1
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
2
|
Current State of Sensors and Sensing Systems Utilized in Beer Analysis. BEVERAGES 2023. [DOI: 10.3390/beverages9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Beer is one of the most consumed beverages in the world. Advances in instrumental techniques have allowed the analysis and characterization of a large number of beers. However, review studies that outline the methodologies used in beer characterization are scarce. Herein, a systematic review investigating the molecular targets and sensometric techniques in beer characterization was performed following the PRISMA protocol. The study reviewed 270 articles related to beer analysis in order to provide a comprehensive summary of the recent advances in beer analysis, including methods using sensors and sensing systems. The results revealed the use of various techniques that include several technologies, such as nanotechnology and electronics, often combined with scientific data analysis tools. To our knowledge, this study is the first of its kind and provides the reader with a faithful overview of what has been done in the sensor field regarding beer characterization.
Collapse
|
3
|
Liu WC, Pushparaj K, Meyyazhagan A, Arumugam VA, Pappuswamy M, Bhotla HK, Baskaran R, Issara U, Balasubramanian B, Mousavi Khaneghah A. Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022; 213:59-75. [PMID: 35452686 DOI: 10.1016/j.toxicon.2022.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | | | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Liu L, Jiang J, Cui L, Zhao J, Cao X, Chen L. Double Trigonal Pyramidal {SeO 3} Groups Bridged 2-Picolinic Acid Modified Cerium-Inlaid Polyoxometalate Including Mixed Selenotungstate Subunits for Electrochemically Sensing Ochratoxin A. Inorg Chem 2022; 61:1949-1960. [PMID: 35049293 DOI: 10.1021/acs.inorgchem.1c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An organic-inorganic hybrid trigonal pyramidal {SeO3} group, bridged cerium-inlaid polyoxometalate (POM) Na16[Se2Ce4(H2O)8W4(HPIC)4O10][B-β-SeW8O30]2[Se2W12O46]2·60H2O (1) (HPIC = 2-picolinic acid), containing two disparate selenotungstate (ST) building blocks was synthesized by a one-step assembly strategy, which is established by two asymmetric sandwich-type {[Ce2(H2O)4W2(HPIC)2O4][B-β-SeW8O30][Se2W12O46]}10- moieties joined by double trigonal pyramidal {SeO3} groups. Its outstanding structural trait is that it contains two types of ST building blocks, Keggin-type [B-β-SeW8O30]8- and Dawson-like [Se2W12O46]12-, which are extremely rare in ST chemistry. Remarkably, [Se2W12O46]12- is first obtained in lanthanide-inlaid STs. Furthermore, 1@PPy conductive film (PPy = polypyrrole) was prepared by electrochemical polymerization and served as the electrode material, and then nano-gold particles (NGPs) were deposited on the surface of 1@PPy conductive film by an electrochemical deposition method in order to immobilize the aptamer of ochratoxin A. With the help of exonuclease I (EN I), the oxidation peak of the metalized Ag works as the detection signal to achieve the detection of ochratoxin A (OTXA). This study offers an available approach for creating organic-inorganic hybrid heteroatom-bridged lanthanide-inlaid POMs and reveals the likelihood of extending heteroatom-bridged lanthanide-inlaid POMs into electrochemical biosensing applications.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Limin Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xinhua Cao
- Green Catalysis and Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
Liu G, Liu L, Gong T, Li Y, Chen L, Zhao J. Nicotinic-Acid-Ornamented Tetrameric Rare-Earth-Substituted Phospho(III)tungstates with the Coexistence of Mixed Keggin/Dawson Building Blocks and Its Honeycomb Nanofilm for Detecting Toxins. Inorg Chem 2021; 60:14457-14466. [PMID: 34499476 DOI: 10.1021/acs.inorgchem.1c02248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A fascinating class of nicotinic-acid-ornamented tetrameric rare-earth (RE)-substituted phospho(III)tungstates [NH2(CH3)2]10Na4H8[RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPIIIW9O33)]2·22 H2O [RE = Nd3+ (1-Nd), Tb3+ (2-Tb), Dy3+ (3-Dy), Ho3+ (4-Ho), HNA = nicotinic acid] were isolated through a one-step reaction method of Na2WO4·2H2O, H3PO3, HNA, NH2(CH3)2·HCl, and RE(NO3)·6H2O. Of meticulous concern is that HPO32- was used as a template to construct tetrameric RE-substituted phospho(III)tungstates including mixed heteropolyoxotungstate building blocks. Their hybrid polyoxoanions are composed of two symmetrical [RE2(NA)(HNA)(H2O)6(W2O4)(β-H2P2IIIW13O49)(α-HPW9O33)]11- units linked by RE-O-W bonds. The symmetrical unit consists of one peculiar heterometal nicotinic-acid-ornamented [RE2(NA)(HNA)(W2O4)]9+ cluster connecting a pentavacant Dawson-like [β-H2P2W13O49]12- and a trivacant Keggin [α-HPW9O33]8- subunits. Furthermore, dimethyldioctadecylammonium chloride (DMDODA·Cl) was used to combine with 1-Nd in the CHCl3-H2O system through electrostatic interactions, leading to the 1-Nd@DMDODA composite material. The honeycomb-patterned film of the 1-Nd @DMDODA composite material was successfully constructed by using the breath figure method on a glassy carbon electrode, which can offer abundant binding sites to Au nanoparticles (nano-Au). Ulteriorly, Au-functionalized 1-Nd@DMDODA-modified electrode was utilized as an electrochemical sensor to detect ochratoxin A, showing a good detection limit of 1.19 pM.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
6
|
Liu L, Jiang J, Liu G, Jia X, Zhao J, Chen L, Yang P. Hexameric to Trimeric Lanthanide-Included Selenotungstates and Their 2D Honeycomb Organic-Inorganic Hybrid Films Used for Detecting Ochratoxin A. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35997-36010. [PMID: 34288662 DOI: 10.1021/acsami.1c10012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two types of organic-inorganic hybrid structure-related lanthanide (Ln)-included selenotungstates (Ln-SeTs) [H2N(CH3)2]11Na7[Ce4(H2PTCA)2(H2O)12(HICA)]2[SeW4O17]2[W2O5]4[SeW9O33]4·64H2O (1, H3PTCA = 1,2,3-propanetricarboxylic acid, H2ICA = itaconic acid) and [H2N(CH3)2]6Na4[Ln4SeW8(H2O)14(H2PTCA)2O28] [SeW9O33]2·31H2O [Ln = Pr3+ (2), Nd3+ (3)] were obtained by Ln nature control. The primary frameworks of 1-3 are composed of trivacant Keggin-type [B-α-SeW9O33]8- and [SeW4Om]n- [Ln = Ce3+ (1), m = 17, n = 6; Ln = Pr3+ (2), Nd3+ (3), m = 18, n = 8] fragments bridged by organic ligands and Ln clusters. Intriguingly, Ln nature results in the degradation of hexameric 1 to trimeric 2-3. Besides, 1@DMDSA and 3@DMDSA composites (DMDSA·Cl = dimethyl distearylammonium chloride) were prepared through the cation exchange method, which were then reorganized to form two-dimensional (2D) honeycomb thin films by the breath figure method. Using these honeycomb thin films as electrode materials, the aptasensors were further established by utilizing methylene blue as an indicator and cDNA and Au nanoparticles as signal amplifiers to enhance the response signal so as to realize the purpose of ochratoxin A (OTA) detection. This work provides a new platform for detecting OTA and explores the application potential of POM-based composites in biological and clinical analyses.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
7
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
8
|
Zinoubi K, Chrouda A, Soltane R, Al‐Ghamdi YO, Garallah Almalki S, Osman G, Barhoumi H, Jaffrezic Renault N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP‐decorated Graphene for the Detection of Ochratoxin A. ELECTROANAL 2020. [DOI: 10.1002/elan.202060247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khaoula Zinoubi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
| | - Amani Chrouda
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Raya Soltane
- Department Faculty of Sciences of Tunis Tunis El Manar University Tunisia
- Department of Basic Sciences, Adham University college Umm Al-Qura University Adham 21971 Saudi Arabia
| | - Youssef O. Al‐Ghamdi
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
| | - Sami Garallah Almalki
- Department of Biology, College of Science Al-zulfi Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences Umm Al-Qura University Makkah Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science Umm Al-Qura University Mecca Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), ARC 12619 Giza Egypt
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Nicole Jaffrezic Renault
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| |
Collapse
|
9
|
Impedimetric Aptamer-Based Biosensors: Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:43-91. [PMID: 32313965 DOI: 10.1007/10_2020_125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.
Collapse
|
10
|
Nan MN, Bi Y, Xue HL, Long HT, Xue SL, Pu LM, Prusky D. Modification performance and electrochemical characteristics of different groups of modified aptamers applied for label-free electrochemical impedimetric sensors. Food Chem 2020; 337:127761. [PMID: 32777565 DOI: 10.1016/j.foodchem.2020.127761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 11/15/2022]
Abstract
Amino and thiolated aptamers are the main aptamers used to construct label-free electrochemical impedimetric aptasensors. In this study, the modification performance and electrochemical properties of amino aptamers and thiolated aptamers were studied in the construction of label-free impedimetric sensors. The results showed that the initial modification density of amino aptamers was higher than that of thiol aptamers. Aptamers can recognize and bind OTA to generate electrical signals. The higher the density of aptamer modification was, the better the electric signals were. If only considering the initial modification density, amino aptamers were more suitable for the preparation of aptasensors than thiolated aptamers. However, the modification density of the amino aptamer decreased with the prolonged immersion time in 1 mM HCl solution, which suggests that the stability of this sensor was poor. However, the thiolated aptamer maintained relatively constant density and could be reused. Thus, the thiolated aptasensor had a wide range and good reproducibility and stability for the determination of ochratoxin A (OTA). In addition, this study proved that gold nanoparticles play an important role in signal amplification by increasing the effective gold surface to fix more aptamers in the process of sensor preparation.
Collapse
Affiliation(s)
- Mi-Na Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China; College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Hua-Li Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Hai-Tao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Su-Lin Xue
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu-Mei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, the Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| |
Collapse
|
11
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
12
|
Guo X, Wen F, Zheng N, Saive M, Fauconnier ML, Wang J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front Chem 2020; 8:195. [PMID: 32373573 PMCID: PMC7186343 DOI: 10.3389/fchem.2020.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mycotoxins are a large type of secondary metabolites produced by fungi that pose a great hazard to and cause toxic reactions in humans and animals. A majority of countries and regulators, such as the European Union, have established a series of requirements for their use, and they have also set maximum tolerance levels. The development of high sensitivity and a specific analytical platform for mycotoxins is much in demand to address new challenges for food safety worldwide. Due to the superiority of simple, rapid, and low-cost characteristics, aptamer-based biosensors have successfully been developed for the detection of various mycotoxins with high sensitivity and selectivity compared with traditional instrumental methods and immunological approaches. In this article, we discuss and analyze the development of aptasensors for mycotoxins determination in food and agricultural products over the last 11 years and cover the literatures from the first report in 2008 until the present time. In addition, challenges and future trends for the selection of aptamers toward various mycotoxins and aptasensors for multi-mycotoxins analyses are summarized. Given the promising development and potential application of aptasensors, future research studies made will witness the great practicality of using aptamer-based biosensors within the field of food safety.
Collapse
Affiliation(s)
- Xiaodong Guo
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Saive
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Padnya P, Gorbachuk V, Stoikov I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int J Mol Sci 2020; 21:ijms21041425. [PMID: 32093189 PMCID: PMC7073139 DOI: 10.3390/ijms21041425] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Silver nanoparticles (AgNPs) are an attractive alternative to plasmonic gold nanoparticles. The relative cheapness and redox stability determine the growing interest of researchers in obtaining selective plasmonic and electrochemical (bio)sensors based on silver nanoparticles. The controlled synthesis of metal nanoparticles of a defined morphology is a nontrivial task, important for such fields as biochemistry, catalysis, biosensors and microelectronics. Cyclophanes are well known for their great receptor properties and are of particular interest in the creation of metal nanoparticles due to a variety of cyclophane 3D structures and unique redox abilities. Silver ion-based supramolecular assemblies are attractive due to the possibility of reduction by “soft” reducing agents as well as being accessible precursors for silver nanoparticles of predefined morphology, which are promising for implementation in plasmonic sensors. For this purpose, the chemistry of cyclophanes offers a whole arsenal of approaches: exocyclic ion coordination, association, stabilization of the growth centers of metal nanoparticles, as well as in reduction of silver ions. Thus, this review presents the recent advances in the synthesis and stabilization of Ag (0) nanoparticles based on self-assembly of associates with Ag (I) ions with the participation of bulk platforms of cyclophanes (resorcin[4]arenes, (thia)calix[n]arenes, pillar[n]arenes).
Collapse
Affiliation(s)
- Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
14
|
Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review. SENSORS 2019; 19:s19245435. [PMID: 31835479 PMCID: PMC6960919 DOI: 10.3390/s19245435] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022]
Abstract
Aptamers are synthetic bio-receptors of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) origin selected by the systematic evolution of ligands (SELEX) process that bind a broad range of target analytes with high affinity and specificity. So far, electrochemical biosensors have come up as a simple and sensitive method to utilize aptamers as a bio-recognition element. Numerous aptamer based sensors have been developed for clinical diagnostics, food, and environmental monitoring and several other applications are under development. Aptasensors are capable of extending the limits of current analytical techniques in clinical diagnostics, food, and environmental sample analysis. However, the potential applications of aptamer based electrochemical biosensors are unlimited; current applications are observed in the areas of food toxins, clinical biomarkers, and pesticide detection. This review attempts to enumerate the most representative examples of research progress in aptamer based electrochemical biosensing principles that have been developed in recent years. Additionally, this account will discuss various current developments on aptamer-based sensors toward heavy metal detection, for various cardiac biomarkers, antibiotics detection, and also on how the aptamers can be deployed to couple with antibody-based assays as a hybrid sensing platform. Aptamers can be used in various applications, however, this account will focus on the recent advancements made toward food, environmental, and clinical diagnostic application. This review paper compares various electrochemical aptamer based sensor detection strategies that have been applied so far and used as a state of the art. As illustrated in the literature, aptamers have been utilized extensively for environmental, cancer biomarker, biomedical application, and antibiotic detection and thus have been extensively discussed in this article.
Collapse
|
15
|
Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta 2019; 187:29. [PMID: 31813061 DOI: 10.1007/s00604-019-4034-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - M Satyanarayana
- Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
16
|
Electrochemical immunosensor for ochratoxin A detection based on Au octahedron plasmonic colloidosomes. Anal Chim Acta 2018; 1032:114-121. [DOI: 10.1016/j.aca.2018.05.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
|
17
|
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal Chim Acta 2018; 1051:1-23. [PMID: 30661605 DOI: 10.1016/j.aca.2018.10.058] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Global food and water safety issues have prompted the development of highly sensitive, specific, and fast analytical techniques for food and water analysis. The electrochemical aptamer-based detection platform (E-aptasensor) is one of the more promising detection techniques because of its unique combination of advantages that renders these sensors ideal for detection of a wide range of target analytes. Recent research results have further demonstrated that this technique has potential for real world analysis of food and water contaminants. This review summaries the recently developed E-aptasensors for detection of analytes related to food and water safety, including bacteria, mycotoxins, algal toxins, viruses, drugs, pesticides, and metal ions. Ten different electroanalytical techniques and one opto-electroanalytical technique commonly employed with these sensors are also described. In addition to highlighting several novel sensor designs, this review also describes the strengths, limitations, and current challenges this technology faces, and future development trend.
Collapse
Affiliation(s)
- Fengqin Li
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Zhigang Yu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xianda Han
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, United States.
| |
Collapse
|
18
|
Ren X, Lu P, Feng R, Zhang T, Zhang Y, Wu D, Wei Q. An ITO-based point-of-care colorimetric immunosensor for ochratoxin A detection. Talanta 2018; 188:593-599. [DOI: 10.1016/j.talanta.2018.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
|
19
|
Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z. Advances in aptasensors for the detection of food contaminants. Analyst 2018; 141:3942-61. [PMID: 27265444 DOI: 10.1039/c6an00952b] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food safety is a global health objective, and foodborne diseases represent a major crisis in health. Techniques that are simple and suitable for fast screening to detect and identify pathogenic factors in the food chain are vital to ensure food safety. At present, a variety of analytical methods have been reported for the detection of pathogenic agents. Whereas the sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic bio-recognition elements, such as aptamers. Owing to the specific folding capability of aptamers in the presence of an analyte, aptasensors have substantially and successfully been exploited for the detection of a wide range of small and large molecules (e.g., toxins, antibiotics, heavy metals, bacteria, viruses) at very low concentrations. Here, we review the use of aptasensors for the development of highly sensitive and affordable detection tools for food analysis.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shaoliang Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018; 121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Nanomaterial-embedded sensors have been developed and applied to monitor various targets. Mycotoxins are fungal secondary metabolites that can exert carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic effects on humans and animals. Consequently, the need for the proper regulation on foodstuff and feed materials has been recognized from times long past. This review provides an overview of recent developments in electrochemical sensors and biosensors employed for the detection of mycotoxins. Basic aspects of the toxicity of mycotoxins and the implications of their detection are comprehensively discussed. Furthermore, the development of different molecular recognition elements and nanomaterials required for the detection of mycotoxins (such as portable biosensing systems for point-of-care analysis) is described. The current capabilities, limitations, and future challenges in mycotoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemistry, National Institute of Technology Warangal, Telangana 506004, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India.
| | - Vanish Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - S E Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
21
|
Evtugyn G, Subjakova V, Melikishvili S, Hianik T. Affinity Biosensors for Detection of Mycotoxins in Food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:263-310. [PMID: 29860976 DOI: 10.1016/bs.afnr.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Chemistry Institute of Kazan Federal University, Kazan, Russian Federation
| | - Veronika Subjakova
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
22
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Li F, Guo Y, Wang X, Sun X. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens Bioelectron 2018; 115:7-13. [PMID: 29783082 DOI: 10.1016/j.bios.2018.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
A dual-target electrochemical aptasensor was developed for the simultaneous detection of multiple antibiotics based on metal ions as signal tracers and nanocomposites as signal amplification strategy. Metal ions such as Cd2+ and Pb2+ could generate distinct differential pulse voltammetry (DPV) peaks. When targets were present, kanamycin (KAN) and streptomycin (STR) as models, the KAN aptamer (KAP) and STR aptamer (STP) were released from their complementary strands, with more change of Cd2+ and Pb2+ corresponding to peak currents. At the same time, complementary strand of KAP (cKAP) and STP (cSTP) were linked with the poly (A) structure (cSTP-PolyA-cKAP) to increase their conformational freedom. Graphitized multi-walled carbon nanotubes (MWCNTGr) and carbon nanofibers-gold nanoparticles (CNFs-AuNPs) as a biosensor platform enhanced the surface area to capture a large amount of cSTP-PolyA-cKAP, thus amplifying the detection response. Under the optimal conditions, the aptasensor could detect KAN and STR as low as 74.50 pM and 36.45 pM respectively with the range from 0.1 to 100 nM and exhibited excellent selectively. Moreover, this aptasensor showed promising applications for the detection of other analytes by changing corresponding aptamers.
Collapse
Affiliation(s)
- Falan Li
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China
| | - Xiangyou Wang
- School of Engineering, Northeast Agricultural University, No. 59 Mucai Street Xiangfang District, Harbin 150000, Heilongjiang Province, PR China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, PR China.
| |
Collapse
|
24
|
Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress. Toxins (Basel) 2017; 9:toxins9110349. [PMID: 29143760 PMCID: PMC5705964 DOI: 10.3390/toxins9110349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.
Collapse
|
25
|
Evtugyn GA, Porfireva AV, Stoikov II. Electrochemical DNA sensors based on spatially distributed redox mediators: challenges and promises. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractDNA and aptasensors are widely used for fast and reliable detection of disease biomarkers, pharmaceuticals, toxins, metabolites and other species necessary for biomedical diagnostics. In the overview, the concept of spatially distributed redox mediators is considered with particular emphasis to the signal generation and biospecific layer assembling. The application of non-conductive polymers bearing redox labels, supramolecular carriers with attached DNA aptamers and redox active dyes and E-sensor concept are considered as examples of the approach announced.
Collapse
Affiliation(s)
- Gennady A. Evtugyn
- A.M.Butlerov’ Chemistry Institute of Kazan Federal University, 420008 Kazan, Russian Federation
| | - Anna V. Porfireva
- A.M.Butlerov’ Chemistry Institute of Kazan Federal University, 420008 Kazan, Russian Federation
| | - Ivan I. Stoikov
- A.M.Butlerov’ Chemistry Institute of Kazan Federal University, 420008 Kazan, Russian Federation
| |
Collapse
|
26
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
27
|
Tian J, Wei W, Wang J, Ji S, Chen G, Lu J. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Anal Chim Acta 2017; 1000:265-272. [PMID: 29289319 DOI: 10.1016/j.aca.2017.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
In the present work, colloidal cerium oxide nanoparticles (nanoceria) and graphene quantum dots (GQDs) were firstly synthesized by sol-gel method and pyrolysis respectively, which all have a uniform nano-size and significant fluorescence emission. Due to the fluorescence emission spectrum of nanoceria overlapped the absorption spectrum of GQDs, fluorescence resonance energy transfer (FRET) between nanoceria and GQDs could occur effectively by the electrostatic interaction. Based on it, a sensitive ratiometric fluorescence aptasensor for the determination of ochratoxin A (OTA), a small molecular mycotoxin produced by Aspergillus and Penicillium strains, has been successfully constructed. In which, probe DNA1@nanoceria and DNA2@GQD were designed to complementary with OTA aptamer, both could adsorb each other, leading to the occur of FRET. After adding of OTA aptamer and then introducing of OTA, the FRET would be interrupted/recovered due to the specific affinity of OTA and its aptamer, the fluorescence recovery value would increase with the addition of OTA. Under the optimal experimental conditions (pH 7, mGQD/nanoceria 2, captamer 100 nM, incubation time 30 min), the constructed ratiometric fluorescence aptasensor exhibited a satisfying linear range (0.01-20 ng mL-1), low limit of detection (2.5 pg mL-1) and good selectivity towards OTA, and has been successfully applied for the analysis of real sample peanuts with good accuracy of the recoveries ranged from 90 to 110%.
Collapse
Affiliation(s)
- Jiuying Tian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenqi Wei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jiawen Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Saijie Ji
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Guichan Chen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jusheng Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
28
|
Stepanova VB, Shurpik DN, Evtyugin VG, Stoikov II, Evtyugin GA, Gianik T. An electrochemical aptasensor for cytochrome C, based on pillar[5]arene modified with Neutral Red. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abstract
The problems associated with different groups or ‘families’ of mycotoxins have been known for some time, and for many years certain groups of mycotoxins have been known to co-occur in commodities and foods. Until fairly recently commodities and foods were analysed for individual toxins or groups of related toxins and attempts to measure multiple groups of toxins required significant investments in terms of time, effort, and expense. Analytical technologies using both the instrument-intensive techniques, such as mass spectrometry, and screening techniques, such as immunoassays, have progressed significantly in recent years. This has led to the proliferation of techniques capable of detecting multiple groups of mycotoxins using a variety of approaches. Despite considerable progress, the challenges for routine monitoring of multiple toxins continue. Certain of these challenges, such as the need for co-extraction of multiple analytes with widely different polarities and the potential for carry-over of matrix components that can influence the results, are independent of the analytical technique (MS or immunoassay) used. Because of the wide variety of analytical platforms used for multi-toxin analysis, there are also specific challenges that arise amongst the analytical platforms. We showed that chromatographic methods with optical detection for aflatoxins maintain stable response factors over rather long periods. This offers the potential to reduce the analytical burden, provided the use of a single signal receives general acceptance once shown in practise as working approach. This must however be verified by a larger community of laboratories. For immunosensors the arising challenges include the reusability of sensors and, for chromatography-based assays they include the selection of appropriate calibration systems. In this article we seek to further describe the challenges associated with multi-toxin analysis and articulate how such challenges have recently been addressed.
Collapse
Affiliation(s)
- J. Stroka
- Joint Research Centre, European Commission, Retieseweg 111, 2440 Geel, Belgium
| | - C.M. Maragos
- Agricultural Research Service, National Center for Agricultural Utilization Research, United States Department of Agriculture, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
30
|
|
31
|
Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm 2016; 102:152-8. [PMID: 26987703 DOI: 10.1016/j.ejpb.2016.03.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 12/18/2022]
Abstract
Clinical use of epirubicin (Epi) in the treatment of cancer has been limited, due to its cardiotoxicity. Targeted delivery of chemotherapeutic agents could increase their efficacy and reduce their off-target effects. High drug loading and excellent stability of DNA dendrimers make these DNA nanostructures unique candidates for biological applications. In this study a modified and promoted dendrimer using three kinds of aptamers (MUC1, AS1411 and ATP aptamers) was designed for targeted delivery of Epi and its efficacy was evaluated in target cells including MCF-7 cells (breast cancer cell) and C26 cells (murine colon carcinoma cell). Aptamers (Apts)-Dendrimer-Epi complex formation was analyzed by fluorometric analysis and gel retardation assay. Release profiles of Epi from the designed complex were assessed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) MCF-7 and C26 cells (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, Apts-Dendrimer-Epi complex and Apts-Dendrimer conjugate. Internalization was evaluated using flow cytometry analysis. Finally, the developed complex was used for inhibition of tumor growth in vivo. 25μM Epi was efficiently intercalated to 1μM dendrimer. Epi was released from the Apts-Dendrimer-Epi complex in a pH-sensitive manner (more release at pH 5.5). The results of flow cytometry analysis indicated that the designed complex was efficiently internalized into target cells, but not into control cells. The internalization data were confirmed by the results of MTT assay. Apts-Dendrimer-Epi complex had less cytotoxicity in CHO cells compared to Epi alone. The complex had more cytotoxicity in C26 and MCF-7 cells compared to Epi alone. Moreover, the Apts-Dendrimer-Epi complex could efficiently prohibit tumor growth in vivo. In conclusion, the designed targeted drug delivery system inherited characteristics of pH-dependent drug release, high drug loading and tumor targeting in vitro and in vivo.
Collapse
|
33
|
Qian J, Jiang L, Yang X, Yan Y, Mao H, Wang K. Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst 2015; 139:5587-93. [PMID: 25166740 DOI: 10.1039/c4an01116c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of gold nanoparticles (AuNPs) that were covalently bound to 2-aminothiophenol-functionalized reduced graphene oxide (Au-ATP-rGO) composites have been synthesized with well-dispersed and controllable surface coverage of AuNPs. Aptamer immobilization capacity studies demonstrated that the surface density of AuNPs played a key role in increasing the amount of anchoring aptamers to enhance the sensitivity of affinity based detection. With the composites possessing dense surface coverage of AuNPs as a versatile signal amplified platform, a label-free aptasensor for the sensitive and selective detection of small molecules (ochratoxin A in this case) has been developed using electrochemical impedance spectroscopy (EIS). A wide linear range of 0.1-200 ng mL(-1) was obtained with a low detection limit of 0.03 ng mL(-1) (S/N = 3). This work provides a universal strategy for the sensitive detection of a variety of targets in a truly label-free manner by means of changing the corresponding aptamer. The promising platform based on the combination of Au-ATP-rGO composites, EIS technique, and aptamers would have great potential applications in clinical diagnosis, environmental analysis, and food safety monitoring.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | | | | | |
Collapse
|
34
|
Kuzin Y, Porfireva A, Stepanova V, Evtugyn V, Stoikov I, Evtugyn G, Hianik T. Impedimetric Detection of DNA Damage with the Sensor Based on Silver Nanoparticles and Neutral Red. ELECTROANAL 2015. [DOI: 10.1002/elan.201500312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
36
|
Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 2015. [PMID: 26212949 DOI: 10.1016/j.foodchem.2015.05.079] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic residues in animal foodstuffs are of great concern to consumers. In this study, fluorescence quenching and colorimetric aptasensors were designed for detection of streptomycin based on aqueous gold nanoparticles (AuNPs) and double-stranded DNA (dsDNA). In the absence of streptomycin, aptamer/FAM-labeled complementary strand dsDNA is stable, resulting in the aggregation of AuNPs by salt and an obvious color change from red to blue and strong emission of fluorescence. In the presence of streptomycin, aptamer binds to its target and FAM-labeled complementary strand adsorbs on the surface of AuNPs. So the well-dispersed AuNPs remain stable against salt-induced aggregation with a wine-red color and the fluorescence of FAM-labeled complimentary strand is efficiently quenched by AuNPs. The colorimetric and fluorescence quenching aptasensors showed excellent selectivity toward streptomycin with limit of detections as low as 73.1 and 47.6 nM, respectively. The presented aptasensors were successfully used to detect streptomycin in milk and serum.
Collapse
Affiliation(s)
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Parirokh Lavaee
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 2015; 87:5167-72. [PMID: 25901535 DOI: 10.1021/acs.analchem.5b00890] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, a novel aptasensor for ochratoxin A (OTA) detection based on a screen-printed carbon electrode (SPCE) modified with polythionine (PTH) and iridium oxide nanoparticles (IrO2 NPs) is presented. The electrotransducer surface is modified with an electropolymerized film of PTH followed by the assembly of IrO2 NPs on which the aminated aptamer selective to OTA is exchanged with the citrate ions surrounding IrO2 NPs via electrostatic interactions with the same surface. Electrochemical impedance spectroscopy (EIS) in the presence of the [Fe(CN)6](-3/-4) redox probe is employed to characterize each step in the aptasensor assay and also for label-free detection of OTA in a range between 0.01 and 100 nM, obtaining one of the lowest limits of detection reported so far for label-free impedimetric detection of OTA (14 pM; 5.65 ng/kg). The reported system also exhibits a high reproducibility, a good performance with a white wine sample, and an excellent specificity against another toxin present in such sample.
Collapse
Affiliation(s)
- Lourdes Rivas
- ‡Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | | | | | | | | | - Arben Merkoçi
- §ICREA - Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
38
|
A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 2015; 70:181-7. [PMID: 25814407 DOI: 10.1016/j.bios.2015.03.040] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023]
Abstract
Detection methods of antibiotic residues in blood serum and animal derived foods are of great interest. In this study a colorimetric aptasensor was designed for sensitive, selective and fast detection of tetracycline based on triple-helix molecular switch (THMS) and gold nanoparticles (AuNPs). As a biosensor, THMS shows distinct advantages including high stability, sensitivity and preserving the selectivity and affinity of the original aptamer. In the absence of tetracycline, THMS is stable, leading to the aggregation of AuNPs by salt and an obvious color change from red to blue. In the presence of tetracycline, aptamer binds to its target, signal transduction probe (STP) leaves the THMS and adsorbs on the surface of AuNPs. So the well-dispersed AuNPs remain stable against salt-induced aggregation with a red color. The presented aptasensor showed high selectivity toward tetracyclines with a limit of detection as low as 266 pM for tetracycline. The designed aptasensor was successfully applied to detect tetracycline in serum and milk.
Collapse
|
39
|
Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 2015; 70:122-9. [PMID: 25797851 DOI: 10.1016/j.bios.2015.03.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/24/2023]
Abstract
Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method.
Collapse
Affiliation(s)
- Airong Fei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Juan Huan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoya Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baijing Qiu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hanping Mao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
40
|
Evtugyn G, Porfireva A, Stepanova V, Budnikov H. Electrochemical Biosensors Based on Native DNA and Nanosized Mediator for the Detection of Anthracycline Preparations. ELECTROANAL 2015. [DOI: 10.1002/elan.201400564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87:230-49. [PMID: 25354297 PMCID: PMC4287168 DOI: 10.1021/ac5039863] [Citation(s) in RCA: 831] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Guohai Yang
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - He Li
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
42
|
Evtugyn G, Porfireva A, Stepanova V, Sitdikov R, Stoikov I, Nikolelis D, Hianik T. Electrochemical Aptasensor Based on Polycarboxylic Macrocycle Modified with Neutral Red for Aflatoxin B1 Detection. ELECTROANAL 2014. [DOI: 10.1002/elan.201400328] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 2014; 127:9-17. [DOI: 10.1016/j.talanta.2014.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
44
|
Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T. Impedimetric aptasensor for ochratoxin A determination based on Au nanoparticles stabilized with hyper-branched polymer. SENSORS (BASEL, SWITZERLAND) 2013; 13:16129-45. [PMID: 24287535 PMCID: PMC3892811 DOI: 10.3390/s131216129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Anna Porfireva
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Veronika Stepanova
- Analytical Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (G.E.); (A.P.); (V.S.)
| | - Marianna Kutyreva
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Alfiya Gataulina
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Nikolay Ulakhovich
- Inorganic Chemistry Department, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mails: (M.K.); (A.G.); (N.U.)
| | - Vladimir Evtugyn
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| | - Tibor Hianik
- Electron Microscopy Laboratory of the Faculty of Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russian Federation; E-Mail:
| |
Collapse
|
45
|
Hayat A, Yang C, Rhouati A, Marty JL. Recent advances and achievements in nanomaterial-based, and structure switchable aptasensing platforms for ochratoxin A detection. SENSORS (BASEL, SWITZERLAND) 2013; 13:15187-208. [PMID: 24201319 PMCID: PMC3871093 DOI: 10.3390/s131115187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 02/07/2023]
Abstract
Aptamer-based bioreceptors that can easily adopt their surroundings have captured the attention of scientists from a wide spectrum of domains in designing highly sensitive, selective and structure switchable sensing assays. Through elaborate design and chemical functionalization, numerous aptamer-based assays have been developed that can switch their conformation upon incubation with target analyte, resulting in an enhanced output signal. To further lower the detection limits to picomolar levels, nanomaterials have attracted great interest in the design of aptamer-based sensing platforms. Associated to their unique properties, nanomaterials offer great promise for numerous aptasensing applications. This review will discuss current research activities in the aptasensing with typical example of detection of ochratoxin A (OTA). OTA, a secondary fungal metabolite, contaminates a variety of food commodities, and has several toxicological effects such as nephrotoxic, hepatotoxic, neurotoxic, teratogenic and immunotoxic activities. The review will introduce advances made in the methods of integrating nanomaterials in aptasensing, and will discuss current conformational switchable design strategies in aptasensor fabrication methodologies.
Collapse
Affiliation(s)
- Akhtar Hayat
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Cheng Yang
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| | - Amina Rhouati
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| | - Jean Louis Marty
- BIOMEM, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; E-Mails: (A.H.); (C.Y.); (A.R.)
| |
Collapse
|