODS Molecular, immunologic, and functional assays were performed. RESULTS The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. CONCLUSION Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response in human subjects.
Collapse
Affiliation(s)
- Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Oda H, Tamehiro N, Patrick MS, Hayakawa K, Suzuki H. Differential requirement for RhoH in development of TCRαβ CD8αα IELs and other types of T cells. Immunol Lett 2013; 151:1-9. [PMID: 23499578 DOI: 10.1016/j.imlet.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Abstract
RhoH is a new member of the atypical G proteins exclusively expressed in hematopoietic lineage cells. It has been shown to act as an adaptor for ZAP70, Syk, Lck and Csk kinases in signal transduction, and is required for positive selection of thymocytes as well as activation of peripheral T cells and mast cells. In the present study, we showed that RhoH is required not only for positive selection but also for negative selection of thymocytes. Regarding development of unconventional T cell subsets, development of NKT and regulatory T cells was also inhibited, whereas development of TCRαβ CD8αα intestinal intraepithelial lymphocytes (IEL) was not affected by the absence of RhoH. TCR-dependent in vitro activation of TCRαβ CD8αα IEL required RhoH, suggesting that overall development of IEL does not critically depend on TCR signaling but more on cytokine-dependent expansion and survival in the periphery. Our current results indicate differential requirements for RhoH in the development of TCRαβ CD8αα IELs compared to other subsets of T cells including agonist selected T cells.
Collapse
Affiliation(s)
- Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa-shi, Chiba 272-8516, Japan
| | | | | | | | | |
Collapse
|
34
|
Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 2013; 34:282-9. [PMID: 23434408 DOI: 10.1016/j.it.2013.01.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/04/2013] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
Nuclear factor (NF)-κB transcription factors are pivotal regulators of innate and adaptive immune responses, and perturbations of NF-κB signaling contribute to the pathogenesis of immunological disorders. NF-κB is a well-known proinflammatory mediator, and its deregulated activation is associated with the chronic inflammation of autoimmune diseases. Paradoxically, NF-κB plays a crucial role in the establishment of immune tolerance, including both central tolerance and the peripheral function of regulatory T (Treg) cells. Thus, defective or deregulated activation of NF-κB may contribute to autoimmunity and inflammation, highlighting the importance of tightly controlled NF-κB signaling. This review focuses on recent progress regarding NF-κB regulation and its association with autoimmunity.
Collapse
|
35
|
Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, Ichinose H, Metzger D, Chambon P, Yoshimura A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 2013. [PMID: 23334790 DOI: 10.1038/ni.2520.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulatory T cells (T(reg) cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in T(reg) cell development. Mice that lacked all Nr4a factors could not produce T(reg) cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the T(reg) cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4(+) T cell fates in the thymus and thus contribute to immune homeostasis.
Collapse
Affiliation(s)
- Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, Ichinose H, Metzger D, Chambon P, Yoshimura A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 2013; 14:230-7. [PMID: 23334790 DOI: 10.1038/ni.2520] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (T(reg) cells) develop from progenitor thymocytes after the engagement of T cell antigen receptors (TCRs) with high-affinity ligands, but the underlying molecular mechanisms are still unclear. Here we show that the Nr4a nuclear receptors, which are encoded by immediate-early genes upregulated by TCR stimulation in thymocytes, have essential roles in T(reg) cell development. Mice that lacked all Nr4a factors could not produce T(reg) cells and died early owing to systemic autoimmunity. Nr4a receptors directly activated the promoter of the gene encoding the transcription factor Foxp3, and forced activation of Nr4a receptors bypassed low-strength TCR signaling to drive the T(reg) cell developmental program. Our results suggest that Nr4a receptors have key roles in determining CD4(+) T cell fates in the thymus and thus contribute to immune homeostasis.
Collapse
Affiliation(s)
- Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gorentla BK, Zhong XP. T cell Receptor Signal Transduction in T lymphocytes. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; 2012:5. [PMID: 23946894 PMCID: PMC3740441 DOI: 10.4172/2155-9899.s12-005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The T cell receptor (TCR) recognizes self or foreign antigens presented by major histocompatibility complex (MHC) molecules. Engagement of the TCR triggers the formation of multi-molecular signalosomes that lead to the generation of second messengers and subsequent activation of multiple distal signaling cascades, such as the Ca+2-calcineurin-NFAT, RasGRP1-Ras-Erk1/2, PKCθ-IKK-NFκB, and TSC1/2-mTOR pathways. These signaling cascades control many aspects of T cell biology. Mechanisms have been evolved to fine-tune TCR signaling to maintain T cell homeostasis and self-tolerance, and to properly mount effective responses to microbial infection. Defects or deregulation of TCR signaling has been implicated in the pathogenesis of multiple human diseases.
Collapse
Affiliation(s)
- Balachandra K Gorentla
- Pediatric Biology Center, Translational Health Science and Technology Institute, Gurgaon, 122016, India
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
38
|
Abstract
Regulatory T cells expressing the FoxP3 transcription factor have a profound and nonredundant role in several aspects of immunological tolerance. We will review here the specification of this lineage, its population dynamics, and the diversity of subphenotypes that correlate with their diverse roles in controlling inflammation in a variety of settings.
Collapse
Affiliation(s)
- Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Yuan X, Malek TR. Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum Immunol 2012; 73:773-82. [PMID: 22659217 PMCID: PMC3410644 DOI: 10.1016/j.humimm.2012.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 04/10/2012] [Accepted: 05/10/2012] [Indexed: 02/06/2023]
Abstract
Regulation of immune responses to self and foreign antigens is critically dependent on suppressive CD4(+) T cells characterized by expression of Foxp3. The large majority of regulatory T (Treg) cells develop in the thymus as a stable suppressive lineage. However, under the proper physiological conditions, conventional peripheral CD4(+) T lymphocytes also develop into Treg cells, particularly in the gut mucosa and inflammatory tissue sites. This review will focus on our current understanding of the immunological and molecular signals controlling the development of thymic derived natural (n)Treg and peripheral converted induced (i)Treg cells. Given the importance of Foxp3 in the development of these cells, particular attention is placed on how such signals are integrated to induce and maintain the expression of this signature transcriptional regulator of Treg cells.
Collapse
Affiliation(s)
- Xiaomei Yuan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, FL 33136, United States
| | | |
Collapse
|
40
|
Abstract
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Collapse
Affiliation(s)
- Steven Z Josefowicz
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
41
|
Tanoue T, Honda K. Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 2011; 24:50-7. [PMID: 22172550 DOI: 10.1016/j.smim.2011.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD4+ regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a critical role in maintaining immunological homeostasis. Treg cells are highly abundant in the mouse intestinal lamina propria, particularly in the colon. Recent studies using germ-free and gnotobiotic mice have revealed that specific components of the intestinal microbiota influence the number and function of Treg cells. Substantial changes in the composition of microbiota have been associated with inflammatory bowel disease. In this review, we will discuss recent findings that associate intestinal microbiota in mice with Treg responses and with the maintenance of intestinal immune homeostasis.
Collapse
Affiliation(s)
- Takeshi Tanoue
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
42
|
|
43
|
Chuang HC, Lan JL, Chen DY, Yang CY, Chen YM, Li JP, Huang CY, Liu PE, Wang X, Tan TH. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-θ in T cells. Nat Immunol 2011; 12:1113-8. [PMID: 21983831 DOI: 10.1038/ni.2121] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/30/2011] [Indexed: 12/14/2022]
Abstract
Protein kinase C-θ (PKC-θ) is required for activation of the transcription factor NF-κB induced by signaling via the T cell antigen receptor (TCR); however, the direct activator of PKC-θ is unknown. We report that the kinase GLK (MAP4K3) directly activated PKC-θ during TCR signaling. TCR signaling activated GLK by inducing its direct interaction with the upstream adaptor SLP-76. GLK-deficient mice had impaired immune responses and were resistant to experimental autoimmune encephalomyelitis. Consistent with that, people with systemic lupus erythematosus had considerable enhanced GLK expression and activation of PKC-θ and the kinase IKK in T cells, and the frequency of GLK-overexpressing T cells was directly correlated with disease severity. Thus, GLK is a direct activator of PKC-θ, and activation of GLK-PKC-θ-IKK could be used as new diagnostic biomarkers and therapeutic targets for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Colacios C, Casemayou A, Dejean AS, Gaits-Iacovoni F, Pedros C, Bernard I, Lagrange D, Deckert M, Lamouroux L, Jagodic M, Olsson T, Liblau RS, Fournié GJ, Saoudi A. The p.Arg63Trp polymorphism controls Vav1 functions and Foxp3 regulatory T cell development. ACTA ACUST UNITED AC 2011; 208:2183-91. [PMID: 21948080 PMCID: PMC3201202 DOI: 10.1084/jem.20102191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A single nucleotide polymorphism causing constitutive activation of Vav1 results in increased natural Treg generation and is responsible for the imbalance between Vav1 GEF and adaptor functions. CD4+ regulatory T cells (Treg cells) expressing the transcription factor Foxp3 play a pivotal role in maintaining peripheral tolerance by inhibiting the expansion and function of pathogenic conventional T cells (Tconv cells). In this study, we show that a locus on rat chromosome 9 controls the size of the natural Treg cell compartment. Fine mapping of this locus with interval-specific congenic lines and association experiments using single nucleotide polymorphisms (SNPs) identified a nonsynonymous SNP in the Vav1 gene that leads to the substitution of an arginine by a tryptophan (p.Arg63Trp). This p.Arg63Trp polymorphism is associated with increased proportion and absolute numbers of Treg cells in the thymus and peripheral lymphoid organs, without impacting the size of the Tconv cell compartment. This polymorphism is also responsible for Vav1 constitutive activation, revealed by its tyrosine 174 hyperphosphorylation and increased guanine nucleotide exchange factor activity. Moreover, it induces a marked reduction in Vav1 cellular contents and a reduction of Ca2+ flux after TCR engagement. Together, our data reveal a key role for Vav1-dependent T cell antigen receptor signaling in natural Treg cell development.
Collapse
Affiliation(s)
- Céline Colacios
- INSERM Unité 1043, Centre National de la Recherche Scientifique Unité 5282, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hinterberger M, Wirnsberger G, Klein L. B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front Immunol 2011; 2:30. [PMID: 22566820 PMCID: PMC3341949 DOI: 10.3389/fimmu.2011.00030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/14/2011] [Indexed: 12/16/2022] Open
Abstract
According to the “two-step model,” the intrathymic generation of CD4+ regulatory T (Treg) cells segregates into a first, T cell receptor (TCR)-driven phase and a second, cytokine-dependent phase. The initial TCR stimulus gives rise to a CD25+Foxp3− developmental intermediate. These precursors subsequently require cytokine signaling to establish the mature CD25+Foxp3+ Treg cell phenotype. In addition, costimulation via CD28/B7 (CD80/86) axis is important for the generation of a Treg cell repertoire of normal size. Recent data suggest that CD28 or B7 deficient mice lack CD25+Foxp3− Treg cell progenitors. However, these data leave open whether costimulation is also required at subsequent stages of Treg differentiation. Also, the fate of “presumptive” Treg cells carrying a permissive TCR specificity in the absence of costimulation remains to be established. Here, we have used a previously described TCR transgenic model of agonist-driven Treg differentiation in order to address these issues. Intrathymic adoptive transfer of Treg precursors indicated that costimulation is dispensable once the intermediate CD25+Foxp3− stage has been reached. Furthermore, lack of costimulation led to the physical loss of presumptive Treg cells rather than their escape from central tolerance and differentiation into the conventional CD4+ T cell lineage. Our findings suggest that CD28 signaling does not primarily operate through enhancing the TCR signal strength in order to pass the threshold intensity required to initiate Treg cell specification. Instead, costimulation seems to deliver unique and qualitatively distinct signals that coordinately foster the developmental progression of Treg precursors and prevent their negative selection.
Collapse
|
46
|
Shen S, Wu J, Srivatsan S, Gorentla BK, Shin J, Xu L, Zhong XP. Tight regulation of diacylglycerol-mediated signaling is critical for proper invariant NKT cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:2122-9. [PMID: 21775687 DOI: 10.4049/jimmunol.1100495] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I NKT cells, or invariant NKT (iNKT) cells, express a semi-invariant TCR characterized by its unique Vα14-Jα18 usage (iVα14TCR). Upon interaction with glycolipid/CD1d complexes, the iVα14TCRs transduce signals that are essential for iNKT selection and maturation. However, it remains unclear how these signals are regulated and how important such regulations are during iNKT development. Diacylglycerol (DAG) is an essential second messenger downstream of the TCR that activates the protein kinase C-IκB kinase (IKK)α/β-NF-κB pathway, known to be crucial for iNKT development, as well as the RasGRP1-Ras-Erk1/2 pathway in T cells. DAG kinases play an important role in controlling intracellular DAG concentration and thereby negatively regulate DAG signaling. In this article, we report that simultaneous absence of DAG kinase α and ζ causes severe defects in iNKT development, coincident with enhanced IKK-NF-κB and Ras-Erk1/2 activation. Moreover, constitutive IKKβ and Ras activities also result in iNKT developmental defects. Thus, DAG-mediated signaling is not only essential but also needs to be tightly regulated for proper iNKT cell development.
Collapse
Affiliation(s)
- Shudan Shen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hu T, Gimferrer I, Alberola-Ila J. Control of early stages in invariant natural killer T-cell development. Immunology 2011; 134:1-7. [PMID: 21718314 DOI: 10.1111/j.1365-2567.2011.03463.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells develop in the thymus from the same precursors as conventional CD4(+) and CD8(+) αβ T cells, CD4(+) CD8(+) double-positive cells. In contrast to conventional αβT cells, which are selected by MHC-peptide complexes presented by thymic epithelial cells, invariant NKT cells are selected by lipid antigens presented by the non-polymorphic, MHC I-like molecule CD1d, present on the surface of other double-positive thymocytes, and require additional signals from the signalling lymphocytic-activation molecule (SLAM) family of receptors. In this review, we provide a discussion of recent findings that have modified our understanding of the NKT cell developmental programme, with an emphasis on events that affect the early stages of this process. This includes factors that control double-positive thymocyte lifespan, and therefore the ability to generate the canonical Vα rearrangements that characterize this lineage, as well as the signal transduction pathways engaged downstream of the T-cell receptor and SLAM molecules.
Collapse
Affiliation(s)
- Taishan Hu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
48
|
Abstract
The development of regulatory T (Treg) cells is essential for the maintenance of immune tolerance and homeostasis. Here, we review recent studies that have advanced our understanding of Treg cell differentiation. In the thymus, TCR specificity to self-antigen appears to be a primary determinant for Treg cell lineage commitment, with c-Rel being an important factor that links T cell receptor (TCR) engagement and Foxp3 expression, along with cytokines and costimulatory molecules. It is also clear that postthymic events shape the peripheral Treg cell population. This includes preferential maintenance of Treg cells specific to self-antigens presented in the periphery, as well as the de novo generation of Treg cells from conventional Foxp3(-) T cells. The process of peripheral Treg cell differentiation shares some features with thymic Treg cell development, but there are notable differences. Together, thymic and peripheral Treg cell differentiation appear to generate an "imprint" of both self- and foreign antigens in the peripheral Treg cell population to provide dominant tolerance.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Internal Medicine, Division of Rheumatology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | |
Collapse
|
49
|
Beyer M, Schultze JL. Plasticity of T(reg) cells: is reprogramming of T(reg) cells possible in the presence of FOXP3? Int Immunopharmacol 2010; 11:555-60. [PMID: 21115121 DOI: 10.1016/j.intimp.2010.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (T(reg) cells) are involved in self tolerance, immune homeostasis, prevention of autoimmunity, and suppression of immunity to pathogens or tumors. The forkhead transcription factor FOXP3 is essential for T(reg)-cell development and function as mutations in FOXP3 cause severe autoimmune diseases in mice and humans. Over the last years it has been postulated that FOXP3 expression in T(reg) prevents effector T-cell (T(effector)-cell) lineage commitment, yet several recent studies suggest that the co-existence of effector and regulatory T-cell programs can occur and might help to enable T(reg) cells with properties necessary to exert their function in peripheral tissues. Furthermore, downregulation of FOXP3 in the periphery might help T(reg) cells to lose suppressive functions and gain memory properties with specificity for self-antigens and an effector phenotype including the ability to produce IFN-γ and IL-17. This plasticity might have an impact on their reactivity towards autoimmunity as well as tumors or infections.
Collapse
Affiliation(s)
- Marc Beyer
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| | | |
Collapse
|
50
|
Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol 2010; 32:26-33. [PMID: 21106439 DOI: 10.1016/j.it.2010.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/31/2022]
Abstract
The forkhead box O (Foxo) family of transcription factors consists of the mammalian orthologs of the Caenorhabditis elegans longevity protein Daf-16, and has an evolutionarily conserved function in the regulation of nutrient sensing and stress responses. Recent studies have shown that Foxo proteins control expression of immune system-specific genes such as Il7ra in naïve T cells and Foxp3 in regulatory T cells, which are crucial regulators of T cell homeostasis and tolerance. These findings reveal that the ancient Foxo pathway has been co-opted to regulate highly specialized T cell activities. The Foxo pathway probably enables a diverse and self-tolerant population of T cells in the steady state, which is an important prerequisite for the establishment of a functional adaptive immune system.
Collapse
Affiliation(s)
- Weiming Ouyang
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|