1
|
Rodrigues CF, Santos FA, Amorim LAA, da Silva ALC, Marques LGA, Rocha BAM. Galectin-9 is a target for the treatment of cancer: A patent review. Int J Biol Macromol 2024; 254:127768. [PMID: 38287577 DOI: 10.1016/j.ijbiomac.2023.127768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Galectins, which correspond to a group of proteins capable of recognizing and reversibly binding to β-galactoside carbohydrates, have been the subject of innovation and development of technological products. Galectins play biological roles, such as cell proliferation and apoptosis, and some studies showed differences in the concentrations of galectins dispersed in serum of patients with cancer. For this reason, different studies have evaluated the biotechnological potential of these proteins as biomarkers for the prognosis and/or diagnosis of physiological disorders. Thus, this review discusses recent technological advancements in targeting galectins for the treatment of cancer and using galectins for cancer prognosis and diagnosis. Data mining was performed using the search descriptors "Galectin 9* and cancer*" and the ESPACENET and Cortellis Drug Discovery Intelligence (CDDI) databases. PRISMA guidelines were followed as a basis for literature review which aimed to conduct a systematic study of galectin-9 patents related to cancer prognosis, diagnosis and treatment. Results showed the importance of galectin-9 protein patents in furthering biomedical advancements in the global fight against cancer.
Collapse
Affiliation(s)
| | - Francisco Alves Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bruno Anderson Matias Rocha
- RENORBIO, Federal University of Ceara, Fortaleza, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
2
|
Mamun MAA, Zhang Y, Zhao JY, Shen DD, Guo T, Zheng YC, Zhao LJ, Liu HM. LSD1: an emerging face in altering the tumor microenvironment and enhancing immune checkpoint therapy. J Biomed Sci 2023; 30:60. [PMID: 37525190 PMCID: PMC10391765 DOI: 10.1186/s12929-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulation of various cells in the tumor microenvironment (TME) causes immunosuppressive functions and aggressive tumor growth. In combination with immune checkpoint blockade (ICB), epigenetic modification-targeted drugs are emerging as attractive cancer treatments. Lysine-specific demethylase 1 (LSD1) is a protein that modifies histone and non-histone proteins and is known to influence a wide variety of physiological processes. The dysfunction of LSD1 contributes to poor prognosis, poor patient survival, drug resistance, immunosuppression, etc., making it a potential epigenetic target for cancer therapy. This review examines how LSD1 modulates different cell behavior in TME and emphasizes the potential use of LSD1 inhibitors in combination with ICB therapy for future cancer research studies.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jin-Yuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Pereira MSF, Sorathia K, Sezgin Y, Thakkar A, Maguire C, Collins PL, Mundy-Bosse BL, Lee DA, Naeimi Kararoudi M. Deletion of Glycogen Synthase Kinase 3 Beta Reprograms NK Cell Metabolism. Cancers (Basel) 2023; 15:705. [PMID: 36765663 PMCID: PMC9913837 DOI: 10.3390/cancers15030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3β) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3β in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3β-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3β levels, allowing us to study GSK3β function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3β. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3β-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3β in regulating NK cell metabolism.
Collapse
Affiliation(s)
- Marcelo S. F. Pereira
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yasemin Sezgin
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Aarohi Thakkar
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Colin Maguire
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L. Mundy-Bosse
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Morozova EV, Tsvetkov NY, Barabanshchikova MV, Yurovskaya KS, Moiseev IS. New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-106-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. V. Morozova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - N. Yu. Tsvetkov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - M. V. Barabanshchikova
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - K. S. Yurovskaya
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - I. S. Moiseev
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| |
Collapse
|
5
|
Camacho V, Kuznetsova V, Welner RS. Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Front Immunol 2021; 12:772408. [PMID: 34804065 PMCID: PMC8595317 DOI: 10.3389/fimmu.2021.772408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.
Collapse
Affiliation(s)
- Virginia Camacho
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Li X, Zhang M, Cai S, Wu Y, You Y, Wang X, Wang L. Concentration-Dependent Decitabine Effects on Primary NK Cells Viability, Phenotype, and Function in the Absence of Obvious NK Cells Proliferation-Original Article. Front Pharmacol 2021; 12:755662. [PMID: 34759824 PMCID: PMC8573336 DOI: 10.3389/fphar.2021.755662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) cells can evade innate immune killing by modulating natural killer (NK) cells receptors and their cognate ligands in tumor cells, thus it may be possible to restore proper expression of immune receptors or ligands with immune sensitive drugs. Decitabine, as a hypomethylation agent, was approved for the treatment of AML and myelodysplastic syndrome. While clinical responses were contributed by epigenetic effects and the induction of cancer cell apoptosis, decitabine also has immune-mediated anti-tumor effects. After exposure to various concentration of decitabine for 24 h, the primary NK cells (AML-NK cells) cytotoxicity and receptor expression (NKG2D and NKp46) displayed parabola-shaped response, while U-shaped response was seen in cytokine release (IFN-γ and IL-10), and these effects were regulated by ERK and STAT3 phosphorylation level. Furthermore, AML-NK cells function displayed different response when the competitive MEK and STAT3 inhibitors applied respectively. Thus, we could conclude that the different dose of decitabine makes various effects on AML-NK cells function and receptors expression.
Collapse
Affiliation(s)
- Xiang Li
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Cai
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohui Wu
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institution of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Wang
- Institution of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Institution of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Unleashing the power of NK cells in anticancer immunotherapy. J Mol Med (Berl) 2021; 100:337-349. [PMID: 34374809 PMCID: PMC8843917 DOI: 10.1007/s00109-021-02120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Due to their physiological role in removing damaged cells, natural killer (NK) cells represent ideal candidates for cellular immunotherapy in the treatment of cancer. Thereby, the cytotoxicity of NK cells is regulated by signals on both, the NK cells as well as the targeted tumor cells, and the interplay and balance of these signals determine the killing capacity of NK cells. One promising avenue in cancer treatment is therefore the combination of NK cell therapy with agents that either help to increase the killing capacity of NK cells or sensitize tumor cells to an NK cell-mediated attack. In this mini-review, we present different strategies that can be explored to unleash the potential of NK cell immunotherapy. In particular, we summarize how modulation of apoptosis signaling within tumor cells can be exploited to sensitize tumor cells to NK cell-mediated cytotoxicity.
Collapse
|
8
|
Crinier A, Dumas PY, Escalière B, Piperoglou C, Gil L, Villacreces A, Vély F, Ivanovic Z, Milpied P, Narni-Mancinelli É, Vivier É. Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2021; 18:1290-1304. [PMID: 33239726 PMCID: PMC8093261 DOI: 10.1038/s41423-020-00574-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate.
Collapse
Affiliation(s)
- Adeline Crinier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Pierre-Yves Dumas
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Bertrand Escalière
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Laurine Gil
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Arnaud Villacreces
- Bordeaux University, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
| | - Frédéric Vély
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Zoran Ivanovic
- Institut National de la Santé et de la Recherche Médicale, U1035, Bordeaux, France
- Établissement Français du Sang Nouvelle Aquitaine, Bordeaux, France
| | - Pierre Milpied
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Émilie Narni-Mancinelli
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Éric Vivier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
| |
Collapse
|
9
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
10
|
Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther 2021; 21:523-534. [PMID: 33334180 DOI: 10.1080/14737140.2021.1865814] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Dysfunction of the immune system is a hallmark of cancer. Through increased understanding of the complex interactions between immunity and cancer, immunotherapy has emerged as a treatment modality for different types of cancer. Promising activity with immunotherapy has been reported in numerous malignancies, but challenges such as limited response rates and treatment resistance remain. Furthermore, outcomes with this therapeutic approach in hematologic malignancies are even more limited than in solid tumors. T-cell immunoglobulin domain and mucin domain 3 (TIM-3) has emerged as a potential immune checkpoint target in both solid tumors and hematologic malignancies. TIM-3 has been shown to promote immune tolerance, and overexpression of TIM-3 is associated with more aggressive or advanced disease and poor prognosis. AREAS COVERED This review examines what is currently known regarding the biology of TIM-3 and clinical implications of targeting TIM-3 in cancer. Particular focus is given to myeloid malignancies. EXPERT OPINION The targeting of TIM-3 is a promising therapeutic approach in cancers, including hematologic cancers such as myeloid malignancies which have not benefited much from current immunotherapeutic treatment approaches. We anticipate that with further clinical evaluation, TIM-3 blockade will emerge as an important treatment strategy in myeloid malignancies.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Rami S Komrokji
- Malignant Hematology Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Yasinska IM, Meyer NH, Schlichtner S, Hussain R, Siligardi G, Casely-Hayford M, Fiedler W, Wellbrock J, Desmet C, Calzolai L, Varani L, Berger SM, Raap U, Gibbs BF, Fasler-Kan E, Sumbayev VV. Ligand-Receptor Interactions of Galectin-9 and VISTA Suppress Human T Lymphocyte Cytotoxic Activity. Front Immunol 2020; 11:580557. [PMID: 33329552 PMCID: PMC7715031 DOI: 10.3389/fimmu.2020.580557] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML), a blood/bone marrow cancer, is a severe and often fatal malignancy. AML cells are capable of impairing the anti-cancer activities of cytotoxic lymphoid cells. This includes the inactivation of natural killer (NK) cells and killing of T lymphocytes. Here we report for the first time that V-domain Ig-containing suppressor of T cell activation (VISTA), a protein expressed by T cells, recognizes galectin-9 secreted by AML cells as a ligand. Importantly, we found that soluble VISTA released by AML cells enhances the effect of galectin-9, most likely by forming multiprotein complexes on the surface of T cells and possibly creating a molecular barrier. These events cause changes in the plasma membrane potential of T cells leading to activation of granzyme B inside cytotoxic T cells, resulting in apoptosis.
Collapse
Affiliation(s)
- Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | | | | | - Maxwell Casely-Hayford
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cloe Desmet
- European Commission Joint Research Centre, Ispra, Italy
| | | | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
12
|
Arvindam US, van Hauten PMM, Schirm D, Schaap N, Hobo W, Blazar BR, Vallera DA, Dolstra H, Felices M, Miller JS. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia 2020; 35:1586-1596. [PMID: 33097838 PMCID: PMC8189652 DOI: 10.1038/s41375-020-01065-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
The low five-year survival rate for patients with acute myeloid leukemia (AML), primarily caused due to disease relapse, emphasizes the need for better therapeutic strategies. Disease relapse is facilitated by leukemic stem cells (LSCs) that are resistant to standard chemotherapy and promote tumor growth. To target AML blasts and LSCs using Natural Killer (NK) cells, we have developed a trispecific killer engager (TriKE™) molecule containing a humanized anti-CD16 heavy chain camelid single domain antibody (sdAb) that activates NK cells, an IL-15 molecule that drives NK cell priming, expansion and survival, and a single-chain variable fragment (scFv) against human CLEC12A (CLEC12A TriKE). CLEC12A is a myeloid lineage antigen that is highly expressed by AML cells and LSCs, but not expressed by normal hematopoietic stem cells (HSCs), thus minimizing off-target toxicity. The CLEC12A TriKE induced robust NK cell specific proliferation, enhanced NK cell activation and killing of both AML cell lines and primary patient derived AML blasts in vitro while sparing healthy HSCs. Additionally, the CLEC12A TriKE was able to reduce tumor burden in pre-clinical mouse models. These findings highlight the clinical potential of the CLEC12A TriKE for the effective treatment of AML.
Collapse
Affiliation(s)
- Upasana Sunil Arvindam
- Division of Adult and Pediatric Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Paulien M M van Hauten
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dawn Schirm
- Division of Adult and Pediatric Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bruce R Blazar
- Division of Adult and Pediatric Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Daniel A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Harry Dolstra
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Felices
- Division of Adult and Pediatric Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Division of Adult and Pediatric Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Piccolomo A, Schifone CP, Strafella V, Specchia G, Musto P, Albano F. Immunomodulatory Drugs in Acute Myeloid Leukemia Treatment. Cancers (Basel) 2020; 12:cancers12092528. [PMID: 32899586 PMCID: PMC7573974 DOI: 10.3390/cancers12092528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are analogs of thalidomide. They have immunomodulatory, antiangiogenic and proapoptotic properties and exert a role in regulating the tumor microenvironment. Recently IMiDs have been investigated for their pleiotropic properties and their therapeutic applications in both solid tumors (melanoma, prostate carcinoma and differentiated thyroid cancer) and hematological malignancies. Nowadays, they are applied in de novo and relapsed/refractory multiple myeloma, in myelodysplastic syndrome, in del5q syndrome with specific use of lenalidomide and B-cell lymphoma. Several studies have been conducted in the last few years to explore IMiDs possible use in acute myeloid leukemia treatment. Here we report the mechanisms of action of IMiDs in acute myeloid leukemia and their potential future therapeutic application in this disease.
Collapse
Affiliation(s)
- Antonio Piccolomo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.P.); (C.P.S.); (V.S.); (P.M.)
| | - Claudia Pia Schifone
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.P.); (C.P.S.); (V.S.); (P.M.)
| | - Vanda Strafella
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.P.); (C.P.S.); (V.S.); (P.M.)
| | - Giorgina Specchia
- Former Full Professor of Hematology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.P.); (C.P.S.); (V.S.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.P.); (C.P.S.); (V.S.); (P.M.)
- Correspondence: ; Tel.: +39-080-5478031
| |
Collapse
|
14
|
Giuliani M, Poggi A. Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:1578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignanciesto block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
Affiliation(s)
- Massimo Giuliani
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy;
| |
Collapse
|
15
|
Damele L, Ottonello S, Mingari MC, Pietra G, Vitale C. Targeted Therapies: Friends or Foes for Patient's NK Cell-Mediated Tumor Immune-Surveillance? Cancers (Basel) 2020; 12:cancers12040774. [PMID: 32218226 PMCID: PMC7226262 DOI: 10.3390/cancers12040774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
In the last 20 years there has been a huge increase in the number of novel drugs for cancer treatment. Most of them exploit their ability to target specific oncogenic mutations in the tumors (targeted therapies–TT), while others target the immune-checkpoint inhibitor molecules (ICI) or the epigenetic DNA modifications. Among them, TT are the longest established drugs exploited against a wide spectrum of both solid and hematological tumors, often with reasonable costs and good efficacy as compared to other innovative therapies (i.e., ICI). Although they have greatly improved the treatment of cancer patients and their survival, patients often relapse or develop drug-resistance, leading to the impossibility to eradicate the disease. The outcome of TT has been often correlated with their ability to affect not only tumor cells, but also the repertoire of immune cells and their ability to interact with cancer cells. Thus, the possibility to create novel synergies among drugs an immunotherapy prompted scientists and physicians to deeply characterize the effects of TT on immune cells both by in-vitro and by ex-vivo analyses. In this context, NK cells may represent a key issue, since they have been shown to exert a potent anti-tumor activity, both against hematological malignancies and solid tumors. In the present review we will discuss most recent ex-vivo analyses that clarify the effect of TT treatment on patient’s NK cells comparing them with clinical outcome and previous in-vitro data.
Collapse
Affiliation(s)
- Laura Damele
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
| | - Selene Ottonello
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
| | - Maria Cristina Mingari
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Gabriella Pietra
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
| | - Chiara Vitale
- UO Immunologia IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (L.D.); (S.O.); (M.C.M.); (G.P.)
- Dipartimento Medicina Sperimentale (DIMES), Università degli Studi di Genova, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
16
|
Leufven E, Bruserud Ø. Immunosuppression and Immunotargeted Therapy in Acute Myeloid Leukemia - The Potential Use of Checkpoint Inhibitors in Combination with Other Treatments. Curr Med Chem 2019; 26:5244-5261. [PMID: 30907305 DOI: 10.2174/0929867326666190325095853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Immunotherapy by using checkpoint inhibitors is now tried in the treatment of several malignancies, including Acute Myeloid Leukemia (AML). The treatment is tried both as monotherapy and as a part of combined therapy. METHODS Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies of checkpoint inhibition; (ii) published articles describing the immunocompromised status of AML patients; and (iii) published studies of antileukemic immune reactivity and immunotherapy in AML. RESULTS Studies of monotherapy suggest that checkpoint inhibition has a modest antileukemic effect and complete hematological remissions are uncommon, whereas combination with conventional chemotherapy increases the antileukemic efficiency with acceptable toxicity. The experience with a combination of different checkpoint inhibitors is limited. Thalidomide derivatives are referred to as immunomodulatory drugs and seem to reverse leukemia-induced immunosuppression, but in addition, they have direct inhibitory effects on the AML cells. The combination of checkpoint targeting and thalidomide derivatives thus represents a strategy for dual immunotargeting together with a direct antileukemic effect. CONCLUSION Checkpoint inhibitors are now tried in AML. Experimental studies suggest that these inhibitors should be combined with immunomodulatory agents (i.e. thalidomide derivatives) and/or new targeted or conventional antileukemic treatment. Such combinations would allow dual immunotargeting (checkpoint inhibitor, immunomodulatory agents) together with a double/triple direct targeting of the leukemic cells.
Collapse
Affiliation(s)
- Eva Leufven
- Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5020 Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway
| |
Collapse
|
17
|
Yakymiv Y, Augeri S, Fissolo G, Peola S, Bracci C, Binaschi M, Bellarosa D, Pellacani A, Ferrero E, Ortolan E, Funaro A. CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. Cells 2019; 8:cells8121580. [PMID: 31817547 PMCID: PMC6952987 DOI: 10.3390/cells8121580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Human CD157/BST-1 and CD38 are dual receptor-enzymes derived by gene duplication that belong to the ADP ribosyl cyclase gene family. First identified over 30 years ago as Mo5 myeloid differentiation antigen and 10 years later as Bone Marrow Stromal Cell Antigen 1 (BST-1), CD157 proved not to be restricted to the myeloid compartment and to have a diversified functional repertoire ranging from immunity to cancer and metabolism. Despite being a NAD+-metabolizing ectoenzyme anchored to the cell surface through a glycosylphosphatidylinositol moiety, the functional significance of human CD157 as an enzyme remains unclear, while its receptor role emerged from its discovery and has been clearly delineated with the identification of its high affinity binding to fibronectin. The aim of this review is to provide an overview of the immunoregulatory functions of human CD157/BST-1 in physiological and pathological conditions. We then focus on CD157 expression in hematological tumors highlighting its emerging role in the interaction between acute myeloid leukemia and extracellular matrix proteins and its potential utility for monoclonal antibody targeted therapy in this disease.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/antagonists & inhibitors
- ADP-ribosyl Cyclase/chemistry
- ADP-ribosyl Cyclase/metabolism
- Adaptive Immunity
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Disease Susceptibility
- Enzyme Activation
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/metabolism
- Humans
- Immunity, Innate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Targeted Therapy
- Myeloid Cells/cytology
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Protein Conformation
- Structure-Activity Relationship
- Substrate Specificity
- Tissue Distribution
Collapse
Affiliation(s)
- Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Stefania Augeri
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Giulia Fissolo
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Silvia Peola
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Monica Binaschi
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | - Daniela Bellarosa
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | | | - Enza Ferrero
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
- Correspondence: ; Tel.: +39-011-6705988
| |
Collapse
|
18
|
Carlsten M, Järås M. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells. Front Immunol 2019; 10:2357. [PMID: 31681270 PMCID: PMC6797594 DOI: 10.3389/fimmu.2019.02357] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes involved in our defense against certain virus-infected and malignant cells. In contrast to T cells, NK cells elicit rapid anti-tumor responses based on signals from activating and inhibitory cell surface receptors. They also lyse target cells via antibody-dependent cellular cytotoxicity, a critical mode of action of several therapeutic antibodies used to treat cancer. A body of evidence shows that NK cells can exhibit potent anti-tumor activity against chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and myelodysplastic syndromes (MDS). However, disease-associated mechanisms often restrain the proper functions of endogenous NK cells, leading to inadequate tumor control and risk for disease progression. Although allogeneic NK cells can prevent leukemia relapse in certain settings of stem cell transplantation, not all patients are eligible for this type of therapy. Moreover, remissions induced by adoptively infused NK cells are only transient and require subsequent therapy to maintain durable responses. Hence, new strategies are needed to trigger full and durable anti-leukemia responses by NK cells in patients with myeloid malignancies. To achieve this, we need to better understand the interplay between the malignant cells, their microenvironment, and the NK cells. This review focuses on mechanisms that are involved in suppressing NK cells in patients with myeloid leukemia and MDS, and means to restore their full anti-tumor potential. It also discusses novel molecular targets and approaches, such as bi- and tri-specific antibodies and immune checkpoint inhibitors, to redirect and/or unleash the NK cells against the leukemic cells.
Collapse
Affiliation(s)
- Mattias Carlsten
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Järås
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Yoon S, Kim J, Kim SK, Baik B, Chi SM, Kim SY, Nam D. GScluster: network-weighted gene-set clustering analysis. BMC Genomics 2019; 20:352. [PMID: 31072324 PMCID: PMC6507172 DOI: 10.1186/s12864-019-5738-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. RESULTS Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. CONCLUSIONS Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Collapse
Affiliation(s)
- Sora Yoon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jinhwan Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seon-Kyu Kim
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Bukyung Baik
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sang-Mun Chi
- School of Computer Science and Engineering, Kyungsung University, Busan, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
20
|
Frazao A, Rethacker L, Messaoudene M, Avril MF, Toubert A, Dulphy N, Caignard A. NKG2D/NKG2-Ligand Pathway Offers New Opportunities in Cancer Treatment. Front Immunol 2019; 10:661. [PMID: 30984204 PMCID: PMC6449444 DOI: 10.3389/fimmu.2019.00661] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
The antitumor functions of NK cells are regulated by the integration of positive and negative signals triggered by numerous membrane receptors present on the NK cells themselves. Among the main activating receptors, NKG2D binds several stress-induced molecules on tumor targets. Engagement of NKG2D by its ligands (NKG2D-Ls) induces NK cell activation leading to production of cytokines and target cell lysis. These effects have therapeutic potential as NKG2D-Ls are widely expressed by solid tumors, whereas their expression in healthy cells is limited. Here, we describe the genetic and environmental factors regulating the NKG2D/NKG2D-L pathway in tumors. NKG2D-L expression is linked to cellular stress and cell proliferation, and has been associated with oncogenic mutations. Tumors have been found to alter their to NKG2D-L expression as they progress, which interferes with the antitumor function of the pathway. Nevertheless, this pathway could be advantageously exploited for cancer therapy. Various cancer treatments, including chemotherapy and targeted therapies, indirectly interfere with the cellular and soluble forms of NKG2D-Ls. In addition, NKG2D introduced into chimeric antigen receptors in T- and NK cells is a promising tumor immunotherapy approach.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Louise Rethacker
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Antoine Toubert
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department of Immunology and Histocompatibility, Paris, France
| | - Nicolas Dulphy
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department of Immunology and Histocompatibility, Paris, France
| | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
21
|
Božič J, Stoka V, Dolenc I. Glucosamine prevents polarization of cytotoxic granules in NK-92 cells by disturbing FOXO1/ERK/paxillin phosphorylation. PLoS One 2018; 13:e0200757. [PMID: 30016365 PMCID: PMC6049946 DOI: 10.1371/journal.pone.0200757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) is a naturally occurring derivative of glucose and an over-the-counter food additive. However, the mechanism underlying GlcN action on cells is unknown. In this study, we investigated the effect of GlcN on natural killer (NK) cells. We demonstrate that GlcN affects NK-92 cell cytotoxicity by altering the distribution of cathepsin C, a cysteine protease required for granzyme processing in cytotoxic granules. The relocation of cathepsin C due to GlcN was shown to be accompanied by a decrease in the intracellular enzyme activity and its extracellular secretion. Similarly, the relocation of endosomal aspartic cathepsin E was observed. Furthermore, we elucidated that repositioning of cathepsin C is a consequence of altered signaling pathways of cytotoxic granule movement. The inhibition of phosphorylation upstream and downstream of ERK by GlcN disturbed the polarized release of cytotoxic vesicles. Considerable changes in the ERK phosphorylation dynamics, but not in those of p38 kinase or JNK, were observed in the IL2-activated NK-92 cells. We found decreased phosphorylation of the transcription factor FOXO1 and simultaneous prolonged phosphorylation of ERK as well as its nuclear translocation. Additionally, a protein downstream of the ERK phosphorylation cascade, paxillin, was less phosphorylated, resulting in a diffuse distribution of cytotoxic granules. Taken together, our results suggest that dietary GlcN affects signaling pathway activation of NK-92 immune cells.
Collapse
Affiliation(s)
- Janja Božič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| | - Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
- * E-mail: (ID); (VS)
| |
Collapse
|
22
|
Le Roy A, Prébet T, Castellano R, Goubard A, Riccardi F, Fauriat C, Granjeaud S, Benyamine A, Castanier C, Orlanducci F, Ben Amara A, Pont F, Fournié JJ, Collette Y, Mege JL, Vey N, Olive D. Immunomodulatory Drugs Exert Anti-Leukemia Effects in Acute Myeloid Leukemia by Direct and Immunostimulatory Activities. Front Immunol 2018; 9:977. [PMID: 29780393 PMCID: PMC5945824 DOI: 10.3389/fimmu.2018.00977] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are anticancer drugs with immunomodulatory, anti-angiogenesis, anti-proliferative, and pro-apoptotic properties. IMiDs are currently used for the treatment of multiple myeloma, myelodysplastic syndrome, and B-cell lymphoma; however, little is known about efficacy in acute myeloid leukemia (AML). We proposed in this study to investigate the relevance of IMiDs therapy for AML treatment. We evaluated the effect of IMiDs on primary AML blasts (n = 24), and the impact in natural killer (NK) cell-mediated immunosurveillance of AML. Using primary AML cells and an immunodeficient mouse leukemia xenograft model, we showed that IMiDs induce AML cell death in vitro and impair leukemia progression in vivo. In addition, treatment of AML blasts with IMiDs resulted in enhanced allogeneic NK cell anti-leukemia reactivity. Treatment by pomalidomide of AML blasts enhanced lysis, degranulation, and cytokine production by primary allogeneic NK cells. Furthermore, the treatment with lenalidomide of patients with myeloid malignancies resulted in NK cell phenotypic changes similar to those observed in vitro. IMiDs increased CD56 and decreased NKp30, NKp46, and KIR2D expression on NK cells. Finally, AML blasts treatment with IMiDs induced phenotypic alterations including downregulation of HLA-class I. The effect of pomalidomide was not correlated with cereblon expression and A/G polymorphism in AML cells. Our data revealed, a yet unobserved, dual effects on AML affecting both AML survival and their sensitivity to NK immunotherapy using IMiDs. Our study encourages continuing investigation for the use of IMiDs in AML, especially in combination with conventional therapy or immunotherapy strategies.
Collapse
Affiliation(s)
- Aude Le Roy
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Thomas Prébet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, United States
| | - Rémy Castellano
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Armelle Goubard
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Riccardi
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- CiBi Platform, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Audrey Benyamine
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Céline Castanier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| | - Frédéric Pont
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM/Université Toulouse III Paul Sabatier/ERL5294 CNRS, Oncopole de Toulouse, Toulouse, France
| | - Yves Collette
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and infections (MEPHI), IHU Méditerranée Infection, Marseille, France
| | - Norbert Vey
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Hematology Department, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
23
|
Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol 2017; 96:1965-1982. [PMID: 29080982 DOI: 10.1007/s00277-017-3148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Recently, there has been remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML). The improved outcomes of AML can largely be attributed to advances in supportive care and hematopoietic cell transplantation as opposed to conventional chemotherapy. However, as the 5-year survival rate remains low due to a high incidence of relapse, novel and effective treatments are urgently needed. Increasing attention is focusing on identifying suitable immunotherapeutic strategies for AML. Here, we describe the immunological features, mechanisms of immune escape, and recent progress in immunotherapy for AML. Problems encountered in the clinic will also be discussed. Although current outcomes may be limited, ongoing preclinical or clinical efforts are aimed at improving immunotherapy modalities and designing novel therapies, such as vaccines, monoclonal antibody therapy, chimeric antibody receptor-engineered T cells (CAR-T), TCR-engineered T cells (TCR-T), and checkpoint inhibitors, which may provide promising and effective therapies with higher specificity and efficacy for AML.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Bonifant CL, Velasquez MP, Gottschalk S. Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opin Biol Ther 2017; 18:51-63. [PMID: 28945115 DOI: 10.1080/14712598.2018.1384463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Achieving better disease control in patients diagnosed with acute myeloid leukemia (AML) has proven challenging. Overall survival has been impacted by addressing treatment related mortality with focused supportive care measures. Despite this improvement, it remains difficult to induce durable leukemia remissions despite aggressive chemotherapeutic regimens. The addition of hematopoietic stem cell transplants (HSCT) has allowed further treatment intensification and provided the benefit of graft-versus-leukemia (GVL) effect. However, HSCT carries the risk of transplant related morbidities, particularly GVHD, and anti-tumor responsiveness is still suboptimal. Thus, there is a need for alternate therapies. Immunotherapy has the potential to address this need. Areas covered: Expert opinion: The elusiveness of an ideal surface antigen target together with an immunosuppressive leukemic microenvironment add to the already difficult challenge in developing AML-targeted immunotherapies. Though many hurdles remain, recent translational discovery and progressive clinical advances anticipate exciting future developments. AREAS COVERED This review highlights promises and challenges to immune-based therapies for AML. It aims to summarize immunotherapeutic strategies trialed in AML patients to date, inclusive of: antibodies, vaccines, and cellular therapy. It emphasizes those being used in the pediatric population, but also includes adult clinical trials and translational science that may ultimately extend to pediatric patients.
Collapse
Affiliation(s)
- Challice L Bonifant
- a Department of Pediatrics and Communicable Diseases , University of Michigan , Ann Arbor , MI , USA
| | - Mireya Paulina Velasquez
- b Department of Bone Marrow Transplantation and Cellular Therapy , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Stephen Gottschalk
- b Department of Bone Marrow Transplantation and Cellular Therapy , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
25
|
Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 2017; 8:24031-24044. [PMID: 28199990 PMCID: PMC5410361 DOI: 10.18632/oncotarget.15234] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells play a critical role against tumor cells in hematological malignancies. Their activating receptors are essential in tumor cell killing. In Multiple Myeloma (MM) patients, NK cell differentiation, activation and cytotoxic potential are strongly impaired leading to MM escape from immune surveillance in tissues and bone marrow. Mechanisms used by MM to affect NK cell functions are mediated by the release of soluble factors, the expression of activating and inhibitory NK cell ligands, and the expression of immune check-point inhibitors. Lenalidomide represents an efficient clinical approach in MM treatment to improve patients' survival. Lenalidomide does not only promotes tumor apoptosis, but also stimulates T and NK cells, thereby facilitating NK-mediated tumor recognition and killing. This occurs since Lenalidomide acts on several critical points: stimulates T cell proliferation and cytokine secretion; decreases the expression of the immune check-point inhibitor Programmed Death-1 (PD-1) on both T and NK cells in MM patients; decreases the expression of both PD-1 and PD-L1 on MM cells; promotes MM cell death and abrogates MM/stromal microenvironment cross-talk, a process known to promote the MM cell survival and proliferation. This leads to the inhibition of the negative signal induced by PD-1/PD-L1 axis on NK cells, restoring NK cell cytotoxic functions. Given the importance of an effective immune response to counteract the MM progression and the promising approaches using anti-PD-1/PD-L1 strategies, we will discuss in this review how Lenalidomide could represent an adequate approach to re-establish the recognition against MM by exhausted NK cell.
Collapse
|
26
|
Gonçalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, Varani L, Hussain R, Siligardi G, Ceccone G, Berger SM, Ushkaryov YA, Gibbs BF, Fasler-Kan E, Sumbayev VV. The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells. EBioMedicine 2017; 22:44-57. [PMID: 28750861 PMCID: PMC5552242 DOI: 10.1016/j.ebiom.2017.07.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe and often fatal systemic malignancy. Malignant cells are capable of escaping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a fundamental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1 and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of rapamycin)-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK) cells. Soluble Tim-3 prevents secretion of interleukin-2 (IL-2) required for the activation of cytotoxic lymphoid cells. These results were validated in ex vivo experiments using primary samples from AML patients. This pathway provides reliable targets for both highly specific diagnosis and immune therapy of AML.
Collapse
Affiliation(s)
| | - Inna M Yasinska
- School of Pharmacy, University of Kent, Chatham Maritime, UK
| | | | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Marco Bardelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI), Bellinzona, Switzerland
| | | | | | | | - Steffen M Berger
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern, Switzerland
| | | | - Bernhard F Gibbs
- School of Pharmacy, University of Kent, Chatham Maritime, UK; Department of Dermatology, University of Oldenburg, Germany.
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| | | |
Collapse
|
27
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
28
|
Messaoudene M, Frazao A, Gavlovsky PJ, Toubert A, Dulphy N, Caignard A. Patient's Natural Killer Cells in the Era of Targeted Therapies: Role for Tumor Killers. Front Immunol 2017; 8:683. [PMID: 28659921 PMCID: PMC5466965 DOI: 10.3389/fimmu.2017.00683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are potent antitumor effectors, involved in hematological malignancies and solid tumor immunosurveillance. They infiltrate various solid tumors, and their numbers are correlated with good outcome. The function of NK cells extends their lytic capacities toward tumor cells expressing stress-induced ligands, through secretion of immunoregulatory cytokines, and interactions with other immune cells. Altered NK cell function due to tumor immune escape is frequent in advanced tumors; however, strategies to release the function of NK infiltrating tumors are emerging. Recent therapies targeting specific oncogenic mutations improved the treatment of cancer patients, but patients often relapse. The actual development consists in combined therapeutic strategies including agents targeting the proliferation of tumor cells and others restorating functional antitumor immune effectors for efficient and durable efficacy of anticancer treatment. In that context, we discuss the recent results of the literature to propose hypotheses concerning the potential use of NK cells, potent antitumor cytotoxic effectors, to design novel antitumor strategies.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Pierre Jean Gavlovsky
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| |
Collapse
|
29
|
Rea D, Henry G, Khaznadar Z, Etienne G, Guilhot F, Nicolini F, Guilhot J, Rousselot P, Huguet F, Legros L, Gardembas M, Dubruille V, Guerci-Bresler A, Charbonnier A, Maloisel F, Ianotto JC, Villemagne B, Mahon FX, Moins-Teisserenc H, Dulphy N, Toubert A. Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study. Haematologica 2017; 102:1368-1377. [PMID: 28522576 PMCID: PMC6643734 DOI: 10.3324/haematol.2017.165001] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Despite persistence of leukemic stem cells, patients with chronic myeloid leukemia who achieve and maintain deep molecular responses may successfully stop the tyrosine kinase inhibitor imatinib. However, questions remain unanswered regarding the biological basis of molecular relapse after imatinib cessation. In IMMUNOSTIM, we monitored 51 patients from the French Stop IMatinib trial for peripheral blood T cells and natural killer cells. Molecular relapse-free survival at 24 months was 45.1% (95% CI: 31.44%–58.75%). At the time of imatinib discontinuation, non-relapsing patients had significantly higher numbers of natural killer cells of the cytotoxic CD56dim subset than had relapsing patients, while CD56bright natural killer cells, T cells and their subsets did not differ significantly. Furthermore, the CD56dim natural killer-cell count was an independent prognostic factor of molecular-relapse free survival in a multivariate analysis. However, expression of natural killer-cell activating receptors, BCR-ABL1+ leukemia cell line K562-specific degranulation and cytokine-induced interferon-gamma secretion were decreased in non-relapsing and relapsing patients as compared with healthy individuals. After imatinib cessation, the natural killer-cell count increased significantly and stayed higher in non-relapsing patients than in relapsing patients, while receptor expression and functional properties remained unchanged. Altogether, our results suggest that natural killer cells may play a role in controlling leukemia-initiating cells at the origin of relapse after imatinib cessation, provided that these cells are numerous enough to compensate for their functional defects. Further research will decipher mechanisms underlying functional differences between natural killer cells from patients and healthy individuals and evaluate the potential interest of immunostimulatory approaches in tyrosine kinase inhibitor discontinuation strategies. (ClinicalTrial.gov Identifier NCT00478985)
Collapse
Affiliation(s)
- Delphine Rea
- INSERM UMRS-1160, Paris, France .,Service d'Hématologie Adulte, Hôpital Saint-Louis, Paris, France.,France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France
| | - Guylaine Henry
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Zena Khaznadar
- INSERM UMRS-1160, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, France
| | - Gabriel Etienne
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - François Guilhot
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,INSERM CIC 1402, CHU de Poitiers, France
| | - Franck Nicolini
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie Clinique, CHU Lyon Sud, Pierre Bénite, France
| | - Joelle Guilhot
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,INSERM CIC 1402, CHU de Poitiers, France
| | - Philippe Rousselot
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie Oncologie et INSERM UMR-1173, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Françoise Huguet
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie, IUCT Oncopole, Toulouse, France
| | - Laurence Legros
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie Clinique, Hôpital de l'Archet, CHU de Nice, France
| | - Martine Gardembas
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service des Maladies du Sang, CHRU Angers, France
| | - Viviane Dubruille
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie Clinique, Hôpital Hôtel Dieu, Nantes, France
| | - Agnès Guerci-Bresler
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Hématologie, CHU Brabois, Vandoeuvre les Nancy, France
| | - Aude Charbonnier
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Onco-Hématologie, Institut Paoli Calmettes, Marseille, France
| | - Frédéric Maloisel
- Groupe Oncologie-Maladies du Sang, Clinique Sainte Anne, Strasbourg, France
| | | | - Bruno Villemagne
- Service Médecine Onco-hématologie, CH de la Roche sur Yon, France
| | - François-Xavier Mahon
- France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux, France.,Service d'Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Hélène Moins-Teisserenc
- INSERM UMRS-1160, Paris, France.,Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, France
| | - Nicolas Dulphy
- INSERM UMRS-1160, Paris, France .,Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, France
| | - Antoine Toubert
- INSERM UMRS-1160, Paris, France.,Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, France
| |
Collapse
|
30
|
Rey J, Fauriat C, Kochbati E, Orlanducci F, Charbonnier A, D'Incan E, Andre P, Romagne F, Barbarat B, Vey N, Olive D. Kinetics of Cytotoxic Lymphocytes Reconstitution after Induction Chemotherapy in Elderly AML Patients Reveals Progressive Recovery of Normal Phenotypic and Functional Features in NK Cells. Front Immunol 2017; 8:64. [PMID: 28210257 PMCID: PMC5288405 DOI: 10.3389/fimmu.2017.00064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
NK cells are defective in acute myeloid leukemia (AML) at diagnosis. Here, we studied the kinetic of expression of the major activating and inhibitory receptors of NK, CD8 T, and γδ T cells in patients undergoing chemotherapy (CT) for the treatment of AML (n = 29). We showed that NK cells are the main affected population at diagnosis and that expression of activating receptors is partially restored within a few weeks after CT. CD8 T cells and γδ T cells are only weakly affected at diagnosis. Killer cell immunoglobulin-like receptor expression by NK cells, but not NKG2A and CD85j, was downregulated. Interestingly, the development of NK cells appeared altered as the most immature CD56bright NK cells were seriously underrepresented. Finally, we showed that NK cell functions were only partially restored 6 weeks after CT as degranulation capabilities of NK cells recovered, whereas cytokine production remained low. Our data point out NK cells as antitumor effectors peculiarly hampered by leukemic cells. This study may indicate a timeline when NK-mediated therapies or other immunotherapies could be performed, particularly for patients excluded of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Jérôme Rey
- Département d'Hématologie, Institut Paoli-Calmettes, Marseille, France; Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France
| | - Cyril Fauriat
- Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | - Eloïse Kochbati
- Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | - Florence Orlanducci
- Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | - Aude Charbonnier
- Département d'Hématologie, Institut Paoli-Calmettes , Marseille , France
| | - Evelyne D'Incan
- Département d'Hématologie, Institut Paoli-Calmettes , Marseille , France
| | | | - François Romagne
- Innate-Pharma, Marseille, France; Mi-mAbs, Aix-Marseille Université, Marseille, France
| | - Bernadette Barbarat
- Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | - Norbert Vey
- Département d'Hématologie, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | - Daniel Olive
- Plateforme d'Immunomonitoring en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France; Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| |
Collapse
|
31
|
Alcasid M, Ma L, Gotlib JR, Arber DA, Ohgami RS. The clinicopathologic significance of lymphocyte subsets in acute myeloid leukemia. Int J Lab Hematol 2017; 39:129-136. [DOI: 10.1111/ijlh.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - L. Ma
- Stanford University; Stanford CA USA
| | | | | | | |
Collapse
|
32
|
Gonçalves Silva I, Rüegg L, Gibbs BF, Bardelli M, Fruehwirth A, Varani L, Berger SM, Fasler-Kan E, Sumbayev VV. The immune receptor Tim-3 acts as a trafficker in a Tim-3/galectin-9 autocrine loop in human myeloid leukemia cells. Oncoimmunology 2016; 5:e1195535. [PMID: 27622049 PMCID: PMC5006895 DOI: 10.1080/2162402x.2016.1195535] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/31/2023] Open
Abstract
The immune receptor Tim-3 is often highly expressed in human acute myeloid leukemia (AML) cells where it acts as a growth factor and inflammatory receptor. Recently, it has been demonstrated that Tim-3 forms an autocrine loop with its natural ligand galectin-9 in human AML cells. However, the pathophysiological functions of Tim-3 in human AML cells remain unclear. Here, we report for the first time that Tim-3 is required for galectin-9 secretion in human AML cells. However, this effect is cell-type specific and was found so far to be applicable only to myeloid (and not, for example, lymphoid) leukemia cells. We concluded that AML cells might use Tim-3 as a trafficker for the secretion of galectin-9 which can then be possibly used to impair the anticancer activities of cytotoxic T cells and natural killer (NK) cells.
Collapse
Affiliation(s)
| | - Laura Rüegg
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| | - Bernhard F Gibbs
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| | - Marco Bardelli
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera italiana (USI) , Bellinzona, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern , Bern, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery and Department of Clinical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- School of Pharmacy, University of Kent , Canterbury, United Kingdom
| |
Collapse
|
33
|
Kearney CJ, Ramsbottom KM, Voskoboinik I, Darcy PK, Oliaro J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncoimmunology 2016; 5:e1196308. [PMID: 27622064 DOI: 10.1080/2162402x.2016.1196308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with poor natural killer (NK) cell function through aberrant expression of NK-cell-activating receptors and their ligands on tumor cells. These alterations are thought to promote formation of inhibitory NK-target cell synapses, in which killer cell degranulation is attenuated. Allogeneic stem cell transplantation can be effective in treating AML, through restoration of NK cell lytic activity. Similarly, agents that augment NK-cell-activating signals within the immunological synapse may provide some therapeutic benefit. However, the receptor-ligand interactions that critically dictate NK cell function in AML remain undefined. Here, we demonstrate that CD112/CD155 expression is required for DNAM-1-dependent killing of AML cells. Indeed, the low, or absent, expression of CD112/CD155 on multiple AML cell lines resulted in failure to stimulate optimal NK cell function. Importantly, isolated clones with low CD112/155 expression were resistant to NK cell killing while those expressing abundant levels of CD112/155 were highly susceptible. Attenuated NK cell killing in the absence of CD112/CD155 originated from decreased NK-target cell conjugation. Furthermore, we reveal by time-lapse microscopy, a significant increase in NK cell 'failed killing' in the absence of DNAM-1 ligands. Consequently, NK cells preferentially lysed ligand-expressing cells within heterogeneous populations, driving clonal selection of CD112/CD155-negative blasts upon NK cell attack. Taken together, we identify reduced CD155 expression as a major NK cell escape mechanism in AML and an opportunity for targeted immunotherapy.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly M Ramsbottom
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center , East Melbourne, Victoria, Australia
| | - Ilia Voskoboinik
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Killer Cell Biology Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Immunotherapy Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jane Oliaro
- Immune Defense Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Shemesh A, Brusilovsky M, Hadad U, Teltsh O, Edri A, Rubin E, Campbell KS, Rosental B, Porgador A. Survival in acute myeloid leukemia is associated with NKp44 splice variants. Oncotarget 2016; 7:32933-45. [PMID: 27102296 PMCID: PMC5078064 DOI: 10.18632/oncotarget.8782] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022] Open
Abstract
NKp44 is a receptor encoded by the NCR2 gene, which is expressed by cytokine-activated natural killer (NK) cells that are involved in anti-AML immunity. NKp44 has three splice variants corresponding to NKp44ITIM+ (NKp44-1) and NKp44ITIM- (NKp44-2, and NKp44-3) isoforms. RNAseq data of AML patients revealed similar survival of NKp46+NKp44+ and NKp46+NKp44- patients. However, if grouped according to the NKp44 splice variant profile, NKp44-1 expression was significantly associated with poor survival of AML patients. Moreover, activation of PBMC from healthy controls showed co-dominant expression of NKp44-1 and NKp44-3, while primary NK clones show more diverse NKp44 splice variant profiles. Cultured primary NK cells resulted in NKp44-1 dominance and impaired function associated with PCNA over-expression by target cells. This impaired functional phenotype could be rescued by blocking of NKp44 receptor. Human NK cell lines revealed co-dominant expression of NKp44-1 and NKp44-3 and showed a functional phenotype that was not inhibited by PCNA over-expression. Furthermore, transfection-based overexpression of NKp44-1, but not NKp44-2/NKp44-3, reversed the endogenous resistance of NK-92 cells to PCNA-mediated inhibition, and resulted in poor formation of stable lytic immune synapses. This research contributes to the understanding of AML prognosis by shedding new light on the functional implications of differential splicing of NKp44.
Collapse
Affiliation(s)
- Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Teltsh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S. Campbell
- Immune Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine and the Hopkins Marine Station, Stanford, CA, USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
35
|
Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun 2016; 7:11154. [PMID: 27040177 PMCID: PMC4822012 DOI: 10.1038/ncomms11154] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. Natural killer cells of acute myeloid leukaemia patients lack cytotoxic activity. Here the authors show that these cells have elevated GSK3β, and that its inhibition prolongs survival of mice transplanted with human AML and stimulates NK cytotoxicity via increased adhesion of NK cells to their targets.
Collapse
|
36
|
Sanchez-Correa B, Campos C, Pera A, Bergua JM, Arcos MJ, Bañas H, Casado JG, Morgado S, Duran E, Solana R, Tarazona R. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies? Cancer Immunol Immunother 2016; 65:453-63. [PMID: 26059279 PMCID: PMC11029066 DOI: 10.1007/s00262-015-1720-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Several age-associated changes in natural killer (NK) cell phenotype have been reported that contribute to the defective NK cell response observed in elderly patients. A remodelling of the NK cell compartment occurs in the elderly with a reduction in the output of immature CD56(bright) cells and an accumulation of highly differentiated CD56(dim) NK cells. Acute myeloid leukaemia (AML) is generally a disease of older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML patients, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. The understanding of age-associated alterations in NK cells is therefore necessary to define adequate therapeutic strategies in older AML patients.
Collapse
Affiliation(s)
| | - Carmen Campos
- Department of Immunology, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Avenida Menendez Pidal s/n, 14004, Córdoba, Spain
| | - Alejandra Pera
- Department of Immunology, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Avenida Menendez Pidal s/n, 14004, Córdoba, Spain
| | - Juan M Bergua
- Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Maria Jose Arcos
- Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Helena Bañas
- Department of Hematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Javier G Casado
- Immunology Unit, University of Extremadura, Cáceres, Spain
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson, Cáceres, Spain
| | - Sara Morgado
- Immunology Unit, University of Extremadura, Cáceres, Spain
| | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Rafael Solana
- Department of Immunology, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Avenida Menendez Pidal s/n, 14004, Córdoba, Spain.
| | | |
Collapse
|
37
|
Dulphy N, Chrétien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, Caignard A, Chouaib S, Olive D, Toubert A. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Front Immunol 2016; 7:94. [PMID: 27014273 PMCID: PMC4783386 DOI: 10.3389/fimmu.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells.
Collapse
Affiliation(s)
- Nicolas Dulphy
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne-Sophie Chrétien
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Zena Khaznadar
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Fauriat
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | | | - Anne Caignard
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Antoine Toubert
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
38
|
Suerth JD, Morgan MA, Kloess S, Heckl D, Neudörfl C, Falk CS, Koehl U, Schambach A. Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors. J Mol Med (Berl) 2016; 94:83-93. [PMID: 26300042 DOI: 10.1007/s00109-015-1327-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Natural killer (NK) cells play an important role in tumor immunotherapy with their unique capability of killing transformed cells without the need for prior sensitization and without major histocompatibility complex (MHC)/peptide restriction. However, tumor cells can escape NK cell cytotoxicity by various tumor immune escape mechanisms. To overcome these escape mechanisms, NK cells can be modified to express chimeric antigen receptors (CARs), enhancing their tumor-specific cytotoxicity. To determine the most efficacious method to modify human NK cells, we compared different retroviral vector systems, retroviral pseudotypes, and transduction protocols. Using optimized transduction conditions, the highest transduction levels (up to 60%) were achieved with alpharetroviral vectors. Alpharetroviral-modified primary human NK cells exhibited no alteration in receptor expression and had similar degranulation activity as untransduced NK cells, thus demonstrating that alpharetroviral modification did not negatively affect NK cell cytotoxicity. Transduction of NK cells with an alpharetroviral vector containing a CD19 CAR expression cassette selectively enhanced NK cell cytotoxicity towards CD19-expressing leukemia cells, achieving nearly complete elimination of leukemia cells after 48 h. Taken together, alpharetroviral vectors are promising tools for NK cell-mediated cancer immunotherapy applications. KEY MESSAGES Efficient modification of human NK cells using alpharetroviral vectors. Anti-CD19-CAR-NK cells exhibited improved cytotoxicity towards CD19(+) leukemia cells. Alpharetroviral vectors are promising tools for immunotherapy applications using NK cells.
Collapse
MESH Headings
- Alpharetrovirus/genetics
- Antigens, CD19/genetics
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Green Fluorescent Proteins/genetics
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Leukemia/immunology
- Leukemia/therapy
- Receptors, Antigen/biosynthesis
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Transduction, Genetic/methods
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany
| | - Stephan Kloess
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, 30625, Hannover, Germany
| | - Dirk Heckl
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany
| | - Christine Neudörfl
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, 30625, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, 30625, Hannover, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, 30625, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Shen M, Linn YC, Ren EC. KIR-HLA profiling shows presence of higher frequencies of strong inhibitory KIR-ligands among prognostically poor risk AML patients. Immunogenetics 2015; 68:133-44. [PMID: 26649563 DOI: 10.1007/s00251-015-0888-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
The expression and interaction between killer cell immunoglobulin-like receptors (KIRs) and HLA are known to be associated with pathogenesis of diseases, including hematological malignancies. Presence of B haplotype KIR in donors is associated with a lower relapse risk for acute myeloid leukemia (AML) after hematopoietic stem cell transplants (HSCT). However, the association of KIR and HLA repertoire with disease development and other clinical features is not well studied for AML. In this study, 206 Chinese patients with AML were analyzed for their FAB subtypes, risk groups, and chemo-responsiveness to assess possible association with their KIR and HLA profile. The results revealed that a B-content score of 2 was significantly more prevalent in AML patients when compared to normal controls. Notably, there is also a differential frequency in the distribution of B haplotype KIR across distinct FAB subtypes, where the M3 subtype had significantly lower frequencies of B haplotype KIR compared to the M5 subtype (p < 0.05). In addition, the stronger inhibitory KIR ligands HLA-C2 and HLA-Bw4-80I were present in significantly higher frequencies in the prognostically "poor" risk group compared to those with "favourable" risk (p < 0.01). Taken together, these associations with clinical features of AML suggest a role of the KIR-HLA repertoire in the development and biological behavior of AML.
Collapse
Affiliation(s)
- Meixin Shen
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore
| | - Yeh-Ching Linn
- Department of Haematology, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore.
| | - Ee-Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore. .,Department of Microbiology, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| |
Collapse
|
40
|
Wang Y, Chen C, Dong F, Ma S, Xu J, Gong Y, Cheng H, Zhou Y, Cheng T, Hao S. NK cells play a significant role in immunosurveillance at the early stage of MLL-AF9 acute myeloid leukemia via CD226/CD155 interactions. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1288-98. [DOI: 10.1007/s11427-015-4968-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022]
|
41
|
Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, Chouaib S. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Front Immunol 2015; 6:482. [PMID: 26441986 PMCID: PMC4585210 DOI: 10.3389/fimmu.2015.00482] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Linda Ziani
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jerome Thiery
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jean-Henri Bouhris
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France ; Department of Hematology and Bone Marrow Transplantation, Gustave Roussy Campus , Villejuif , France
| | - Muhammad Zaeem Noman
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| |
Collapse
|
42
|
Khaznadar Z, Boissel N, Agaugué S, Henry G, Cheok M, Vignon M, Geromin D, Cayuela JM, Castaigne S, Pautas C, Raffoux E, Lachuer J, Sigaux F, Preudhomme C, Dombret H, Dulphy N, Toubert A. Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2580-90. [PMID: 26246143 DOI: 10.4049/jimmunol.1500262] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/08/2015] [Indexed: 01/29/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies that may be sensitive to the NK cell antitumor response. However, NK cells are frequently defective in AML. In this study, we found in an exploratory cohort (n = 46) that NK cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK cell profile, including reduced expression of some activating NK receptors (e.g., DNAX accessory molecule-1, NKp46, and NKG2D) and decreased IFN-γ production, had a significantly higher risk of relapse (p = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g., IL15, IFNGR1, IFNGR2, and CXCR4), Ag processing (e.g., HLA-DRA, HLA-DRB1, and CD74) and adhesion molecule pathways (e.g., PVR and ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/immunology
- Cell Adhesion Molecules/immunology
- Cytotoxicity, Immunologic/immunology
- Female
- HLA-DR alpha-Chains/immunology
- HLA-DRB1 Chains/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interleukin-15/biosynthesis
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Male
- Middle Aged
- Receptors, CXCR4/biosynthesis
- Receptors, Interferon/biosynthesis
- Receptors, Natural Killer Cell/metabolism
- Sialyltransferases/immunology
- Tumor Escape/genetics
- Tumor Escape/immunology
- Young Adult
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Zena Khaznadar
- INSERM, Unité Mixte de Recherche-S1160, 75010 Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Nicolas Boissel
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Service d'Hématologie Adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, EA3518, 75010 Paris, France
| | - Sophie Agaugué
- INSERM, Unité Mixte de Recherche-S1160, 75010 Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Guylaine Henry
- Laboratoire d'Immunologie et Histocompatibilité, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Meyling Cheok
- INSERM, Unité Mixte de Recherche-S1172, 59045 Lille, France; Laboratoire d'Hématologie, Centre de Biologie-Pathologie Centre Hospitalier Régional Universitaire Lille, Université de Lille, 59000 Lille, France
| | - Marguerite Vignon
- INSERM, Unité Mixte de Recherche-S1160, 75010 Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Daniela Geromin
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Laboratoire d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France; Tumorothèque, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Michel Cayuela
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Laboratoire d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France; Tumorothèque, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France
| | - Sylvie Castaigne
- Université de Versailles-Saint Quentin, 78000 Versailles, France
| | - Cécile Pautas
- Université Paris-Est Créteil, 94000 Créteil, France; Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, 94000 Créteil, France
| | - Emmanuel Raffoux
- Service d'Hématologie Adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, EA3518, 75010 Paris, France
| | - Joel Lachuer
- INSERM, Unité Mixte de Recherche-S1052, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; Centre National pour la Recherche Scientifique, Unité Mixte de Recherche-5286, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; Université Unité Mixte de Recherche-S1052, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; Université de Lyon, 69000 Lyon, France; and ProfileXpert, 69008 Lyon, France
| | - François Sigaux
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Claude Preudhomme
- INSERM, Unité Mixte de Recherche-S1172, 59045 Lille, France; Laboratoire d'Hématologie, Centre de Biologie-Pathologie Centre Hospitalier Régional Universitaire Lille, Université de Lille, 59000 Lille, France
| | - Hervé Dombret
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Service d'Hématologie Adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, EA3518, 75010 Paris, France
| | - Nicolas Dulphy
- INSERM, Unité Mixte de Recherche-S1160, 75010 Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| | - Antoine Toubert
- INSERM, Unité Mixte de Recherche-S1160, 75010 Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| |
Collapse
|
43
|
Driss V, Quesnel B, Brinster C. Monocyte chemoattractant protein 1 (MCP-1/CCL2) contributes to thymus atrophy in acute myeloid leukemia. Eur J Immunol 2014; 45:396-406. [PMID: 25382729 DOI: 10.1002/eji.201444736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022]
Abstract
Recent studies on acute myelogenous leukemia (AML) patients have revealed the existence of T-cell immunodeficiencies, characterized by peripheral T lymphocytes that are unable to interact with blasts, reduced thymic emigrants and oligoclonal restricted repertoires. These observations suggest that there is a profound thymic dysregulation, which is difficult to study in AML patients. Using the C1498 AML mouse model, we demonstrated that leukemia development was associated with thymus atrophy, which was defined by abnormal organ weight and reduced cellularity. In addition, we observed a dramatic loss of peripheral CD4(+) and CD8(+) T-cell numbers with increased frequencies of CD4(+) FoxP3(+) regulatory and activated/memory T cells. Investigating the mechanisms leading to this atrophy, we observed a significant accumulation of the monocyte chemoattractant protein 1 (MCP-1/CCL2) in thymi of leukemic mice. Treatment of AML-bearing animals with a blocking anti-CCL2 antibody revealed a lower tumor burden, augmented antileukemic T-cell responses, and improved survival rate compared to nontreated mice. These results were not observed when neutralization of CCL2 was performed in thymectomized mice. Altogether, we show that the CCL2 protein participates in thymic atrophy in AML mice, and this could have important implications for future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Virginie Driss
- Institut pour la Recherche sur le Cancer de Lille (IRCL), INSERM U.837, Lille Cedex, France
| | | | | |
Collapse
|