1
|
Lin Y, Feng H, Wang Y, Liu S, Hu P, Wang J, Cao H. The E3 ubiquitin ligase RNF182 regulates the induction of innate immune response against GCRV by mediating the ubiquitination of RIG-I in grass carp (Ctenopharyngodon idella) and rare minnow (Gobiocypris rarus). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110244. [PMID: 40049566 DOI: 10.1016/j.fsi.2025.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Innate immunity is the first line of antiviral or antimicrobial defence for the host. A cytoplasmic viral RNA sensor, which is known as retinoic acid-inducible gene 1 (RIG-I), makes a vital impact on the production of type I interferons (IFN) and eliminating RNA virus. This study indicated that E3 ubiquitin ligase RING finger protein 182 (RNF182) inhibited the antiviral activity of type I IFN in grass carp reovirus (GCRV)-infected cells by directly interplaying with RIG-I. The CiE3RNF182 cDNA encode a polypeptide of 158 amino acids. Cellular distribution analysis results suggested that cytoplasm was the main site of CiE3RNF182 location. Real-time quantitative PCR showed universal expression of CiE3RNF182 in all investigated tissues, with extremely high expression in liver. During virus infection, the CiE3RNF182 associates with the CiRIG-I and then induces the Lys-33-linked ubiquitin to the Lys33 residues of CiRIG-I to trigger its degradation, causing the inhibition of CiRIG-I downstream signalling. Furthermore, we obtained CRISPR/Cas9-mediated generation of E3RNF182-null rare minnows, finding that E3RNF182 deletion facilitates the survival ratio of GCRV-infected rare minnows. Additionally, the E3RNF182-/- rare minnows exhibited significantly lower relative copy number of GCRV compared to the wild-type group. In summary, our findings demonstrate the function of E3 ligase in controlling the anti-GCRV innate immunity through RIG-I in fish.
Collapse
Affiliation(s)
- Yusheng Lin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohao Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxuan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuai Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Pengcheng Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Li M, Zhao Y, Zhang J, Jiang W, Peng S, Hu J, Shen Y. Deubiquitinase USP14 is upregulated in Crohn's disease and inhibits the NOD2 pathway mediated inflammatory response in vitro. Eur J Histochem 2024; 68:4101. [PMID: 39252535 PMCID: PMC11445697 DOI: 10.4081/ejh.2024.4101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The nucleotide binding oligomerization domain containing 2 (NOD2) protein and its ligand N-acetyl muramyl dipeptide (MDP) are crucially involved in Crohn's disease (CD). However, the mechanism by which NOD2 signaling is regulated in CD patients remains unclear. Ubiquitin specific protease (USP14) is a deubiquitylase that plays an important role in immunity. This study aimed to investigate the mechanism by which UPS14 regulates NOD2 induced inflammatory response in CD and inflammatory bowel diseases (IBD). Our results showed that USP14 protein and mRNA levels in intestinal tissues of CD patients were significantly higher than those in healthy controls. In addition, USP14 was upregulated in IBD mouse model. While treatment with MDP, TNF-α or the Toll-like receptor 1/2 agonist Pam3CSK4 all led to significantly higher mRNA levels of TNF-α, IL-8 and IL-1β in THP-1 cells, pretreatment with USP14 inhibitor IU1 could stimulate further upregulation of TNF-α, IL-8 and IL-1β. In particular, MDP promoted the activation of JNK, ERK1/2 and p38 as well as NF-kB in THP-1 cells, and IU1 significantly enhanced the MDP-induced activation of these proteins without effects on USP14 protein level. Furthermore, the JNK inhibitor sp600125, ERK1/2 inhibitor U0126 or P38 MAPK inhibitor PD169316 significantly decreased the mRNA levels of TNF-α, IL-8 and IL-1β in THP-1 cells stimulated by both IU1 and MDP. In conclusion, our findings suggest that USP14 could inhibit MDP-induced activation of MAPK signaling and the inflammation response involved in IBD, and that USP14 is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Mengling Li
- Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Yan Zhao
- Department of Pathology, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Jiayi Zhang
- Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Wang Jiang
- Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Siyuan Peng
- Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| | - Yueming Shen
- Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, Changsha, Hunan.
| |
Collapse
|
3
|
Cui L, Yang L, Lai B, Luo L, Deng H, Chen Z, Wang Z. Integrative and comprehensive pan-cancer analysis of ubiquitin specific peptidase 11 ( USP11) as a prognostic and immunological biomarker. Heliyon 2024; 10:e34523. [PMID: 39114046 PMCID: PMC11305246 DOI: 10.1016/j.heliyon.2024.e34523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.
Collapse
Affiliation(s)
- Lijuan Cui
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Ling Yang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Boan Lai
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Lingzhi Luo
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Haoyue Deng
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zhongyi Chen
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zixing Wang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| |
Collapse
|
4
|
Wang J, Dong Y, Zheng X, Ma H, Huang M, Fu D, Liu J, Yin Q. Host Factors Modulate Virus-Induced IFN Production via Pattern Recognition Receptors. J Inflamm Res 2024; 17:3737-3752. [PMID: 38882189 PMCID: PMC11180453 DOI: 10.2147/jir.s455035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Innate immunity is the first line of defense in the human body, and it plays an important role in defending against viral infection. Viruses are identified by different pattern-recognition receptors (PRRs) that activate the mitochondrial antiviral signaling protein (MAVS) or transmembrane protein 173 (STING), which trigger multiple signaling cascades that cause nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) to produce inflammatory factors and interferons (IFNs). PRRs play a pivotal role as the first step in pathogen induction of interferon production. Interferon elicits antiviral activity by inducing the transcription of hundreds of IFN-stimulated genes (ISGs) via the janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway. An increasing number of studies have shown that environmental, pathogen and host factors regulate the IFN signaling pathway. Here, we summarize the mechanisms of host factor modulation in IFN production via pattern recognition receptors. These regulatory mechanisms maintain interferon levels in a normal state and clear viruses without inducing autoimmune disease.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Mengjiao Huang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Dongliao Fu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jiangbo Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
5
|
Rong Q, Xi Z, Guo D, Xu W, Zhang L, Wu Q. Regulation of ubiquitination and antiviral activity of Cactin by deubiquitinase Usp14 in Drosophila. J Virol 2024; 98:e0017724. [PMID: 38563731 PMCID: PMC11092352 DOI: 10.1128/jvi.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Zhichong Xi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyang Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Liqin Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Chen J, Zhao Y, Wang X, Zang L, Yin D, Tan S. Hyperoside Inhibits RNF8-mediated Nuclear Translocation of β-catenin to Repress PD-L1 Expression and Prostate Cancer. Anticancer Agents Med Chem 2024; 24:464-476. [PMID: 38305391 DOI: 10.2174/0118715206289246240110044931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hyperoside is a flavonol glycoside isolated from Hypericum perforatum L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms in vitro and in vivo. AIM This study aimed to explore the mechanism of hyperoside in anti-PCa. METHODS 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside. RESULTS Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of β-catenin and disrupted the Wnt/β-catenin pathway, which reduced the expression of the target genes c-myc, cyclin D1, and programmed death ligand 1 (PD-L1). Decreased PD-L1 levels contributed to induced immunity in Jurkat cells in vitro. Finally, in vivo studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model. CONCLUSION Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of β-catenin, and disrupting the Wnt/β-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yi Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Long Zang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
7
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
8
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Wang S, Li Z, Chen Y, Gao S, Qiao J, Liu H, Song H, Ao D, Sun X. ARIH1 inhibits influenza A virus replication and facilitates RIG-I dependent immune signaling by interacting with SQSTM1/p62. Virol J 2023; 20:58. [PMID: 37005687 PMCID: PMC10066941 DOI: 10.1186/s12985-023-02022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Multiple host factors are involved in modulating type I interferon expression induced by viruses; however, the mechanism is not fully elucidated. Influenza A virus infection causes severe respiratory symptoms and triggers a series of signaling cascades and host innate immune responses, including interferon production. The co-IP/MS technology was used to screen several antiviral factors in the early stage. Among these factors, ariadne-1 homolog (ARIH1) caught our attention. METHODS Western blot assay was performed to detect the level of proteins and software ImageJ was used to analyze the band intensities. Polymerase activity assay was conducted to evaluate the polymerase activity of influenza A virus. Tissue culture infective dose (TCID50) assay was performed to measure influenza A virus titers, and quantitative RT-PCR assay was applied to test the mRNA level of IFN-β, ISG56, and CXCL10. Luciferase reporter assay was used to confirm the target of ARIH1 in RIG-I signaling. Immunoprecipitation assay was performed to detect the interaction and the ubiquitination of the proteins. All data were analyzed by biostatistical methods and presented as means ± standard deviation from three independent experiments. Statistical significance was determined using two-tailed student's t test. A P value of less than 0.05 was considered statistically significant, and a P value of less than 0.01 was considered highly significant (ns, P ≥ 0.05; *, P < 0.05; and **, P < 0.01). RESULTS We found that ARIH1, a member of E3 ubiquitin ligases, enhanced cellular antiviral responses. Subsequent study showed that ARIH1 was up-regulated during influenza A virus infection. Further analysis showed that ARIH1 enhanced IFN-β and downstream gene expression by affecting the degradation of RIG-I through the SQSTM1/p62 signaling pathway. CONCLUSION This newly revealed mechanism shows that cellular response increases of ARIH1 and promotes IFN-β expression to boost host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- Key Laboratory of Infectious Disease and Biosafety, Provincial Department of Education, Guizhou, Institute of Life Sciences/ College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Zhenrong Li
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yaping Chen
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Sanli Gao
- Key Laboratory of Infectious Disease and Biosafety, Provincial Department of Education, Guizhou, Institute of Life Sciences/ College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Junhua Qiao
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Haoru Liu
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Hong Song
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Dishu Ao
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Xin Sun
- Key Laboratory of Infectious Disease and Biosafety, Provincial Department of Education, Guizhou, Institute of Life Sciences/ College of Preclinical Medicine, Zunyi Medical University, Zunyi, China.
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Inhibition of USP14 Suppresses ROS-dependent Ferroptosis and Alleviates Renal Ischemia/Reperfusion Injury. Cell Biochem Biophys 2023; 81:87-96. [PMID: 36255562 DOI: 10.1007/s12013-022-01107-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
Abstract
The ubiquitin-specific protease 14 (USP14) is a deubiquitinating enzyme, its inhibitor was reported could alleviate the ischemia/reperfusion (I/R)-stimulated cerebral neuronal damage. However, its specific role in I/R-induced acute kidney injury (AKI) remains unclear. We established hypoxia/reoxygenation (H/R)-induced HK-2 cell injury model in vitro and I/R-induced kidney injury mice model in vivo. The expression or activity of USP14 was inhibited by siRNA or IU1, a small molecule inhibitor of USP14. ROS were scavenged by N-acetyl-cysteine (NAC). Biochemical index analysis and hematoxylin & eosin (H&E) staining were performed to evaluate renal injury. The results indicated that USP14 was upregulated in H/R-induced HK-2 cells and kidney tissues of I/R mice. Inhibition of USP14 suppressed the cell death, inflammatory, oxidative stress and reactive oxygen species (ROS)-dependent ferroptosis of H/R-induced HK-2 cells. What's more, IU1 and NAC effectively alleviated renal injury of I/R mice. In summary, this study suggested that inhibition of USP14 protected renal from I/R injury.
Collapse
|
12
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Villamayor L, Rivero V, López-García D, Topham DJ, Martínez-Sobrido L, Nogales A, DeDiego ML. Interferon alpha inducible protein 6 is a negative regulator of innate immune responses by modulating RIG-I activation. Front Immunol 2023; 14:1105309. [PMID: 36793726 PMCID: PMC9923010 DOI: 10.3389/fimmu.2023.1105309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Interferons (IFNs), IFN-stimulated genes (ISGs), and inflammatory cytokines mediate innate immune responses, and are essential to establish an antiviral response. Within the innate immune responses, retinoic acid-inducible gene I (RIG-I) is a key sensor of virus infections, mediating the transcriptional induction of IFNs and inflammatory proteins. Nevertheless, since excessive responses could be detrimental to the host, these responses need to be tightly regulated. In this work, we describe, for the first time, how knocking-down or knocking-out the expression of IFN alpha-inducible protein 6 (IFI6) increases IFN, ISG, and pro-inflammatory cytokine expression after the infections with Influenza A Virus (IAV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Sendai Virus (SeV), or poly(I:C) transfection. We also show how overexpression of IFI6 produces the opposite effect, in vitro and in vivo, indicating that IFI6 negatively modulates the induction of innate immune responses. Knocking-out or knocking-down the expression of IFI6 diminishes the production of infectious IAV and SARS-CoV-2, most likely because of its effect on antiviral responses. Importantly, we report a novel interaction of IFI6 with RIG-I, most likely mediated through binding to RNA, that affects RIG-I activation, providing a molecular mechanism for the effect of IFI6 on negatively regulating innate immunity. Remarkably, these new functions of IFI6 could be targeted to treat diseases associated with an exacerbated induction of innate immune responses and to combat viral infections, such as IAV and SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Villamayor
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Vanessa Rivero
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Darío López-García
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain,*Correspondence: Marta L. DeDiego,
| |
Collapse
|
14
|
Du XH, Ke SB, Liang XY, Gao J, Xie XX, Qi LZ, Liu XY, Xu GY, Zhang XD, Du RL, Li SZ. USP14 promotes colorectal cancer progression by targeting JNK for stabilization. Cell Death Dis 2023; 14:56. [PMID: 36693850 PMCID: PMC9873792 DOI: 10.1038/s41419-023-05579-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.
Collapse
Affiliation(s)
- Xue-Hua Du
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Xiao Xie
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guo-Yuan Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, China.
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
15
|
Blockade of USP14 potentiates type I interferon signaling and radiation-induced antitumor immunity via preventing IRF3 deubiquitination. Cell Oncol (Dordr) 2022; 45:1347-1361. [PMID: 36205846 DOI: 10.1007/s13402-022-00724-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The adaptive immune responses induced by radiotherapy has been demonstrated to largely rely on STING-dependent type I interferons (IFNs) production. However, irradiated tumor cells often fail to induce dendritic cells (DCs) to produce type I IFNs. Hence, we aim to uncover the limitation of STING-mediated innate immune sensing following radiation, and identify efficient reagents capable to rescue the failure of type I IFNs induction for facilitating radiotherapy. METHODS A targeted cell-based phenotypic screening was performed to search for active molecules that could elevate the production of type I IFNs. USP14 knockout or inhibition was assayed for IFN production and the activation of STING signaling in vitro. The mechanisms of USP14 were investigated by western blot and co-immunoprecipitation in vitro. Additionally, combinational treatments with PT33 and radiation in vivo and in vitro models were performed to evaluate type I IFNs responses to radiation. RESULTS PT33 was identified as an enhancer of STING agonist elicited type I IFNs production to generate an elevated and durable STING activation profile in vitro. Mechanistically, USP14 inhibition or deletion impairs the deubiquitylation of K63-linked IRF3. Furthermore, blockade of USP14 with PT33 enhances DC sensing of irradiated-tumor cells in vitro, and synergizes with radiation to promote systemic antitumor immunity in vivo. CONCLUSION Our findings reveal that USP14 is one of the major IFN production suppressors and impairs the activation of IRF3 by removing the K63-linked ubiquitination of IRF3. Therefore, blockage of USP14 results in the gain of STING signaling activation and radiation-induced adaptive immune responses.
Collapse
|
16
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
17
|
Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, Li Y, Li F, Zhang C, Zhang D, Zhang H, Huang H, Chen X, Wang YA, Lin C, Liu G, Song L, Liao W. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun 2022; 13:5644. [PMID: 36163134 PMCID: PMC9513055 DOI: 10.1038/s41467-022-33285-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Indoleamine 2,3 dioxygenase 1 (IDO1) is an attractive target for cancer immunotherapy. However, IDO1 inhibitors have shown disappointing therapeutic efficacy in clinical trials, mainly because of the activation of the aryl hydrocarbon receptor (AhR). Here, we show a post-transcriptional regulatory mechanism of IDO1 regulated by a proteasome-associated deubiquitinating enzyme, USP14, in colorectal cancer (CRC). Overexpression of USP14 promotes tryptophan metabolism and T-cell dysfunction by stabilizing the IDO1 protein. Knockdown of USP14 or pharmacological targeting of USP14 decreases IDO1 expression, reverses suppression of cytotoxic T cells, and increases responsiveness to anti-PD-1 in a MC38 syngeneic mouse model. Importantly, suppression of USP14 has no effects on AhR activation induced by the IDO1 inhibitor. These findings highlight a relevant role of USP14 in post-translational regulation of IDO1 and in the suppression of antitumor immunity, suggesting that inhibition of USP14 may represent a promising strategy for CRC immunotherapy.
Collapse
Affiliation(s)
- Dongni Shi
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Xianqiu Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yunting Jian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Chengmei Huang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Shuang Mo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Yue Li
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Fengtian Li
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Chao Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Huizhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Huilin Huang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, 511436, Guangzhou, China
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202-3082, USA
| | - Chuyong Lin
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Libing Song
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, 511436, Guangzhou, China.
| | - Wenting Liao
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, China.
| |
Collapse
|
18
|
Xiao Y, Chen X, Wang Z, Quan J, Zhao X, Tang H, Wu H, Di Q, Wu Z, Chen W. Succinate Is a Natural Suppressor of Antiviral Immune Response by Targeting MAVS. Front Immunol 2022; 13:816378. [PMID: 35309330 PMCID: PMC8924363 DOI: 10.3389/fimmu.2022.816378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Succinate is at the crossroads of multiple metabolic pathways and plays a role in several immune responses acting as an inflammation signal. However, whether succinate regulates antiviral immune response remains unclear. Here, we found that the production of succinate was reduced in RAW264.7 cells during vesicular stomatitis virus (VSV) infection. Using diethyl succinate to pretreat the mouse peritoneal macrophages and RAW264.7 cells before VSV infection, the production of interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL-10), and IFN-stimulated genes 15 (ISG15) was significantly decreased, following which the VSV replication in diethyl succinate-pretreated cells was obviously increased. Moreover, succinate decreased the expression of IFN-β in serum, lung, and spleen derived from the VSV-infected mice. The overall survival rate in the VSV-infected mice with diethyl succinate pretreatment was also remarkably downregulated. Furthermore, we identified that succinate inhibited the activation of MAVS-TBK1-IRF3 signaling by suppressing the formation of MAVS aggregates. Our findings provide previously unrecognized roles of succinate in antiviral immune response and establish a novel link between metabolism and innate immune response.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xinyi Chen
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhun Wang
- Technological Center, Changchun Customs, Changchun, China
| | - Jiazheng Quan
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xibao Zhao
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Haimei Tang
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Han Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qianqian Di
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zherui Wu
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Weilin Chen
- Department of Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
20
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
21
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Wang Q, Zhang Q, Zheng M, Wen J, Li Q, Zhao G. Viral-Host Interactome Analysis Reveals Chicken STAU2 Interacts With Non-structural Protein 1 and Promotes the Replication of H5N1 Avian Influenza Virus. Front Immunol 2021; 12:590679. [PMID: 33968009 PMCID: PMC8098808 DOI: 10.3389/fimmu.2021.590679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
As a highly pathogenic influenza virus, H5N1 avian influenza virus (AIV) poses a great threat to poultry production and public health. H5N1 AIV has a small genome and, therefore, relies heavily on its host cellular machinery to replicate. To develop a comprehensive understanding of how H5N1 AIV rewires host cellular machinery during the course of infection, it is crucial to identify which host proteins and complexes come into physical contact with the viral proteins. Here, we utilized affinity purification mass spectrometry (AP-MS) to systematically determine the physical interactions of 11 H5N1 AIV proteins with host proteins in chicken DF1 cells. We identified with high confidence 1,043 H5N1 AIV–chicken interactions involving 621 individual chicken proteins and uncovered a number of host proteins and complexes that were targeted by the viral proteins. Specifically, we revealed that chicken Staufen double-stranded RNA-binding protein 2 interacts with AIV non-structural protein 1 (NS1) and promotes the replication of the virus by enhancing the nuclear export of NS1 mRNA. This dataset facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of H5N1 AIV infection.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
24
|
Chen XY, Liang R, Yi YC, Fan HN, Chen M, Zhang J, Zhu JS. The m 6A Reader YTHDF1 Facilitates the Tumorigenesis and Metastasis of Gastric Cancer via USP14 Translation in an m 6A-Dependent Manner. Front Cell Dev Biol 2021; 9:647702. [PMID: 33791305 PMCID: PMC8006284 DOI: 10.3389/fcell.2021.647702] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Objectives N6-methyladenosine (m6A) RNA methylation is implicated in the progression of multiple cancers via influencing mRNA modification. YTHDF1 can act as an oncogene in gastric cancer (GC), while the biological mechanisms via which YTHDF1 regulates gastric tumorigenesis through m6A modification remain largely unknown. Methods GEO and TCGA cohorts were analyzed for differentially expressed m6A modification components in GC clinical specimens and their association with clinical prognosis. Transwell and flow cytometry assays as well as subcutaneous xenograft and lung metastasis models were used to evaluate the phenotype of YTHDF1 in GC. Intersection of RNA/MeRIP-seq, luciferase assay, RIP-PCR, RNA pull-down and MeRIP-PCR was used to identify YTHDF1- modified USP14 and its m6A levels in GC cells. Results High-expressed YTHDF1 was found in GC tissues and was related to poor prognosis, acting as an independent prognostic factor of poor survival in GC patients. YTHDF1 deficiency inhibited cell proliferation and invasion (in vitro), and gastric tumorigenesis and lung metastasis (in vivo) and also induced cell apoptosis. Intersection assays revealed that YTHDF1 promoted USP14 protein translation in an m6A-dependent manner. USP14 upregulation was positively correlated with YTHDF1 expression and indicated a poor prognosis in GC. Conclusion Our data suggested that m6A reader YTHDF1 facilitated tumorigenesis and metastasis of GC by promoting USP14 protein translation in an m6A-dependent manner and might provide a potential target for GC treatment.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Cai Yi
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
26
|
Li H, Quan J, Zhao X, Ling J, Chen W. USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol Immunol 2021; 130:69-76. [PMID: 33360745 DOI: 10.1016/j.molimm.2020.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Ubiquitin specific protease 14 (USP14) is a regulator of protein deubiquitination and proteasome activation, and has been implicated in negative regulation of type I IFN signaling pathway. However, the effect of USP14 on RNA virus-related inflammatory response has not been studied. Retinoic acid-inducible gene I (RIG-I) is the important pattern recognition receptor of the innate immunity to detect RNA viruses or intracellular Poly(I:C)-LMW. Here, we reported that USP14 knockdown increased pro-inflammatory cytokines production in macrophages upon VSV infection or intracellular Poly(I:C)-LMW stimulation. USP14-overexpressed HeLa cells exhibited a decrease in RIG-I-mediated IL-6 and TNF-α expression. IU1, USP14 inhibitor, significantly promotes pro-inflammatory cytokines production in VSV-infected mice in vivo. Furthermore, USP14 was also found to inhibit the RIG-I-triggered NF-κB activation by deubiquitinating K63-linked RIG-I. Thus, our results demonstrate that USP14 is a negative regulator of RIG-I-mediated inflammatory response.
Collapse
Affiliation(s)
- Hongrui Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China
| | - Jing Ling
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, 516080, China.
| |
Collapse
|
27
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
28
|
Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol 2020; 236:3396-3405. [PMID: 33135160 DOI: 10.1002/jcp.30124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Rasaei R, Sarodaya N, Kim KS, Ramakrishna S, Hong SH. Importance of Deubiquitination in Macrophage-Mediated Viral Response and Inflammation. Int J Mol Sci 2020; 21:ijms21218090. [PMID: 33138315 PMCID: PMC7662591 DOI: 10.3390/ijms21218090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Ubiquitination and deubiquitination play a fundamental role in the signaling pathways associated with innate and adaptive immune responses. Macrophages are key sentinels for the host defense, triggering antiviral and inflammatory responses against various invading pathogens. Macrophages recognize the genetic material of these pathogens as pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) through the activation of its pattern recognition receptors (PRRs), initiating the cascade of immune signaling, which leads to the production of pro- and anti-inflammatory cytokines that initiates the appropriate immune response. Macrophage-mediated immune response is highly regulated and tightly controlled by the ubiquitin system since its abnormal activation or dysregulation may result in the severe pathogenesis of numerous inflammatory and autoimmune diseases. Deubiquitinating enzymes (DUBs) play a crucial role in reversing the ubiquitination and controlling the magnitude of the immune response. During infection, pathogens manipulate the host defense system by regulating DUBs to obtain nutrients and increase proliferation. Indeed, the regulation of DUBs by small molecule inhibitors has been proposed as an excellent way to control aberrant activation of immune signaling molecules. This review is focused on the complex role of DUBs in macrophage-mediated immune response, exploring the potential use of DUBs as therapeutic targets in autoimmune and inflammatory diseases by virtue of small molecule DUB inhibitors.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); or (S.-H.H.)
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: or (S.R.); or (S.-H.H.)
| |
Collapse
|
30
|
Huang L, Zhang Y, Zheng J, Ni N, Qin Q, Huang X, Huang Y. Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. FISH & SHELLFISH IMMUNOLOGY 2020; 105:253-262. [PMID: 32697961 DOI: 10.1016/j.fsi.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin-specific protease 14 (USP14), one of the USP family members which belong to deubiquitinating enzymes (DUBs), plays a key role in maintaining cellular protein homeostasis by trimming ubiquitin chains from their substrates. However, the roles of USP14 in response to virus infection still remains largely unknown. In the current study, a USP14 homolog from orange spotted grouper (EcUSP14) was cloned and its roles in innate immune response were investigated. EcUSP14 was composed of 1479 base pairs encoding a 492-amino acid (aa) polypeptide. Sequence analysis indicated that EcUSP14 shared 96.14% and 81.30% identity to USP14 of bicolor damselfish (Stegastes partitus) and humans (homo sapiens), respectively. EcUSP14 contains conserved ubiquitin-like (UBL) domain (aa 3-76) and peptidase-C19A domain (aa 106-481). In response to Singapore grouper iridovirus (SGIV) infection in vitro, EcUSP14 was significantly up-regulated. Subcellular localization showed that EcUSP14 was predominantly localized in the cytoplasm of grouper spleen (GS) cells and mostly co-localized with the viral assembly sites after SGIV infection. The ectopic expression of EcUSP14 significantly promoted the replication of SGIV, as demonstrated by the accelerated progression of severity of cytopathic effect (CPE), the increased viral gene transcription and viral protein synthesis during infection. Consistently, treatment with IU1, a USP14 specific inhibitor, significantly inhibited the replication of SGIV, suggesting that USP14 function as a pro-viral factor during SGIV replication. Further analysis showed that EcUSP14 overexpression decreased the promoter activities of interferon (IFN)-1, IFN-3, IFN-stimulated response element (ISRE), and nuclear factor of kappa B (NF-κB). Furthermore, the ectopic expression of EcUSP14 decreased the activities of IFN-1 promoter evoked by TANK-binding kinase (TBK)-1 and melanoma differentiation-associated protein (MDA)-5, but not stimulator of interferon genes (STING). Thus, we speculated that EcUSP14 facilitated virus replication by negatively regulating the IFN response. Taken together, our results firstly demonstrated that fish USP14 functioned as a pro-viral factor by negatively regulating interferon response against virus infection.
Collapse
Affiliation(s)
- Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Na Ni
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Tian T, McLean JW, Wilson JA, Wilson SM. Examination of genetic and pharmacological tools to study the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 in the nervous system. J Neurochem 2020; 156:309-323. [PMID: 32901953 DOI: 10.1111/jnc.15180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
33
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Lee HC, Chathuranga K, Lee JS. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med 2019; 51:1-13. [PMID: 31827068 PMCID: PMC6906418 DOI: 10.1038/s12276-019-0299-y] [Citation(s) in RCA: 420] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During viral infection, virus-derived cytosolic nucleic acids are recognized by host intracellular specific sensors. The efficacy of this recognition system is crucial for triggering innate host defenses, which then stimulate more specific adaptive immune responses against the virus. Recent studies show that signal transduction pathways activated by sensing proteins are positively or negatively regulated by many modulators to maintain host immune homeostasis. However, viruses have evolved several strategies to counteract/evade host immune reactions. These systems involve viral proteins that interact with host sensor proteins and prevent them from detecting the viral genome or from initiating immune signaling. In this review, we discuss key regulators of cytosolic sensor proteins and viral proteins based on experimental evidence.
Collapse
Affiliation(s)
- Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
- Central Research Institute, Komipharm International Co., Ltd, Shiheung, 15094, Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
35
|
Abstract
The innate immune system represents the first defense line of the host following viral infection. The infection triggers the recognition of pathogen-associated molecular patterns (PAMPs) from the viruses by pattern recognition receptors (PRRs) of the host cell. The interaction between viral PAMPs and PRRs evokes a sophisticated signal transduction system and eventually promotes the expression of type I interferons (IFNs) and proinflammatory cytokines. Ubiquitination plays an indispensable role in fine-tuning almost every single step of this signaling cascade given on its versatile functions. Ubiquitin ligases and deubiquitinases (DUBs), which cooperatively and accurately regulate the dynamic and reversible ubiquitination process, are the master regulators of antiviral signaling. In this review, we concentrate on summarizing the ubiquitin ligases and DUBs that modulate the central signaling molecules in antiviral innate immunity. Especially, we emphasize the ones that were identified by the immunologists from China.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
36
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
37
|
Loboda AP, Soond SM, Piacentini M, Barlev NA. Lysine-specific post-translational modifications of proteins in the life cycle of viruses. Cell Cycle 2019; 18:1995-2005. [PMID: 31291816 DOI: 10.1080/15384101.2019.1639305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The process of protein post-translational modifications (PTM) is one of the critical mechanisms of regulation of many cellular processes, which makes it an attractive target for various viruses. Since viruses cannot replicate on their own, they have developed unique abilities to alter metabolic and signaling cell pathways, including protein PTMs, to ensure faithful replication of their genomes. This review describes several ways of how lysine-specific PTMs are used by various viruses to ensure its successful invasion and replication. Covalent modifications like acetylation, ubiquitination, and methylation form a complex system of reversible and often competing modifications, which adds an additional level of complexity to the system of regulation of the activity of host proteins involved in viral replication and propagation. In furthering these, we also describe the manner in which PTM pathways can also be accosted by various types of viruses to neutralize the host's cellular mechanisms for anti-viral protection and highlight key areas for future therapeutic targeting and design.
Collapse
Affiliation(s)
- Anna P Loboda
- a Laboratory of Intracellular Signaling, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region , Russian Federation
| | - Surinder M Soond
- b Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Mauro Piacentini
- c Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Science , St-Petersburg , Russian Federation
| | - Nickolai A Barlev
- a Laboratory of Intracellular Signaling, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region , Russian Federation.,c Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Science , St-Petersburg , Russian Federation
| |
Collapse
|