1
|
Becker M, Kälin S, Neubig AH, Lauber M, Opaleva D, Hipp H, Salb VK, Ott VB, Legutko B, Kälin RE, Hippich M, Scherm MG, Nascimento LFR, Serr I, Hosp F, Nikolaev A, Mohebiany A, Krueger M, Flachmeyer B, Pfaffl MW, Haase B, Yi CX, Dietzen S, Bopp T, Woods SC, Waisman A, Weigmann B, Mann M, Tschöp MH, Daniel C. Regulatory T cells in the mouse hypothalamus control immune activation and ameliorate metabolic impairments in high-calorie environments. Nat Commun 2025; 16:2744. [PMID: 40113758 PMCID: PMC11926360 DOI: 10.1038/s41467-025-57918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The hypothalamus in the central nervous system (CNS) has important functions in controlling systemic metabolism. A calorie-rich diet triggers CNS immune activation, impairing metabolic control and promoting obesity and Type 2 Diabetes (T2D), but the mechanisms driving hypothalamic immune activation remain unclear. Here we identify regulatory T cells (Tregs) as key modulators of hypothalamic immune responses. In mice, calorie-rich environments activate hypothalamic CD4+ T cells, infiltrating macrophages and microglia while reducing hypothalamic Tregs. mRNA profiling of hypothalamic CD4+ T cells reveals a Th1-like activation state, with increased Tbx21, Cxcr3 and Cd226 but decreased Ccr7 and S1pr1. Importantly, results from Treg loss-of function and gain-of-function experiments show that Tregs limit hypothalamic immune activation and reverse metabolic impairments induced by hyper-caloric feeding. Our findings thus help refine the current model of Treg-centered immune-metabolic crosstalk in the brain and may contribute to the development of precision immune modulation for obesity and diabetes.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Hypothalamus/metabolism
- Hypothalamus/immunology
- Mice
- Obesity/immunology
- Obesity/metabolism
- Male
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Microglia/metabolism
- Microglia/immunology
- Diet, High-Fat/adverse effects
Collapse
Affiliation(s)
- Maike Becker
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefanie Kälin
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Anne H Neubig
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Michael Lauber
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Daria Opaleva
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Hannah Hipp
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Victoria K Salb
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Verena B Ott
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Roland E Kälin
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neurosciences, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Hippich
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Munich, 80939 Munich, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin G Scherm
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Lucas F R Nascimento
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Alma Mohebiany
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Martin Krueger
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | | | - Michael W Pfaffl
- Animal Physiology and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Dietzen
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephen C Woods
- Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
3
|
David P, Kouhestani D, Hansen FJ, Paul S, Czubayko F, Karabiber A, Weisel N, Klösch B, Merkel S, Ole-Baur J, Gießl A, Van Deun J, Vera J, Mittelstädt A, Weber GF. Exosomal CD40, CD25, and Serum CA19-9 as Combinatory Novel Liquid Biopsy Biomarker for the Diagnosis and Prognosis of Patients with Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2025; 26:1500. [PMID: 40003965 PMCID: PMC11854914 DOI: 10.3390/ijms26041500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is largely due to several challenges, such as late diagnosis, early metastasis, limited response to chemotherapy, aggressive tumor biology, and high rates of tumor recurrence. Therefore, the development of a non-invasive and effective method for early detection of PDAC is crucial to improving patient outcomes. Continued research and exploration in this area are essential to enhance early detection methods and ultimately improve the prognosis for individuals with PDAC. In this study, we examined 37 exosomal surface proteins through a multiplex flow cytometry test on peripheral plasma samples from a group of 51 clinical control individuals (including healthy volunteers and non-cancer patients (Cholecystectomy, Hernia, healthy volunteers)), 21 pancreatitis, and 48 patients diagnosed with PDAC. Our research findings revealed that the level of exosomal CD40 expression is significantly lower in patients with PDAC and pancreatitis compared to non-cancer patients (p < 0.0001). Additionally, pancreatitis patients exhibited higher levels of exosomal CD25 expression than PDAC patients (p = 0.0104). PDAC patients with higher exo-CD40 had worse survival than patients with lower exo-CD40 (p = 0.0035). Similarly, PDAC patients with higher exo-CD25 showed worse survival in comparison to patients with lower exo-CD25 (p = 0.04). Statistical analysis revealed that exosomal CD40 achieved an AUC of 0.827 in distinguishing PDAC from clinical controls. Combining exo-CD40 along with exo-CD25 and CA19-9 discriminated PDAC patients from clinical controls with an AUC of 0.92. Exo-CD40 and exo-CD25 proteins found in exosomes isolated from plasma can serve as excellent non-invasive biomarkers for the early diagnosis of PDAC. Further larger scale studies are needed to validate combined exo-CD40 and exo-CD25 as a diagnostic tool for the identification of PDAC patients through non-invasive liquid biopsy.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Dina Kouhestani
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Bettina Klösch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Jan Ole-Baur
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
- Medizinische Klinik IV (Hämatologie und Onkologie), Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Jan Van Deun
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
4
|
De Visscher A, Vandeput M, Vandenhaute J, Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Mitera T, Berghmans N, Van den Steen PE, Friedrich C, Gasteiger G, Wouters C, Matthys P. Liver type 1 innate lymphoid cells undergo apoptosis in murine models of macrophage activation syndrome and are dispensable for disease. Eur J Immunol 2024; 54:e2451043. [PMID: 39348088 DOI: 10.1002/eji.202451043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Macrophage activation syndrome (MAS) exemplifies a severe cytokine storm disorder with liver inflammation. In the liver, classical natural killer (cNK) cells and liver-resident type 1 innate lymphoid cells (ILC1s) dominate the ILC population. Thus far, research has primarily focused on the corresponding role of cNK cells. Considering the liver inflammation and cytokine storm in MAS, liver-resident ILC1s represent an interesting population to explore due to their rapid cytokine production upon environmental triggers. By utilizing a Toll-like receptor (TLR)9- and TLR3:4-triggered MAS model, we showed that ILC1s highly produce IFN-γ and TNF-α. However, activated ILC1s undergo apoptosis and are strongly reduced in numbers, while cNK cells resist inflammation-induced apoptosis. Signs of mitochondrial stress suggest that this ILC1 apoptosis may be driven by inflammation-induced mitochondrial impairment. To study whether early induction of highly cytokine-producing ILC1s influences MAS development, we used Hobit KO mice due to their paucity of liver ILC1s but unaffected cNK cell numbers. Nevertheless, neither the severity of MAS features nor the total inflammatory cytokine levels were affected in these Hobit KO mice, indicating that ILC1s are dispensable for MAS pathogenesis. Collectively, our data demonstrate that ILC1s undergo apoptosis during TLR-triggering and are dispensable for MAS pathogenesis.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Christin Friedrich
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wei X, Zhao L, Yang F, Yang Y, Zhang H, Du K, Tian X, Fan R, Si G, Wang K, Li Y, Wei Z, He M, Sui J. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. Mol Ther 2024; 32:4075-4094. [PMID: 39245938 PMCID: PMC11573620 DOI: 10.1016/j.ymthe.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Intratumoral regulatory T cells (Tregs) express high levels of CD25 and TIGIT, which are also recognized as markers of effector T cell (Teff) activation. Targeting these molecules each alone with monoclonal antibodies (mAbs) poses a risk of concurrently depleting both Teffs and peripheral Tregs, thereby compromising the effectiveness and selectivity of intratumoral Treg depletion. Here, leveraging the increased abundance of CD25+ TIGIT+ double-positive Tregs in the solid tumor microenvironment (but not in peripheral tissues), we explore the feasibility of using a CD25×TIGIT bispecific antibody (bsAb) to selectively deplete intratumoral Tregs. We initially constructed a bsAb co-targeting mouse CD25 and TIGIT, NSWm7210, and found that NSWm7210 conferred enhanced intratumoral Treg depletion, Teff activation, and tumor suppression as compared to the parental monotherapies in mouse models. We subsequently constructed a bsAb co-targeting human CD25 and TIGIT (NSWh7216), which preferentially eliminated CD25+ TIGIT+ double-positive cells over single-positive cells in vitro. NSWh7216 exhibited enhanced anti-tumor activity without toxicity of peripheral Tregs in CD25 humanized mice compared to the parental monotherapies. Our study illustrates the use of CD25×TIGIT bsAbs as effective agents against solid tumors based on selective depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Xin Wei
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Linlin Zhao
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fang Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yajing Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huixiang Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kaixin Du
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Xinxin Tian
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Ruihua Fan
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Guangxu Si
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kailun Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Miaomiao He
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
6
|
Shanahan SL, Kunder N, Inaku C, Hagan NB, Gibbons G, Mathey-Andrews N, Anandappa G, Soares S, Pauken KE, Jacks T, Schenkel JM. Longitudinal Intravascular Antibody Labeling Identified Regulatory T Cell Recruitment as a Therapeutic Target in a Mouse Model of Lung Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:906-918. [PMID: 39082930 PMCID: PMC11460633 DOI: 10.4049/jimmunol.2400268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Anticancer immunity is predicated on leukocyte migration into tumors. Once recruited, leukocytes undergo substantial reprogramming to adapt to the tumor microenvironment. A major challenge in the field is distinguishing recently recruited from resident leukocytes in tumors. In this study, we developed an intravascular Ab technique to label circulating mouse leukocytes before they migrate to tissues, providing unprecedented insight into the kinetics of recruitment. This approach unveiled the substantial role of leukocyte migration in tumor progression using a preclinical mouse model of lung adenocarcinoma. Regulatory T cells (Tregs), critical mediators of immunosuppression, were continuously and rapidly recruited into tumors throughout cancer progression. Moreover, leukocyte trafficking depended on the integrins CD11a/CD49d, and CD11a/CD49d blockade led to significant tumor burden reduction in mice. Importantly, preventing circulating Treg recruitment through depletion or sequestration in lymph nodes was sufficient to decrease tumor burden, indicating that Treg migration was crucial for suppressing antitumor immunity. These findings underscore the dynamic nature of the immune compartment within mouse lung tumors and demonstrate the relevance of a temporal map of leukocyte recruitment into tumors, thereby advancing our understanding of leukocyte migration in the context of tumor development.
Collapse
Affiliation(s)
- Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nikesh Kunder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Inaku
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie B. Hagan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Gibbons
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shawn Soares
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jason M. Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Zhao C, Wang C, Wang R, Shan W, Wang W, Deng H. Regulatory T Cells Nanoextinguisher to Manipulate Multiple Immune Evasion for Immunotherapy. ACS NANO 2024; 18:24105-24117. [PMID: 39171893 DOI: 10.1021/acsnano.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulatory T cells (Treg) play key roles in inhibiting effective antitumor immunity. However, therapeutic Treg depletion fails to consistently enhance immune responses due to the emergence of a wave of peripherally converted Treg cells postdepletion, along with undesired off-target side effects. Here, we report a nanoextinguisher decorated with functional peptides via tumor microenvironment responsive linkers to selectively block Treg function and maintain Treg levels rather than deplete them. The nanoextinguisher specifically neutralizes TGF-β to inhibit the recruitment of Treg cells and the conversion of naive T cells into Treg cells, thus promoting antitumor immunity. Moreover, the nanoextinguisher can alleviate tumor resistance to immunogenic photodynamic therapy, vaccination therapy, and checkpoint inhibition. The nanoextinguisher showed 30-fold potentiation in antitumor effect compared to standalone photodynamic therapy or vaccination therapy. Overall, utilizing a nanoextinguisher to inhibit Treg function without triggering reconversion represents a generalizable method to reverse immune evasion, yielding antitumor efficacy.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Rujie Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
8
|
Jiang H, Sun X, Wu Y, Xu J, Xiao C, Liu Q, Fang L, Liang Y, Zhou J, Wu Y, Lin Z. Contribution of Tregs to the promotion of constructive remodeling after decellularized extracellular matrix material implantation. Mater Today Bio 2024; 27:101151. [PMID: 39104900 PMCID: PMC11298607 DOI: 10.1016/j.mtbio.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.
Collapse
Affiliation(s)
- Hongjing Jiang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Xuheng Sun
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yindi Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Qing Liu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yuanfeng Liang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510006, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| |
Collapse
|
9
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
10
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2Rα KO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. Front Immunol 2024; 15:1369818. [PMID: 38812502 PMCID: PMC11133634 DOI: 10.3389/fimmu.2024.1369818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
Affiliation(s)
- Victoria A. Wong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristie N. Dinh
- Fertility Wellness Institute of Ohio West Chester Township, OH, United States
| | - Guangchun Chen
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - Lucile E. Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Medical Education, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
11
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
12
|
Takahashi S, Minnie SA, Ensbey KS, Schmidt CR, Sekiguchi T, Legg SRW, Zhang P, Koyama M, Olver SD, Collinge AD, Keshmiri S, Comstock ML, Varelias A, Green DJ, Hill GR. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation. Blood 2024; 143:1656-1669. [PMID: 38295333 PMCID: PMC11103090 DOI: 10.1182/blood.2023022000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.
Collapse
Affiliation(s)
- Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Samuel R. W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stuart D. Olver
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Sara Keshmiri
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melissa L. Comstock
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Damian J. Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Pal S, Morgan X, Dar HY, Gacasan CA, Patil S, Stoica A, Hu YJ, Weitzmann MN, Jones RM, Pacifici R. Gender-affirming hormone therapy preserves skeletal maturation in young mice via the gut microbiome. J Clin Invest 2024; 134:e175410. [PMID: 38530358 PMCID: PMC11093603 DOI: 10.1172/jci175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Xochitl Morgan
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Camilo Anthony Gacasan
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Sanchiti Patil
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Healthcare System, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Green BL, Myojin Y, Ma C, Ruf B, Ma L, Zhang Q, Rosato U, Qi J, Revsine M, Wabitsch S, Bauer K, Benmebarek MR, McCallen J, Nur A, Wang X, Sehra V, Gupta R, Claassen M, Wang XW, Korangy F, Greten TF. Immunosuppressive CD29 + Treg accumulation in the liver in mice on checkpoint inhibitor therapy. Gut 2024; 73:509-520. [PMID: 37770128 PMCID: PMC10922517 DOI: 10.1136/gutjnl-2023-330024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Liver metastases are often resistant to immune checkpoint inhibitor therapy (ICI) and portend a worse prognosis compared with metastases to other locations. Regulatory T cells (Tregs) are one of several immunosuppressive cells implicated in ICI resistance of liver tumours, but the role played by Tregs residing within the liver surrounding a tumour is unknown. DESIGN Flow cytometry and single-cell RNA sequencing were used to characterise hepatic Tregs before and after ICI therapy. RESULTS We found that the murine liver houses a Treg population that, unlike those found in other organs, is both highly proliferative and apoptotic at baseline. On administration of αPD-1, αPD-L1 or αCTLA4, the liver Treg population doubled regardless of the presence of an intrahepatic tumour. Remarkably, this change was not due to the preferential expansion of the subpopulation of Tregs that express PD-1. Instead, a subpopulation of CD29+ (Itgb1, integrin β1) Tregs, that were highly proliferative at baseline, doubled its size in response to αPD-1. Partial and full depletion of Tregs identified CD29+ Tregs as the prominent niche-filling subpopulation in the liver, and CD29+ Tregs demonstrated enhanced suppression in vitro when derived from the liver but not the spleen. We identified IL2 as a critical modulator of both CD29+ and CD29- hepatic Tregs, but expansion of the liver Treg population with αPD-1 driven by CD29+ Tregs was in part IL2-independent. CONCLUSION We propose that CD29+ Tregs constitute a unique subpopulation of hepatic Tregs that are primed to respond to ICI agents and mediate resistance.
Collapse
Affiliation(s)
- Benjamin L Green
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Qianfei Zhang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Umberto Rosato
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Qi
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kylynda Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin McCallen
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Sehra
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Revant Gupta
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wang H, Huang M, Zhu M, Su C, Zhang Y, Chen H, Jiang Y, Wang H, Guo Q, Zhang S. Paclitaxel combined with Compound K inducing pyroptosis of non-small cell lung cancer cells by regulating Treg/Th17 balance. Chin Med 2024; 19:26. [PMID: 38360696 PMCID: PMC10870689 DOI: 10.1186/s13020-024-00904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors, which have attracted much attention in recent years, have achieved good efficacy, but their use is limited by the high incidence of acquired drug resistance. Therefore, there is an urgent need to develop new immunotherapy drugs. Compound taxus chinensis capsule (CTC) is an oral paclitaxel compound drug, clinical results showed it can change the number of regulatory T cells and T helper cell 17 in peripheral blood. Regulating the balance between regulatory T cells and T helper cell 17 is considered to be an effective anticancer strategy. Paclitaxel and ginsenoside metabolite compound K are the main immunomodulatory components, it is not clear that paclitaxel combined with compound K can inhibit tumor development by regulating the balance between regulatory T cell and T helper cell 17. METHODS MTT, EdU proliferation and plate colony formation assay were used to determine the concentration of paclitaxel and compound K. AnnexinV-FITC/PI staining, ELISA, Western Blot assay, Flow Cytometry and Immunofluorescence were used to investigate the effect of paclitaxel combined with compound K on Lewis cell cultured alone or co-cultured with splenic lymphocyte. Finally, transplanted tumor C57BL/6 mice model was constructed to investigate the anti-cancer effect in vivo. RESULTS According to the results of MTT, EdU proliferation and plate colony formation assay, paclitaxel (10 nM) and compound K (60 μM) was used to explore the mechanism. The results of Flow Cytometry demonstrated that paclitaxel combined with compound K increased the number of T helper cell 17 and decreased the number of regulatory T cells, which induced pyroptosis of cancer cells. The balance was mediated by the JAK-STAT pathway according to the results of Western Blot and Immunofluorescence. Finally, the in vivo results showed that paclitaxel combined with compound K significantly inhibit the progression of lung cancer. CONCLUSIONS In this study, we found that paclitaxel combined with compound K can activate CD8+ T cells and induce pyroptosis of tumor cells by regulating the balance between regulatory T cells and T helper cell 17. These results demonstrated that this is a feasible treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Min Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Chi Su
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
| | - Yijian Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuexin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Haidi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Shuai Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China.
| |
Collapse
|
16
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2RαKO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565571. [PMID: 37961725 PMCID: PMC10635137 DOI: 10.1101/2023.11.03.565571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
IL-2Rα KO mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα knock out (KO) mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα knock mice to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα knock out vascular smooth muscle cells had detectable IL-2Rα. Further studies suggested that the source of IL-2Rα protein was likely maternal heterozygous cells present in KO offspring due to maternal microchimerism. Because the KO was generated by using a neomycin resistance gene insert, we treated cells with G418 and were able to eliminate the majority of IL-2Rα expressing cells. This elimination revealed that IL-2Rα KO vascular smooth muscle cells exhibited increased proliferation, decreased size, and hypodiploid DNA content when compared to wildtype cells. Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
|
17
|
Lee EY, Dai Z, Jaiswal A, Wang EHC, Anandasabapathy N, Christiano AM. Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing. Proc Natl Acad Sci U S A 2023; 120:e2305764120. [PMID: 37428932 PMCID: PMC10629527 DOI: 10.1073/pnas.2305764120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Alopecia areata (AA) is among the most prevalent autoimmune diseases, but the development of innovative therapeutic strategies has lagged due to an incomplete understanding of the immunological underpinnings of disease. Here, we performed single-cell RNA sequencing (scRNAseq) of skin-infiltrating immune cells from the graft-induced C3H/HeJ mouse model of AA, coupled with antibody-based depletion to interrogate the functional role of specific cell types in AA in vivo. Since AA is predominantly T cell-mediated, we focused on dissecting lymphocyte function in AA. Both our scRNAseq and functional studies established CD8+ T cells as the primary disease-driving cell type in AA. Only the depletion of CD8+ T cells, but not CD4+ T cells, NK, B, or γδ T cells, was sufficient to prevent and reverse AA. Selective depletion of regulatory T cells (Treg) showed that Treg are protective against AA in C3H/HeJ mice, suggesting that failure of Treg-mediated immunosuppression is not a major disease mechanism in AA. Focused analyses of CD8+ T cells revealed five subsets, whose heterogeneity is defined by an "effectorness gradient" of interrelated transcriptional states that culminate in increased effector function and tissue residency. scRNAseq of human AA skin showed that CD8+ T cells in human AA follow a similar trajectory, underscoring that shared mechanisms drive disease in both murine and human AA. Our study represents a comprehensive, systematic interrogation of lymphocyte heterogeneity in AA and uncovers a novel framework for AA-associated CD8+ T cells with implications for the design of future therapeutics.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Medical Scientist Training Program, Columbia University, New York, NY10032
| | - Zhenpeng Dai
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Abhinav Jaiswal
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
18
|
Rodriguez BL, Chen L, Li Y, Miao S, Peng DH, Fradette JJ, Diao L, Konen JM, Alvarez FRR, Solis LM, Yi X, Padhye A, Gibson LA, Ochieng JK, Zhou X, Wang J, Gibbons DL. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front Immunol 2023; 14:1161869. [PMID: 37449205 PMCID: PMC10336223 DOI: 10.3389/fimmu.2023.1161869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.
Collapse
Affiliation(s)
- B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yanli Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shucheng Miao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lixia Diao
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank R. Rojas Alvarez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Yi
- Bellicum Pharmaceuticals, Inc., Houston, TX, United States
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aparna Padhye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- United of Texas (UT) Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Laura A. Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua K. Ochieng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Zhou Y, Ju H, Hu Y, Li T, Chen Z, Si Y, Sun X, Shi Y, Fang H. Tregs dysfunction aggravates postoperative cognitive impairment in aged mice. J Neuroinflammation 2023; 20:75. [PMID: 36932450 PMCID: PMC10022212 DOI: 10.1186/s12974-023-02760-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVES Enhanced neuroinflammation is an important mechanism underlying perioperative neurocognitive disorders. Regulatory T cells (Tregs) play a crucial role in regulating systemic immune responses. The present study was aimed to investigate the participation of Tregs in the development of postoperative cognitive dysfunction (POCD). METHODS Surgery-associated neurocognitive disorder was induced in 18-month-old mice subjected to internal fixation of tibial fracture. Morris water maze was used to examine mice cognitive function. Splenic Tregs were collected for RNA sequencing and flow cytometry. Levels of inflammatory factors in the circulation and hippocampus were measured by enzyme-linked immunosorbent assay. Protein presences of tight junction proteins were detected by immunofluorescence. RESULTS Surgery of internal fixation of tibial fracture induced cognitive impairment in aged mice, accompanied by elevated plasma levels of inflammatory factors and increased circulating Tregs. Transfusion of Tregs from young mice partially restored the structure of the blood-brain barrier and alleviated POCD in aged mice. Compared with young Tregs, differentially expressed genes in aged Tregs were enriched in tumor necrosis factor (TNF) signaling pathway and cytokine-cytokine receptor interaction. Flow cytometry revealed that aged Tregs had blunted functions under basal and stimulated conditions. Blockade of the CD25 epitope protected the blood-brain barrier structure, reduced TNF-α levels in the hippocampus, and improved surgery-associated cognition in aged mice. CONCLUSIONS Blocking peripheral regulatory T cells improves surgery-induced cognitive function in aged mice. Therefore, aged Tregs play an essential role in the occurrence of POCD.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huihui Ju
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Sun
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Ji Y, Madrasi K, Knee DA, Gruenbaum L, Apgar JF, Burke JM, Gomes B. Quantitative systems pharmacology model of GITR-mediated T cell dynamics in tumor microenvironment. CPT Pharmacometrics Syst Pharmacol 2023; 12:413-424. [PMID: 36710369 PMCID: PMC10014051 DOI: 10.1002/psp4.12925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
T cell interaction in the tumor microenvironment is a key component of immuno-oncology therapy. Glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) is expressed on immune cells including regulatory T cells (Tregs) and effector T cells (Teffs). Preclinical data suggest that agonism of GITR in combination with Fc-γ receptor-mediated depletion of Tregs results in increased intratumoral Teff:Treg ratio and tumor shrinkage. A novel quantitative systems pharmacology (QSP) model was developed for the murine anti-GITR agonist antibody, DTA-1.mIgG2a, to describe the kinetics of intratumoral Tregs and Teffs in Colon26 and A20 syngeneic mouse tumor models. It adequately captured the time profiles of intratumoral Treg and Teff and serum DTA-1.mIgG2a and soluble GITR concentrations in both mouse models, and described the response differences between the two models. The QSP model provides a quantitative understanding of the trade-off between maximizing Treg depletion versus Teff agonism, and offers insights to optimize drug design and dose regimen.
Collapse
Affiliation(s)
- Yan Ji
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Deborah A Knee
- Novartis Institutes for Biomedical Research, San Diego, California, USA
| | - Lore Gruenbaum
- Therapy Acceleration Program, The Leukemia & Lymphoma Society, Rye Brook, New York, USA
| | | | - John M Burke
- Applied Biomath LLC, Concord, Massachusetts, USA
| | - Bruce Gomes
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Direct AKT activation in tumor-infiltrating lymphocytes markedly increases interferon-γ (IFN-γ) for the regression of tumors resistant to PD-1 checkpoint blockade. Sci Rep 2022; 12:18509. [PMID: 36323740 PMCID: PMC9630443 DOI: 10.1038/s41598-022-23016-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
PD-1 immune checkpoint blockade against inhibitory receptors such as receptor programmed cell death-1 (PD-1), has revolutionized cancer treatment. Effective immune reactivity against tumour antigens requires the infiltration and activation of tumour-infiltrating T-cells (TILs). In this context, ligation of the antigen-receptor complex (TCR) in combination with the co-receptor CD28 activates the intracellular mediator AKT (or PKB, protein kinase B) and its downstream targets. PD-1 inhibits the activation of AKT/PKB. Given this, we assessed whether the direct activation of AKT might be effective in activating the immune system to limit the growth of tumors that are resistant to PD-1 checkpoint blockade. We found that the small molecule activator of AKT (SC79) limited growth of a B16 tumor and an EMT-6 syngeneic breast tumor model that are poorly responsive to PD-1 immunotherapy. In the case of B16 tumors, direct AKT activation induced (i) a reduction of suppressor regulatory (Treg) TILs and (ii) an increase in effector CD8+ TILs. SC79 in vivo therapy caused a major increase in the numbers of CD4+ and CD8+ TILs to express interferon-γ (IFN-γ). This effect on IFN-γ expression distinguished responsive from non-responsive anti-tumor responses and could be recapitulated ex vivo with human T-cells. In CD4+FoxP3+Treg TILs, AKT induced IFN-γ expression was accompanied by a loss of suppressor activity, the conversation to CD4+ helper Th1-like TILs and a marked reduction in phospho-SHP2. In CD8+ TILs, we observed an increase in the phospho-activation of PLC-γ. Further, the genetic deletion of the transcription factor T-bet (Tbx21) blocked the increased IFN-γ expression on all subsets while ablating the therapeutic benefits of SC79 on tumor growth. Our study shows that AKT activation therapy acts to induce IFN-γ on CD4 and CD8 TILs that is accompanied by the intra-tumoral conversation of suppressive Tregs into CD4+Th1-like T-cells and augmented CD8 responses.
Collapse
|
22
|
Dhital R, Anand S, Graber B, Zeng Q, Velazquez VM, Boddeda SR, Fitch JR, Minz RW, Minz M, Sharma A, Cianciolo R, Shimamura M. Murine cytomegalovirus promotes renal allograft inflammation via Th1/17 cells and IL-17A. Am J Transplant 2022; 22:2306-2322. [PMID: 35671112 PMCID: PMC9547825 DOI: 10.1111/ajt.17116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) infection is associated with renal allograft failure. Allograft damage in animal models is accelerated by CMV-induced T helper 17 (Th17) cell infiltrates. However, the mechanisms whereby CMV promotes Th17 cell-mediated pathological organ inflammation are uncharacterized. Here we demonstrate that murine CMV (MCMV)-induced intragraft Th17 cells have a Th1/17 phenotype co-expressing IFN-γ and/or TNF-α, but only a minority of these cells are MCMV specific. Instead, MCMV promotes intragraft expression of CCL20 and CXCL10, which are associated with recruitment of CCR6+ CXCR3+ Th17 cells. MCMV also enhances Th17 cell infiltrates after ischemia-reperfusion injury, independent of allogeneic responses. Pharmacologic inhibition of the Th17 cell signature cytokine, IL-17A, ameliorates MCMV-associated allograft damage without increasing intragraft viral loads or reducing MCMV-specific Th1 cell infiltrates. Clinically, HCMV DNAemia is associated with higher serum IL-17A among renal transplant patients with acute rejection, linking HCMV reactivation with Th17 cell cytokine expression. In summary, CMV promotes allograft damage via cytokine-mediated Th1/17 cell recruitment, which may be pharmacologically targeted to mitigate graft injury while preserving antiviral T cell immunity.
Collapse
Affiliation(s)
- Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Shashi Anand
- Department of ImmunopathologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Brianna Graber
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Qiang Zeng
- Center for Regenerative MedicineThe Abigail Research Institute, Nationwide Children's HospitalColumbusOhioUSA
| | - Victoria M. Velazquez
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Srinivasa R. Boddeda
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - James R. Fitch
- The Steve and Cindy Rasmussen Institute for Genomic MedicineNationwide Children's HospitalColumbusOhioUSA
| | - Ranjana W. Minz
- Department of ImmunopathologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Mukut Minz
- Department of Renal Transplant SurgeryPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Ashish Sharma
- Department of Renal Transplant SurgeryPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA,Division of Pediatric Infectious Diseases, Department of Pediatrics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
23
|
Zhang T, Zhao J, Fu J, Chen G, Ma T. Improvement of the sepsis survival rate by adenosine 2a receptor antagonists depends on immune regulatory functions of regulatory T-cells. Front Immunol 2022; 13:996446. [PMID: 36148230 PMCID: PMC9485829 DOI: 10.3389/fimmu.2022.996446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine shows a significant immunosuppressive effect in sepsis via binding to the adenosine 2a receptor (A2aR). Both genetic deletion and pharmacological inhibition of the A2aR may improve survival in sepsis. However, available research on this protective mechanism is quite limited. We used an A2aR antagonist (ZM241385) to treat a cecal ligation and puncture model of normal mice or regulatory T-cell (Treg)-depletion mice and found that the protective effect of ZM241385 is dependent on Tregs. Mechanically, A2aR inactivation was associated with decreased frequencies and reduced function of Foxp3+ Tregs, as evidenced by Foxp3 and CTLA-4 expression and classical effector T-cell proliferative assays, suggesting Treg modulation is a potential protective mechanism against sepsis. Simultaneously, the function and quantity of abdominal neutrophils were improved with ZM241385 treatment. To see if a link exists between them, Tregs and neutrophils were co-cultured, and it was found that ZM241385 blocked the inhibitory effect of Tregs on neutrophils. According to our research, Tregs play a key role in how A2aR antagonists improve sepsis prognosis and bacterial clearance.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingnan Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guibing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
24
|
Regulatory T Cell Depletion Using a CRISPR Fc-Optimized CD25 Antibody. Int J Mol Sci 2022; 23:ijms23158707. [PMID: 35955841 PMCID: PMC9369266 DOI: 10.3390/ijms23158707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) are major drivers behind immunosuppressive mechanisms and present a major hurdle for cancer therapy. Tregs are characterized by a high expression of CD25, which is a potentially valuable target for Treg depletion to alleviate immune suppression. The preclinical anti-CD25 (αCD25) antibody, clone PC-61, has met with modest anti-tumor activity due to its capacity to clear Tregs from the circulation and lymph nodes, but not those that reside in the tumor. The optimization of the Fc domain of this antibody clone has been shown to enhance the intratumoral Treg depletion capacity. Here, we generated a stable cell line that produced optimized recombinant Treg-depleting antibodies. A genome engineering strategy in which CRISPR-Cas9 was combined with homology-directed repair (CRISPR-HDR) was utilized to optimize the Fc domain of the hybridoma PC-61 for effector functions by switching it from its original rat IgG1 to a mouse IgG2a isotype. In a syngeneic tumor mouse model, the resulting αCD25-m2a (mouse IgG2a isotype) antibody mediated the effective depletion of tumor-resident Tregs, leading to a high effector T cell (Teff) to Treg ratio. Moreover, a combination of αCD25-m2a and an αPD-L1 treatment augmented tumor eradication in mice, demonstrating the potential for αCD25 as a cancer immunotherapy.
Collapse
|
25
|
Simpson AP, Roghanian A, Oldham RJ, Chan HTC, Penfold CA, Kim HJ, Inzhelevskaya T, Mockridge CI, Cox KL, Bogdanov YD, James S, Tutt AL, Rycroft D, Morley P, Dahal LN, Teige I, Frendeus B, Beers SA, Cragg MS. FcγRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Rep 2022; 40:111099. [PMID: 35858562 PMCID: PMC9638011 DOI: 10.1016/j.celrep.2022.111099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Many therapeutic antibodies deplete target cells and elicit immunotherapy by engaging activating Fc gamma receptors (FcγRs) on host effector cells. These antibodies are negatively regulated by the inhibitory FcγRIIB (CD32B). Dogma suggests inhibition is mediated through the FcγRIIB immunoreceptor tyrosine-based inhibition motif (ITIM), negatively regulating immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling from activating FcγR. To assess this, we generated experimental models expressing human (h)FcγRIIB on targets or effectors, lacking or retaining ITIM signaling capacity. We demonstrate that signaling through the hFcγRIIB ITIM is dispensable for impairing monoclonal antibody (mAb)-mediated depletion of normal and malignant murine target cells through three therapeutically relevant surface receptors (CD20, CD25, and OX40) affecting immunotherapy. We demonstrate that hFcγRIIB competition with activating FcγRs for antibody Fc, rather than ITIM signaling, is sufficient to impair activating FcγR engagement, inhibiting effector function and immunotherapy.
Collapse
Affiliation(s)
- Alexander P Simpson
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Hyung J Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Yury D Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alison L Tutt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Daniel Rycroft
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Peter Morley
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ingrid Teige
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | - Björn Frendeus
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
26
|
Denis M, Grasselly C, Choffour PA, Wierinckx A, Mathe D, Chettab K, Tourette A, Talhi N, Bourguignon A, Birzele F, Kress E, Jordheim LP, Klein C, Matera EL, Dumontet C. IN VIVO SYNGENEIC TUMOR MODELS WITH ACQUIRED RESISTANCE TO ANTI-PD-1/PD-L1 THERAPIES. Cancer Immunol Res 2022; 10:1013-1027. [PMID: 35679518 DOI: 10.1158/2326-6066.cir-21-0802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Antibodies targeting PD-1 and PD-L1 have produced durable responses in a subset of cancer patients. However, a majority of these patients will ultimately relapse due to acquired resistance. To explore the underlying mechanisms of this secondary resistance, we developed five syngeneic murine tumor variants with acquired resistance to anti-PD-1 and/or PD-L1 antibodies in vivo. Resistant in vivo models were obtained by serial treatment/reimplantation cycles of the MC38 colorectal, MB49 and MBT2 bladder, TyrNras melanoma and RENCA kidney models. Tumor immune infiltrates were characterized for wild type and resistant tumors using spectral cytometry and their molecular alterations analyzed using RNA-seq analyses. Alterations in the tumor immune microenvironment were strongly heterogeneous amongst resistant models, involving select lymphoid and/or myeloid subpopulations. Molecular alterations in resistant models included previously identified pathways as well as novel candidate genes found to be deregulated in several resistant models. Among these, Serpinf1, coding for Pigment Epithelial Derived Factor was further explored in the MC38 and the MBT2 models. Overexpression of Serpinf1 induced resistance to anti-PD-1 antibodies in the MC38 model, whereas knock-down of Serpinf1 sensitized this model as well as the primarily resistant MBT2 model. Serpinf1 overexpression was associated with increased production of free fatty acids and reduced activation of CD8+ cells, while orlistat, a compound that reduces the production of free fatty acids, reversed resistance to anti-PD-1 therapy. Our results suggest that a panel of syngeneic resistant models constitutes a useful tool to model the heterogeneity of resistance mechanisms encountered in the clinic.
Collapse
Affiliation(s)
- Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Chloé Grasselly
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, France
| | | | - Anne Wierinckx
- INSERM U1052, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | | - Kamel Chettab
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu S, Zhang J, Jiang X, Wang W, Chen YQ. Free fatty acid receptor 4 deletion attenuates colitis by modulating Treg Cells via ZBED6-IL33 pathway. EBioMedicine 2022; 80:104060. [PMID: 35588628 PMCID: PMC9120243 DOI: 10.1016/j.ebiom.2022.104060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 10/26/2022] Open
|
28
|
Kumar P, Balakrishnan S, Surendra Lele S, Setty S, Dhingra S, Epstein AL, Prabhakar BS. Restoration of Follicular T Regulatory/Helper Cell Balance by OX40L-JAG1 Cotreatment Suppresses Lupus Nephritis in NZBWF1/j Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2467-2481. [PMID: 35470257 DOI: 10.4049/jimmunol.2200057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Class-switched antinuclear autoantibodies produced by T follicular helper (TFH) cell-dependent germinal center (GC) B cell response play an essential pathogenic role in lupus nephritis (LN). The role of T follicular regulatory (TFR) cells, an effector subset of CD4+Foxp3+ T regulatory cells (Tregs), which are specialized in suppressing TFH-GC response and Ab production, remains elusive in LN. Contrasting reports have shown increased/reduced circulating TFR cells in human lupus that might not accurately reflect their presence in the GCs of relevant lymphoid organs. In this study, we report a progressive reduction in TFR cells and decreased TFR/TFH ratio despite increased Tregs in the renal lymph nodes of NZBWF1/j mice, which correlated with increased GC-B cells and proteinuria onset. Cotreatment with soluble OX40L and Jagged-1 (JAG1) proteins increased Tregs, TFR cells, and TFR/TFH ratio, with a concomitant reduction in TFH cells, GC B cells, and anti-dsDNA IgG Ab levels, and suppressed LN onset. Mechanistic studies showed attenuated TFH functions and diminished GC events such as somatic hypermutation and isotype class-switching in OX40L-JAG1-treated mice. RNA sequencing studies revealed inhibition of hypoxia-inducible factor 1-α (HIF-1a) and STAT3 signaling in T conventional cells from OX40L-JAG1-treated mice, which are critical for the glycolytic flux and differentiation into TFH cell lineage. Therefore, the increased TFR/TFH ratio seen in OX40L-JAG1-treated mice could involve both impaired differentiation of TFH cells from T conventional cells and expansion of TFR cells. We show a key role for GC-TFR/TFH imbalance in LN pathogenesis and how restoring homeostatic balance can suppress LN.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Suman Setty
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL; and
| | - Shaurya Dhingra
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL;
| |
Collapse
|
29
|
Tagkareli S, Salagianni M, Galani I, Manioudaki M, Pavlos E, Thanopoulou K, Andreakos E. CD103 integrin identifies a high IL-10-producing FoxP3 + regulatory T-cell population suppressing allergic airway inflammation. Allergy 2022; 77:1150-1164. [PMID: 34658046 DOI: 10.1111/all.15144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although FoxP3+ regulatory T (Treg) cells constitute a highly heterogeneous population, with different regulatory potential depending on the disease context, distinct subsets or phenotypes remain poorly defined. This hampers the development of immunotherapy for allergic and autoimmune disorders. The present study aimed at characterizing distinct FoxP3+ Treg subpopulations involved in the suppression of Th2-mediated allergic inflammation in the lung. METHODS We used an established mouse model of allergic airway disease based on ovalbumin sensitization and challenge to analyze FoxP3+ Tregs during the induction and resolution of inflammation, and identify markers that distinguish their most suppressive phenotypes. We also developed a new knock-in mouse model (Foxp3cre Cd103dtr ) enabling the specific ablation of CD103+ FoxP3+ Tregs for functional studies. RESULTS We found that during resolution of allergic airway inflammation in mice >50% of FoxP3+ Treg cells expressed the integrin CD103 which marks FoxP3+ Treg cells of high IL-10 production, increased expression of immunoregulatory molecules such as KLRG1, ICOS and CD127, and enhanced suppressive capacity for Th2-mediated inflammatory responses. CD103+ FoxP3+ Tregs were essential for keeping allergic inflammation under control as their specific depletion in Foxp3cre Cd103dtr mice lead to severe alveocapillary damage, eosinophilic pneumonia, and markedly reduced lifespan of the animals. Conversely, adoptive transfer of CD103+ FoxP3+ Tregs effectively treated disease, attenuating Th2 responses and allergic inflammation in an IL-10-dependent manner. CONCLUSIONS Our study identifies a novel regulatory T-cell population, defined by CD103 expression, programmed to prevent exuberant type 2 inflammation and keep homeostasis in the respiratory tract under control. This has important therapeutic implications.
Collapse
Affiliation(s)
- Sofia Tagkareli
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Maria Salagianni
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Ioanna‐Evdokia Galani
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Maria Manioudaki
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Eleftherios Pavlos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Kalliopi Thanopoulou
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of Athens Athens Greece
- Airway Disease Infection Section National Heart and Lung InstituteImperial College London London UK
| |
Collapse
|
30
|
Huang L, Ding Z, Zhang Y. CD24+ MDSC-DCs Induced by CCL5-Deficiency Showed Improved Antitumor Activity as Tumor Vaccines. Glob Med Genet 2022; 9:97-109. [PMID: 35707772 PMCID: PMC9192183 DOI: 10.1055/s-0042-1743569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background
Dendritic cell (DC) tumor vaccine has been extensively utilized in preclinical and clinical studies; however, this technique has encountered many difficulties, particularly in late-stage tumor patients. For those, ex vivo-induced DCs are actuallymyeloid-derived suppressive cells-derived DCs (MDSC-DCs). MDSCs with immunosuppressive activity, but not monocytes, became the major DC precursor. Thus, how to enhance antitumor activity of MDSC-DCs is urgent need to address.
Methods
We utilized 4T1 and MC38 tumor-bearing both wildtype and CC chemokine ligand 5
−/−
(CCL5
−/−
) mice as animal models. MDSC-DCs were induced from splenocytes of these mice by granulocyte macrophage–colony stimulating factor/interleukin-4 with or without all-trans-retinoic acid (ATRA) in vitro for 7 days, then incubated with tumor-cell-lysis to treat mouse models for total three doses. For human MDSC-DCs, peripheral bloods from colorectal cancer patients were induced in vitro as murine cells with or without T- lymphocytes depletion to get rid of CCL5.
Results
Flow cytometry analysis showed that MDSCs from
CCL5−/−
mice could be induced into a new type of CD24
+
MDSC-DCs in the presence of ATRA, which had more antitumor activity than control. Antibody blocking and adoptive transfer experiments demonstrated that downregulation of regulatory T cells (Tregs) mediated the inhibition of CD24
+
MDSC-DCs on tumor growth. Mechanically, CD24
+
MDSC-DCs inhibited Tregs' polarization by secreting cytokine or coactivators' expression. What's important, decreasing CCL5 protein levels by T- lymphocytes depletion during both murine and human MDSC-DCs in vitro induction could also acquire CD24
+
MDSC-DCs.
Conclusion
Knockdown of CCL5 protein during MDSC-DCs culture might provide a promising method to acquire DC-based tumor vaccines with high antitumor activity.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zequn Ding
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Au KM, Tisch R, Wang AZ. Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigen-Specific Therapy for Experimental Autoimmune Encephalomyelitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107392. [PMID: 34775659 PMCID: PMC8813901 DOI: 10.1002/adma.202107392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Failure to establish immune tolerance leads to the development of autoimmune disease. The ability to regulate autoreactive T cells without inducing systemic immunosuppression represents a major challenge in the development of new strategies to treat autoimmune disease. Here, a translational method for bioengineering programmed death-ligand 1 (PD-L1)- and cluster of differentiation 86 (CD86)-functionalized mouse Schwann cells (SCs) to prevent and ameliorate multiple sclerosis (MS) in established mouse models of chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is described. It is shown that the intravenous (i.v.) administration of immune checkpoint ligand functionalized mouse SCs modifies the course of disease and ameliorates EAE. Further, it is found that such bioengineered mouse SCs inhibit the differentiation of myelin-specific helper T cells into pathogenic T helper type-1 (Th 1) and type-17 (Th 17) cells, promote the development of tolerogenic myelin-specific regulatory T (Treg ) cells, and resolve inflammatory central nervous system microenvironments without inducing systemic immunosuppression.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| | - Roland Tisch
- Department of Microbiology and Immunology School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| |
Collapse
|
32
|
Xu Y, Mou J, Wang Y, Zhou W, Rao Q, Xing H, Tian Z, Tang K, Wang M, Wang J. Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia 2022; 36:403-415. [PMID: 34381181 DOI: 10.1038/s41375-021-01375-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs' infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.
Collapse
MESH Headings
- Cell Differentiation
- Cell Proliferation
- Humans
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Interleukin-10/genetics
- Receptors, Interleukin-10/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
33
|
Ma X, Qin C, Chen M, Yu HH, Chu YH, Chen TJ, Bosco DB, Wu LJ, Bu BT, Wang W, Tian DS. Regulatory T cells protect against brain damage by alleviating inflammatory response in neuromyelitis optica spectrum disorder. J Neuroinflammation 2021; 18:201. [PMID: 34526069 PMCID: PMC8444427 DOI: 10.1186/s12974-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background and purpose Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. Methods Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. Results The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. Conclusion Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02266-0.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ting-Jun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
34
|
Handke J, Kummer L, Weigand MA, Larmann J. Modulation of Peripheral CD4 +CD25 +Foxp3 + Regulatory T Cells Ameliorates Surgical Stress-Induced Atherosclerotic Plaque Progression in ApoE-Deficient Mice. Front Cardiovasc Med 2021; 8:682458. [PMID: 34485396 PMCID: PMC8416168 DOI: 10.3389/fcvm.2021.682458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Systemic inflammation associated with major surgery rapidly accelerates atherosclerotic plaque progression in mice. Regulatory T cells (Tregs) have emerged as important modulators of atherogenesis. In coronary artery disease patients, low frequency of Tregs constitutes an independent risk factor for cardiovascular complications after non-cardiac surgery. In this exploratory analysis, we investigate whether preoperative Treg levels affect surgery-induced atherosclerotic lesion destabilization in a murine model of perioperative stress. After 9 weeks of high-cholesterol diet, atherosclerotic apolipoprotein E-deficient mice with modulated Treg levels were subjected to a 30-minute surgical procedure consisting of general isoflurane anesthesia, laparotomy and moderate blood loss. Controls underwent general anesthesia only. Brachiocephalic arteries were harvested 3 days after the intervention for histomorphological analyses of atherosclerotic plaques. Tregs were depleted by a single dose of anti-CD25 monoclonal antibody (mAb) administered 6 days prior to the intervention. Expansion of Tregs was induced by daily injections of IL-2/anti-IL-2 complex (IL-2C) on three consecutive days starting 3 days before surgery. Isotype-matched antibodies and PBS served as controls. Antibody-mediated modulation was Treg-specific. IL-2C treatment resulted in an eight-fold elevation of peripheral CD4+CD25+Foxp3+ Tregs compared to mice administered with anti-CD25 mAb. In mice treated with PBS and anti-CD25 mAb, surgical stress response caused a significant increase of atherosclerotic plaque necrosis (PBS: p < 0.001; anti-CD25 mAb: p = 0.037). Preoperative Treg expansion abrogated perioperative necrotic core formation (p = 0.556) and significantly enhanced postoperative atherosclerotic plaque stability compared to PBS-treated mice (p = 0.036). Postoperative plaque volume (p = 0.960), stenosis (p = 0.693), lesional collagen (p = 0.258), as well as the relative macrophage (p = 0.625) and smooth muscle cell content (p = 0.178) remained largely unaffected by preoperative Treg levels. In atherosclerotic mice, therapeutic expansion of Tregs prior to major surgery mitigates rapid effects on perioperative stress-driven atherosclerotic plaque destabilization. Future studies will show, whether short-term interventions modulating perioperative inflammation qualify for prevention of cardiovascular events associated with major non-cardiac surgery.
Collapse
Affiliation(s)
- Jessica Handke
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Kummer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Li Z, Zhang W, Luo F, Li J, Yang W, Zhu B, Wu Q, Wang X, Sun C, Xie Y, Xu B, Wang Z, Qian F, Chen J, Wan Y, Hu W. Allergen-Specific Treg Cells Upregulated by Lung-Stage S. japonicum Infection Alleviates Allergic Airway Inflammation. Front Cell Dev Biol 2021; 9:678377. [PMID: 34169075 PMCID: PMC8217774 DOI: 10.3389/fcell.2021.678377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.
Collapse
Affiliation(s)
- Zhidan Li
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Hu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Rossaint J, Thomas K, Mersmann S, Skupski J, Margraf A, Tekath T, Jouvene CC, Dalli J, Hidalgo A, Meuth SG, Soehnlein O, Zarbock A. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J Exp Med 2021; 218:212168. [PMID: 34014253 PMCID: PMC8142284 DOI: 10.1084/jem.20201353] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/29/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Beyond hemostasis, platelets actively participate in immune cell recruitment and host defense, yet their potential in the resolution of inflammatory processes remains unknown. Here, we demonstrate that platelets are recruited into the lung together with neutrophils during the onset of inflammation and alongside regulatory T (T reg) cells during the resolution phase. This partnering dichotomy is regulated by differential adhesion molecule expression during resolution. Mechanistically, intravascular platelets form aggregates with T reg cells, a prerequisite for their recruitment into the lung. This interaction relies on platelet activation by sCD40L and platelet P-selectin binding to PSGL-1 on T reg cells. Physical platelet–T reg cell interactions are necessary to modulate the transcriptome and instruct T reg cells to release the anti-inflammatory mediators IL-10 and TGFβ. Notably, the presence of platelet–T reg cell aggregates in the lung was also required for macrophage transcriptional reprogramming, polarization toward an anti-inflammatory phenotype, and effective resolution of pulmonary inflammation. Thus, platelets partner with successive immune cell subsets to orchestrate both the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Jennifer Skupski
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Charlotte C Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andres Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sven G Meuth
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Cardiovascular Prevention, Ludwig-Maximillians-Universität München, Munich, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
37
|
Okada R, Furusawa A, Vermeer DW, Inagaki F, Wakiyama H, Kato T, Nagaya T, Choyke PL, Spanos WC, Allen CT, Kobayashi H. Near-infrared photoimmunotherapy targeting human-EGFR in a mouse tumor model simulating current and future clinical trials. EBioMedicine 2021; 67:103345. [PMID: 33933782 PMCID: PMC8102756 DOI: 10.1016/j.ebiom.2021.103345] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background near-infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that uses antibody-photoabsorber (IRDye700DX, IR700) conjugates (APCs) which bind to target cells and are photoactivated by NIR light inducing rapid necrotic cell death. NIR-PIT targeting human epidermal growth factor receptor (hEGFR) has been shown to destroy hEGFR expressing human tumor cells and to be effective in immunodeficient mouse models. NIR-PIT can also be targeted to cells in the tumor microenvironment, for instance, CD25-targeted NIR-PIT can be used to selectively deplete regulatory T cells (Tregs) within a tumor. The aim of this study was to evaluate the combined therapeutic efficacy of hEGFR and CD25-targeted NIR-PIT in a newly established hEGFR expressing murine oropharyngeal cell line (mEERL-hEGFR). Methods panitumumab conjugated with IR700 (pan-IR700) was used as the cancer cell-directed component of NIR-PIT and anti-CD25-F(ab′)2-IR700 was used as the tumor microenvironment-directed component of NIR-PIT. Efficacy was evaluated using tumor-bearing mice in four groups: (1) non-treatment group (control), (2) pan-IR700 based NIR-PIT (pan-PIT), (3) anti-CD25-F(ab′)2-IR700 based NIR-PIT (CD25-PIT), (4) combined NIR-PIT with pan-IR700 and anti-CD25- F(ab′)2-IR700 (combined PIT). Findings the combined PIT group showed the greatest inhibition of tumor growth. Destruction of cancer cells likely leads to an immune response which is amplified by the loss of Tregs in the tumor microenvironment. Interpretation combined hEGFR and CD25-targeted NIR-PIT is a promising treatment for hEGFR expressing cancers in which Treg cells play an immunosuppressive role.
Collapse
Affiliation(s)
- Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tadanobu Nagaya
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - William C Spanos
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
38
|
Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094395. [PMID: 33922369 PMCID: PMC8122797 DOI: 10.3390/ijms22094395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.
Collapse
|
39
|
STAT6 Is Critical for the Induction of Regulatory T Cells In Vivo Controlling the Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22084049. [PMID: 33919941 PMCID: PMC8070924 DOI: 10.3390/ijms22084049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6−/−) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6−/− and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6−/− mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6−/− mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.
Collapse
|
40
|
Ring S, Inaba Y, Da M, Bopp T, Grabbe S, Enk A, Mahnke K. Regulatory T Cells Prevent Neutrophilic Infiltration of Skin during Contact Hypersensitivity Reactions by Strengthening the Endothelial Barrier. J Invest Dermatol 2021; 141:2006-2017. [PMID: 33675787 DOI: 10.1016/j.jid.2021.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The healing phase of contact hypersensitivity reactions is critically dependent on regulatory T cells (Tregs), but even the early inflammatory phase, that is, 6-24 hours after induction of a contact hypersensitivity reaction, is susceptible to Treg-mediated suppression. To investigate the underlying mechanisms, we injected Tregs before the challenge and analyzed the skin-infiltrating cells as early as 6 hours later. Early on, we found mainly neutrophils in the challenged skin, but only a few T cells. This influx of neutrophils was blocked by the injection of Tregs, indicating that they were able to prevent the first wave of leukocytes, which are responsible for starting an immune reaction. As an underlying mechanism, we identified that Tregs can tighten endothelial junctions by inducing intracellular cAMP, leading to protein kinase A-RhoA‒dependent signaling. This eventually reorganizes endothelial junction proteins, such as Notch3, Nectin 2, Filamin B, and VE-cadherin, all of which contribute to the tightening of the endothelial barrier. In summary, Tregs prevent the leakage of proinflammatory cells from and into the tissue, which establishes a mechanism to downregulate immune reactions.
Collapse
Affiliation(s)
- Sabine Ring
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Yutaka Inaba
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Vaartjes D, Klaczkowska D, Cragg MS, Nandakumar KS, Bäckdahl L, Holmdahl R. Genetic dissection of a major haplotype associated with arthritis reveal FcγR2b and FcγR3 to act additively. Eur J Immunol 2021; 51:682-693. [PMID: 33244759 PMCID: PMC7984332 DOI: 10.1002/eji.202048605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.
Collapse
Affiliation(s)
- Daniëlle Vaartjes
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dorota Klaczkowska
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Mark S Cragg
- Antibody and Vaccine GroupCentre for Cancer ImmunologyUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Kutty Selva Nandakumar
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Liselotte Bäckdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
42
|
Abstract
Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
43
|
Drerup JM, Deng Y, Pandeswara SL, Padrón ÁS, Reyes RM, Zhang X, Mendez J, Liu A, Clark CA, Chen W, Conejo-Garcia JR, Hurez V, Gupta H, Curiel TJ. CD122-Selective IL2 Complexes Reduce Immunosuppression, Promote Treg Fragility, and Sensitize Tumor Response to PD-L1 Blockade. Cancer Res 2020; 80:5063-5075. [PMID: 32948605 PMCID: PMC7669742 DOI: 10.1158/0008-5472.can-20-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The IL2 receptor (IL2R) is an attractive cancer immunotherapy target that controls immunosuppressive T regulatory cells (Treg) and antitumor T cells. Here we used IL2Rβ-selective IL2/anti-IL2 complexes (IL2c) to stimulate effector T cells preferentially in the orthotopic mouse ID8agg ovarian cancer model. Despite strong tumor rejection, IL2c unexpectedly lowered the tumor microenvironmental CD8+/Treg ratio. IL2c reduced tumor microenvironmental Treg suppression and induced a fragile Treg phenotype, helping explain improved efficacy despite numerically increased Tregs without affecting Treg in draining lymph nodes. IL2c also reduced Treg-mediated, high-affinity IL2R signaling needed for optimal Treg functions, a likely mechanism for reduced Treg suppression. Effector T-cell IL2R signaling was simultaneously improved, suggesting that IL2c inhibits Treg functions without hindering effector T cells, a limitation of most Treg depletion agents. Anti-PD-L1 antibody did not treat ID8agg, but adding IL2c generated complete tumor regressions and protective immune memory not achieved by either monotherapy. Similar anti-PD-L1 augmentation of IL2c and degradation of Treg functions were seen in subcutaneous B16 melanoma. Thus, IL2c is a multifunctional immunotherapy agent that stimulates immunity, reduces immunosuppression in a site-specific manner, and combines with other immunotherapies to treat distinct tumors in distinct anatomic compartments. SIGNIFICANCE: These findings present CD122-targeted IL2 complexes as an advancement in cancer immunotherapy, as they reduce Treg immunosuppression, improve anticancer immunity, and boost PD-L1 immune checkpoint blockade efficacy in distinct tumors and anatomic locations.
Collapse
Affiliation(s)
- Justin M Drerup
- Department of Cell Systems and Anatomy, The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Yilun Deng
- Department of Medicine, University of Texas Health San Antonio, Texas
| | | | - Álvaro S Padrón
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Ryan M Reyes
- Department of Microbiology, Immunology and Molecular Genetics, The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
| | - Xinyue Zhang
- Sun Yat-sen University, Guangzhou, Guangdong, P.R.China
| | - Jenny Mendez
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Aijie Liu
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Curtis A Clark
- Department of Medicine, University of Texas Health San Antonio, Texas
- Department of Microbiology, Immunology and Molecular Genetics, The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
| | | | | | - Vincent Hurez
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Harshita Gupta
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Tyler J Curiel
- Department of Medicine, University of Texas Health San Antonio, Texas.
- Department of Microbiology, Immunology and Molecular Genetics, The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
- Mays Family Cancer Center, University of Texas Health San Antonio, Texas
| |
Collapse
|
44
|
Hayes ET, Hagan CE, Khoryati L, Gavin MA, Campbell DJ. Regulatory T Cells Maintain Selective Access to IL-2 and Immune Homeostasis despite Substantially Reduced CD25 Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2667-2678. [PMID: 33055282 PMCID: PMC7657993 DOI: 10.4049/jimmunol.1901520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/12/2020] [Indexed: 11/19/2022]
Abstract
IL-2 is a critical regulator of immune homeostasis through its impact on both regulatory T (Treg) and effector T cells. However, the precise role of IL-2 in the maintenance and function of Treg cells in the adult peripheral immune system remains unclear. In this study, we report that neutralization of IL-2 in mice abrogated all IL-2R signaling in Treg cells, but was well tolerated and only gradually impacted Treg cell function and immune homeostasis. By contrast, despite substantially reduced IL-2 sensitivity, Treg cells maintained selective IL-2 signaling and prevented immune dysregulation following treatment with the inhibitory anti-CD25 Ab PC61. Reduction of Treg cells with a depleting version of the same CD25 Ab permitted CD8+ effector T cell proliferation before progressing to more widespread immune dysregulation. Thus, despite severely curtailed CD25 expression and function, Treg cells retain selective access to IL-2 that supports their anti-inflammatory functions in vivo. Ab-mediated targeting of CD25 is being actively pursued for treatment of autoimmune disease and prevention of allograft rejection, and our findings help inform therapeutic manipulation and design for optimal patient outcomes.
Collapse
Affiliation(s)
- Erika T Hayes
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Cassidy E Hagan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Liliane Khoryati
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Marc A Gavin
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
45
|
Kurniawan H, Soriano-Baguet L, Brenner D. Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. Eur J Immunol 2020; 50:1626-1642. [PMID: 33067808 PMCID: PMC7756807 DOI: 10.1002/eji.201948470] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
46
|
Gordan S, Albert H, Danzer H, Lux A, Biburger M, Nimmerjahn F. The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Rep 2020; 29:3033-3046.e4. [PMID: 31801071 DOI: 10.1016/j.celrep.2019.10.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic immunoglobulin G antibodies are an essential component of therapeutic approaches aimed at depleting self-reactive or malignant cells. More recent evidence suggests that the tissue in which the target cell resides influences the underlying molecular and cellular pathways responsible for cytotoxic antibody activity. By studying cytotoxic IgG activity directed against natural killer cells in primary and secondary immunological organs, we show that distinct organ-specific effector pathways are responsible for target cell depletion. While in the bone marrow, the classical complement pathway and the high-affinity Fcγ-receptor I expressed on organ-resident macrophages were both involved in removing opsonized target cells; in the spleen and blood, all activating FcγRs but not the classical complement pathway were critical for target cell killing. Our study suggests that future strategies aimed at optimizing overall cytotoxic antibody activity may need to consider organ-specific pathways to achieve a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sina Gordan
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Albert
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Danzer
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
47
|
Becker W, Alrafas HR, Wilson K, Miranda K, Culpepper C, Chatzistamou I, Cai G, Nagarkatti M, Nagarkatti PS. Activation of Cannabinoid Receptor 2 Prevents Colitis-Associated Colon Cancer through Myeloid Cell De-activation Upstream of IL-22 Production. iScience 2020; 23:101504. [PMID: 32942172 PMCID: PMC7501437 DOI: 10.1016/j.isci.2020.101504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intestinal disequilibrium leads to inflammatory bowel disease (IBD), and chronic inflammation predisposes to oncogenesis. Antigen-presenting dendritic cells (DCs) and macrophages can tip the equilibrium toward tolerance or pathology. Here we show that delta-9-tetrahydrocannabinol (THC) attenuates colitis-associated colon cancer and colitis induced by anti-CD40. Working through cannabinoid receptor 2 (CB2), THC increases CD103 expression on DCs and macrophages and upregulates TGF-β1 to increase T regulatory cells (Tregs). THC-induced Tregs are necessary to remedy systemic IFNγ and TNFα caused by anti-CD40, but CB2-mediated suppression of APCs by THC quenches pathogenic release of IL-22 and IL-17A in the colon. By examining tissues from multiple sites, we confirmed that THC affects DCs, especially in mucosal barrier sites in the colon and lungs, to reduce DC CD86. Using models of colitis and systemic inflammation we show that THC, through CB2, is a potent suppressor of aberrant immune responses by provoking coordination between APCs and Tregs.
Collapse
Affiliation(s)
- William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Courtney Culpepper
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
48
|
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2020; 16:251-258. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women. National cancer institute of the US estimates that one in eight women will be diagnosed with breast cancer during their lifetime. Considering the devastating effects of the disease and the alarming numbers many scientists and research groups have devoted their research to fight breast cancer. Several recommendations are to be considered as preventing measures which include living a healthy lifestyle, regular physical activity, weight control and smoking cessation. Early detection of the disease by annual and regular mammography after the age of 40 is recommended by many healthcare institutions. This would help the diagnosis of the disease at an earlier stage and the start of the treatment before it is spread to other parts of the body. Current therapy for breast cancer includes surgical ablation, radiotherapy and chemotherapy which is often associated with adverse effects and even may lead to a relapse of the disease at a later stage. In order to achieve a long-lasting anticancer response with minimal adverse effects, development of breast cancer vaccines is under investigation by many laboratories. The immune system can be stimulated by a vaccine against breast cancer. This approach has attracted a great enthusiasm in recent years. No breast cancer vaccines have been approved for clinical use today. One breast cancer vaccine (NeuVax) has now completed clinical trial phase III and a few preventive and therapeutic breast cancer vaccines are at different steps of development. We think that with the recent advancements in immunotherapy, a breast cancer vaccine is not far from reach.
Collapse
Affiliation(s)
- Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto M5G0B7, Canada
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
50
|
ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A 2020; 117:20159-20170. [PMID: 32747553 PMCID: PMC7443867 DOI: 10.1073/pnas.1918986117] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, many patients do not respond or develop resistance to ICB. N6 -methylation of adenosine (m6A) in RNA regulates many pathophysiological processes. Here, we show that deletion of the m6A demethylase Alkbh5 sensitized tumors to cancer immunotherapy. Alkbh5 has effects on m6A density and splicing events in tumors during ICB. Alkbh5 modulates Mct4/Slc16a3 expression and lactate content of the tumor microenvironment and the composition of tumor-infiltrating Treg and myeloid-derived suppressor cells. Importantly, a small-molecule Alkbh5 inhibitor enhanced the efficacy of cancer immunotherapy. Notably, the ALKBH5 gene mutation and expression status of melanoma patients correlate with their response to immunotherapy. Our results suggest that m6A demethylases in tumor cells contribute to the efficacy of immunotherapy and identify ALKBH5 as a potential therapeutic target to enhance immunotherapy outcome in melanoma, colorectal, and potentially other cancers.
Collapse
|