1
|
Saddique Z, Saeed M, Faheem M, Bajwa SZ, Mujahid A, Afzal A. Core-shell niobium(v) oxide@molecularly imprinted polythiophene nanoreceptors for transformative, real-time creatinine analysis. NANOSCALE ADVANCES 2024; 6:3644-3654. [PMID: 38989513 PMCID: PMC11232539 DOI: 10.1039/d4na00300d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Creatinine, a byproduct of muscle metabolism, is typically filtered by the kidneys. Deviations from normal concentrations of creatinine in human saliva serve as a crucial biomarker for renal diseases. Monitoring these levels becomes particularly essential for individuals undergoing dialysis and those with kidney conditions. This study introduces an innovative disposable point-of-care (PoC) sensor device designed for the prompt detection and continuous monitoring of trace amounts of creatinine. The sensor employs a unique design, featuring a creatinine-imprinted polythiophene matrix combined with niobium oxide nanoparticles. These components are coated onto a screen-printed working electrode. Thorough assessments of creatinine concentrations, spanning from 0 to 1000 nM in a redox solution at pH 7.4 and room temperature, are conducted using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The devised sensor exhibits a sensitivity of 4.614 μA cm-2 nM-1, an impressive trace level limit of detection at 34 pM, and remarkable selectivity for creatinine compared to other analytes found in human saliva, such as glucose, glutamine, urea, tyrosine, etc. Real saliva samples subjected to the sensor reveal a 100% recovery rate. This sensor, characterized by its high sensitivity, cost-effectiveness, selectivity, and reproducibility, holds significant promise for real-time applications in monitoring creatinine levels in individuals with kidney and muscle-related illnesses.
Collapse
Affiliation(s)
- Zohaib Saddique
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Maleeha Saeed
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Faheem
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Sadia Z Bajwa
- National Institute for Biotechnology and Genetic Engineering PO Box 577, Jhang Road Faisalabad 38000 Pakistan
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| |
Collapse
|
2
|
Ishii K, Ogata G, Yamamoto T, Sun S, Shiigi H, Einaga Y. Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensors. ACS Sens 2024; 9:1611-1619. [PMID: 38471116 DOI: 10.1021/acssensors.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Drug detection in biological solutions is essential in studying the pharmacokinetics of the body. Electrochemical detection is an accurate and rapid method, but measuring multiple drugs that react at similar potentials is challenging. Herein, we developed an electrochemical sensor using a boron-doped diamond (BDD) electrode modified with a molecularly imprinted polymer (MIP) to provide specificity in drug sensing. The MIP is a polymer material designed to recognize and capture template molecules, enabling the selective detection of target molecules. In this study, we selected the anticancer drug doxorubicin (DOX) as the template molecule. In the electrochemical measurements using an unmodified BDD, the DOX reduction was observed at approximately -0.5 V (vs Ag/AgCl). Other drugs, i.e., mitomycin C or clonazepam (CZP), also underwent a reduction reaction at a similar potential to that of DOX, when using the unmodified BDD, which rendered the accurate quantification of DOX in a mixture challenging. Similar measurements conducted in PBS using the MIP-BDD only resulted in a DOX reduction current, with no reduction reaction observed in the presence of mitomycin C and CZP. These results suggest that the MIP, whose template molecule is DOX, inhibits the reduction of other drugs on the electrode surface. Selective DOX measurement using the MIP-BDD was also possible in human plasma, and the respective limits of detection of DOX in PBS and human plasma were 32.10 and 16.61 nM. The MIP-BDD was durable for use in six repeated measurements, and MIP-BDD may be applicable as an electrochemical sensor for application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kanako Ishii
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Shuyi Sun
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai 599-8531, Osaka, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai 599-8531, Osaka, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
4
|
Pierpaoli M, Szopińska M, Olejnik A, Ryl J, Fudala-Ksiażek S, Łuczkiewicz A, Bogdanowicz R. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131873. [PMID: 37379604 DOI: 10.1016/j.jhazmat.2023.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have gained significant attention as emerging contaminants due to their persistence, abundance, and adverse health effects. Consequently, the urgent need for ubiquitous and effective sensors capable of detecting and quantifying PFAS in complex environmental samples has become a priority. In this study, we present the development of an ultrasensitive molecularly imprinted polymer (MIP) electrochemical sensor tailored by chemically vapour-deposited boron and nitrogen codoped diamond-rich carbon nanoarchitectures for the selective determination of perfluorooctanesulfonic acid (PFOS). This approach allows for a multiscale reduction of MIP heterogeneities, leading to improved selectivity and sensitivity in PFOS detection. Interestingly, the peculiar carbon nanostructures induce a specific distribution of binding sites in the MIPs that exhibit a strong affinity for PFOS. The designed sensors demonstrated a low limit of detection (1.2 μg L-1) and exhibited satisfactory selectivity and stability. To gain further insights into the molecular interactions between diamond-rich carbon surfaces, electropolymerised MIP, and the PFOS analyte, a set of density functional theory (DFT) calculations was performed. Validation of the sensor's performance was carried out by successfully determining PFOS concentrations in real complex samples, such as tap water and treated wastewater, with average recovery rates consistent with UHPLC-MS/MS results. These findings demonstrate the potential of MIP-supported diamond-rich carbon nanoarchitectures for water pollution monitoring, specifically targeting emerging contaminants. The proposed sensor design holds promise for the development of in situ PFOS monitoring devices operating under relevant environmental concentrations and conditions.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland.
| | - Małgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Adrian Olejnik
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Poland
| | - Sylwia Fudala-Ksiażek
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Aneta Łuczkiewicz
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Robert Bogdanowicz
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Poland
| |
Collapse
|
5
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
6
|
Liustrovaite V, Pogorielov M, Boguzaite R, Ratautaite V, Ramanaviciene A, Pilvenyte G, Holubnycha V, Korniienko V, Diedkova K, Viter R, Ramanavicius A. Towards Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole for the Detection of Bacteria- Listeria monocytogenes. Polymers (Basel) 2023; 15:polym15071597. [PMID: 37050211 PMCID: PMC10097406 DOI: 10.3390/polym15071597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Detecting bacteria-Listeria monocytogenes-is an essential healthcare and food industry issue. The objective of the current study was to apply platinum (Pt) and screen-printed carbon (SPCE) electrodes modified by molecularly imprinted polymer (MIP) in the design of an electrochemical sensor for the detection of Listeria monocytogenes. A sequence of potential pulses was used to perform the electrochemical deposition of the non-imprinted polypyrrole (NIP-Ppy) layer and Listeria monocytogenes-imprinted polypyrrole (MIP-Ppy) layer over SPCE and Pt electrodes. The bacteria were removed by incubating Ppy-modified electrodes in different extraction solutions (sulphuric acid, acetic acid, L-lysine, and trypsin) to determine the most efficient solution for extraction and to obtain a more sensitive and repeatable design of the sensor. The performance of MIP-Ppy- and NIP-Ppy-modified electrodes was evaluated by pulsed amperometric detection (PAD). According to the results of this research, it can be assumed that the most effective MIP-Ppy/SPCE sensor can be designed by removing bacteria with the proteolytic enzyme trypsin. The LOD and LOQ of the MIP-Ppy/SPCE were 70 CFU/mL and 210 CFU/mL, respectively, with a linear range from 300 to 6700 CFU/mL.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Viktoriia Holubnycha
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Viktoriia Korniienko
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Kateryna Diedkova
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Pilvenyte G, Ratautaite V, Boguzaite R, Samukaite-Bubniene U, Plausinaitis D, Ramanaviciene A, Bechelany M, Ramanavicius A. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases. J Pharm Biomed Anal 2023; 228:115343. [PMID: 36934618 DOI: 10.1016/j.jpba.2023.115343] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress. The main attention in this article is focused on the detection methods of amyloid-β oligomers and p-Tau which are representative biomarkers for Alzheimer's disease, α-synuclein as the biomarker of Parkinson's disease, and α-amylase and lysozyme as the biomarkers of stress using molecular imprinting technology. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
8
|
Abstract
The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy.
Collapse
|
9
|
Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:613. [PMID: 36679407 PMCID: PMC9860941 DOI: 10.3390/s23020613] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.
Collapse
Affiliation(s)
- Stella Givanoudi
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Tom Depuydt
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Johan Robbens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
10
|
Electrochemical Biosensor for the Determination of Specific Antibodies against SARS-CoV-2 Spike Protein. Int J Mol Sci 2022; 24:ijms24010718. [PMID: 36614164 PMCID: PMC9821011 DOI: 10.3390/ijms24010718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
In this article, we report the development of an electrochemical biosensor for the determination of the SARS-CoV-2 spike protein (rS). A gold disc electrode was electrochemically modified to form the nanocrystalline gold structure on the surface. Then, it was further altered by a self-assembling monolayer based on a mixture of two alkane thiols: 11-mercaptoundecanoic acid (11-MUA) and 6-mercapto-1-hexanol (6-MCOH) (SAMmix). After activating carboxyl groups using a N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride and N-hydroxysuccinimide mixture, the rS protein was covalently immobilized on the top of the SAMmix. This electrode was used to design an electrochemical sensor suitable for determining antibodies against the SARS-CoV-2 rS protein (anti-rS). We assessed the association between the immobilized rS protein and the anti-rS antibody present in the blood serum of a SARS-CoV-2 infected person using three electrochemical methods: cyclic voltammetry, differential pulse voltammetry, and potential pulsed amperometry. The results demonstrated that differential pulse voltammetry and potential pulsed amperometry measurements displayed similar sensitivity. In contrast, the measurements performed by cyclic voltammetry suggest that this method is the most sensitive out of the three methods applied in this research.
Collapse
|
11
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
12
|
Balciunas D, Plausinaitis D, Ratautaite V, Ramanaviciene A, Ramanavicius A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing. Talanta 2022; 241:123252. [PMID: 35121544 DOI: 10.1016/j.talanta.2022.123252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
In this research the molecular imprinting technology was applied for the formation of glyphosate-sensitive layer. The glyphosate imprinted conducting polymer polypyrrole (MIPpy) was deposited on a gold chip/electrode and used as an electrochemical surface plasmon resonance (ESPR) sensor. The results described in this study disclose some restrictions and challenges, which arise during the development of glyphosate ESPR sensor based on the molecularly imprinted polymer development stage. It was demonstrated, that glyphosate could significantly affect the electrochemical deposition process of molecularly imprinted polymer on the electrode. The results of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and surface plasmon resonance (SPR) have demonstrated that glyphosate molecules tend to interact with bare gold electrode and thus hinder the polypyrrole deposition. As a possible solution, the formation of a self-assembled monolayer (SAM) of 11-(1H-Pyrrol-1-yl)undecane-1-thiol (PUT) before electrochemical deposition of MIPpy and NIPpy was applied. Dissociation constant (KD) and free energy of Gibbs (ΔG0) values of glyphosate on MIPpy and Ppy without glyphosate imprints (NIPpy) were calculated. For the interaction of glyphosate with MIPpy the KD was determined as 38.18 ± 2.33⋅10-5 and ΔG0 as -19.51 ± 0.15 kJ/mol.
Collapse
Affiliation(s)
- Domas Balciunas
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT, 03225, Vilnius, Lithuania
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT, 03225, Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT, 03225, Vilnius, Lithuania; Nanotechnology Laboratory, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT, 10257, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center for Nanotechnology and Material Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT, 03225, Vilnius, Lithuania; Nanotechnology Laboratory, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT, 10257, Vilnius, Lithuania.
| |
Collapse
|
13
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
14
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
15
|
Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022; 403:139581. [PMID: 34898691 PMCID: PMC8643074 DOI: 10.1016/j.electacta.2021.139581] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.
Collapse
|
16
|
Ratautaite V, Boguzaite R, Mickeviciute MB, Mikoliunaite L, Samukaite-Bubniene U, Ramanavicius A, Ramanaviciene A. Evaluation of Electrochromic Properties of Polypyrrole/Poly(Methylene Blue) Layer Doped by Polysaccharides. SENSORS 2021; 22:s22010232. [PMID: 35009774 PMCID: PMC8749664 DOI: 10.3390/s22010232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer. AFM and SEM have been used for the analysis of the surface dominant features of the Ppy-PMB layers. From these images, it was concluded that the saccharides used in this study have a moderate effect on the surface morphology. Electrochromic properties were analyzed with respect to the changes of absorbance of the layer at two wavelengths (668 nm and 750 nm) by changing the pH of the surrounding solution and the potential between +0.8 V and -0.8 V. It was demonstrated that the highest absorbance changes are characteristic for all layers in the acidic media. Meanwhile, the absorbance changes of the layers were decreased in the more alkaline media. It was determined that the Ppy-PMB layers with heparin as a dopant were more mechanically stable in comparison to the layers doped with lactose and sucrose. Therefore, the Ppy-PMB layer doped with heparin was selected for the further experiment and it was applied in the design of electrochromic sensors for the determination of three xanthine derivatives: caffeine, theobromine, and theophylline. A linear relationship of ΔA (∆A = A+0.8V - A-0.8V) vs. concentration was determined for all three xanthine derivatives studied. The largest change in optical absorption was observed in the case of theophylline determination.
Collapse
Affiliation(s)
- Vilma Ratautaite
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Raimonda Boguzaite
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Migle Beatrice Mickeviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
- Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Arunas Ramanavicius
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
17
|
Ratautaite V, Samukaite-Bubniene U, Plausinaitis D, Boguzaite R, Balciunas D, Ramanaviciene A, Neunert G, Ramanavicius A. Molecular Imprinting Technology for Determination of Uric Acid. Int J Mol Sci 2021; 22:5032. [PMID: 34068596 PMCID: PMC8126139 DOI: 10.3390/ijms22095032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
The review focuses on the overview of electrochemical sensors based on molecularly imprinted polymers (MIPs) for the determination of uric acid. The importance of robust and precise determination of uric acid is highlighted, a short description of the principles of molecular imprinting technology is presented, and advantages over the others affinity-based analytical methods are discussed. The review is mainly concerned with the electro-analytical methods like cyclic voltammetry, electrochemical impedance spectroscopy, amperometry, etc. Moreover, there are some scattered notes to the other electrochemistry-related analytical methods, which are capable of providing additional information and to solve some challenges that are not achievable using standard electrochemical methods. The significance of these overviewed methods is highlighted. The overview of the research that is employing MIPs imprinted with uric acid is mainly targeted to address these topics: (i) type of polymers, which are used to design uric acid imprint structures; (ii) types of working electrodes and/or other parts of signal transducing systems applied for the registration of analytical signal; (iii) the description of the uric acid extraction procedures applied for the design of final MIP-structure; (iv) advantages and disadvantages of electrochemical methods and other signal transducing methods used for the registration of the analytical signal; (vi) overview of types of interfering molecules, which were analyzed to evaluate the selectivity; (vi) comparison of analytical characteristics such as linear range, limits of detection and quantification, reusability, reproducibility, repeatability, and stability. Some insights in future development of uric acid sensors are discussed in this review.
Collapse
Affiliation(s)
- Vilma Ratautaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Urte Samukaite-Bubniene
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Raimonda Boguzaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
| | - Domas Balciunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Almira Ramanaviciene
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Arunas Ramanavicius
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| |
Collapse
|
18
|
Zhang Z, Liu Y, Huang P, Wu FY, Ma L. Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal-organic framework for highly selective fluorescence detection of metronidazole. Talanta 2021; 232:122411. [PMID: 34074401 DOI: 10.1016/j.talanta.2021.122411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
Molecular imprinting technology was used to coat polydopamine (PDA) onto MIL-53(Fe) surface by simple self-polymerization. The MIL-53(Fe)@MIP composite with enhanced peroxidase-like activity and specific target recognition function was synthesized and selected to construct a fluorescence sensor to detect metronidazole (MNZ). Since the substrate terephthalic acid was incorporated in the framework of MIL-53(Fe)@MIP, no additional luminescent substrate was required. This avoided the interference of the substrate on the enzymatic detection system and improved the accuracy of the assay. The characteristics of MIL-53(Fe)@MIP composite were investigated and confirmed by systematic analyses. The experimental results proved that the sensor provided satisfactory performances for quantitative determination of MNZ in wide linear range from 1 to 200 μM with low limit of detection as 53.4 nM. Potential interfering substances such as common cations and anions, amino acids, other antibiotics, sugars, and food additive were studied to show negligible effect on the assay, allowing the practical application to different fields including milk and human serum by the standard addition method. The recoveries were obtained between 93.2 and 102%, and the RSD was less than 3%.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ying Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
19
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
20
|
Polymers in Sensor and Biosensor Design. Polymers (Basel) 2021; 13:polym13060917. [PMID: 33809727 PMCID: PMC8002212 DOI: 10.3390/polym13060917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
|
21
|
Wackers G, Cornelis P, Putzeys T, Peeters M, Tack J, Troost F, Doll T, Verhaert N, Wagner P. Electropolymerized Receptor Coatings for the Quantitative Detection of Histamine with a Catheter-Based, Diagnostic Sensor. ACS Sens 2021; 6:100-110. [PMID: 33337133 DOI: 10.1021/acssensors.0c01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this article, we report on the development of a catheter-based, biomimetic sensor as a step toward a minimally invasive diagnostic instrument in the context of functional bowel disorders. Histamine is a key mediator in allergic and inflammatory processes in the small intestines; however, it is a challenge to determine histamine levels at the duodenal mucosa, and classical bioreceptors are unsuitable for use in the digestive medium of bowel fluid. Therefore, we have developed molecularly imprinted polypyrrole coatings for impedimetric sensing electrodes, which enable the quantification of histamine in nondiluted, human bowel fluid in a broad concentration range from 25 nM to 1 μM. The electrodes show negligible cross-sensitivity to histidine as a competitor molecule and, for comparison, we also evaluated the response of nonimprinted and taurine-imprinted polypyrrole to histamine. Furthermore, using equivalent-circuit modeling, we found that the molecular recognition of histamine by polypyrrole primarily increases the resistive component of the electrode-liquid interface while capacitive effects are negligible. The sensor, integrated into a catheter, measures differentially to correct for nonspecific adsorption effects in the complex matrix of bowel fluids, and a single triggering frequency is sufficient to determine histamine concentrations. Together, these features are beneficial for real-time diagnostic tests.
Collapse
Affiliation(s)
- Gideon Wackers
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - Peter Cornelis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - Tristan Putzeys
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
- Research Group Experimental Oto-rhino-laryngology, KU Leuven, O&N II, Herestraat 49, Leuven B-3001, Belgium
| | - Marloes Peeters
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Jan Tack
- Translational Research in Gastrointestinal Disorders TARGID, KU Leuven, O&N I, Herestraat 49, Leuven B-3000, Belgium
| | - Freddy Troost
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitsingel 40, ER Maastricht NL-6229, The Netherlands
| | - Theodor Doll
- Institute of AudioNeuroTechnology VIANNA, Hannover Medical School, Stadtfelddamm 34, Hannover D-30625, Germany
| | - Nicolas Verhaert
- Research Group Experimental Oto-rhino-laryngology, KU Leuven, O&N II, Herestraat 49, Leuven B-3001, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| |
Collapse
|
22
|
Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020; 13:E49. [PMID: 33375584 PMCID: PMC7795957 DOI: 10.3390/polym13010049] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
23
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
24
|
Benachio I, Lobato A, Gonçalves LM. Employing molecularly imprinted polymers in the development of electroanalytical methodologies for antibiotic determination. J Mol Recognit 2020; 34:e2878. [PMID: 33022110 DOI: 10.1002/jmr.2878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Antibiotics, although being amazing compounds, need to be monitored in the environment and foodstuff. This is primarily to prevent the development of antibiotic resistance that may make them ineffective. Unsurprisingly, advances in analyticalsciences that can improve their determination are appreciated. Electrochemical techniques are known for their simplicity, sensitivity, portability and low-cost; however, they are often not selective enough without recurring to a discriminating element like an antibody. Molecular imprinting technology aims to create artificial tissues mimicking antibodies named molecularly imprinted polymers (MIPs), these retain the advantages of selectivity but without the typical disadvantages of biological material, like limited shelf-life and high cost. This manuscript aims to review all analytical methodologies for antibiotics, using MIPs, where the detection technique is electrochemical, like differential pulse voltammetry (DPV), square-wave voltammetry (SWV) or electrochemical impedance spectroscopy (EIS). MIPs developed by electropolymerization (e-MIPs) were applied in about 60 publications and patents found in the bibliographic search, while MIPs developed by other polymerization techniques, like temperature assisted ("bulk") or photopolymerization, were limited to around 40. Published works covered the electroanalysis of a wide range of different antibiotics (β-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, among other), in a wide range of matrices (food, environmental and biological).
Collapse
Affiliation(s)
- Ingrid Benachio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alnilan Lobato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
25
|
Knežević S, Ognjanović M, Nedić N, Mariano JF, Milanović Z, Petković B, Antić B, Djurić SV, Stanković D. A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Wackers G, Putzeys T, Peeters M, Van de Cauter L, Cornelis P, Wübbenhorst M, Tack J, Troost F, Verhaert N, Doll T, Wagner P. Towards a catheter-based impedimetric sensor for the assessment of intestinal histamine levels in IBS patients. Biosens Bioelectron 2020; 158:112152. [PMID: 32275205 DOI: 10.1016/j.bios.2020.112152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
In this work, we report on the development of a catheter-based sensor designed for measuring the concentration of histamine in the human duodenum. Certain gut disorders, such as the irritable bowel syndrome (IBS), are associated with elevated levels of intestinal histamine due to chronic immune activation. As it is still impossible to determine histamine concentrations in vivo, a nasointestinal catheter with histamine-sensing capabilities has the potential to become a valuable diagnostic instrument. Regarding the sensing principle, we selected impedance spectroscopy using voltages that are compatible with intra-body applications with molecularly imprinted polymers (MIPs) as recognition elements. MIPs are synthetic receptors that offer the advantages of robustness, high specificity and selectivity for histamine as a target. In this specific case, the MIPs were synthesized from acryclic acid monomers, which guarantees a uniform binding capacity within the pH range of intestinal fluid. We have validated the catheter sensor on human intestinal liquids spiked with histamine in a testing setup that mimics the environment inside the duodenum. The dose-response curves show an analytical range between 5 and 200 nM of histamine, corresponding to physiologically normal conditions while higher concentrations correlate with disease. The key output signal of the sensor is the resistive component of the MIP-functionalized titanium electrodes as derived from the equivalent-circuit modelling of full-range impedance spectra. Future applications could be catheters tailored to cardiovascular, urological, gastrointestinal, and neurovascular applications. This, in combination with the versatility of the MIPs, will make this sensor platform a versatile diagnostic tool.
Collapse
Affiliation(s)
- Gideon Wackers
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium.
| | - Tristan Putzeys
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium; KU Leuven, Research Group Experimental Oto-rhino-laryngology, O&N II, Herestraat 49, B-3001, Leuven, Belgium
| | - Marloes Peeters
- Newcastle University, School of Engineering, Newcastle NE1 7RU, United Kingdom
| | - Lori Van de Cauter
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Peter Cornelis
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Michael Wübbenhorst
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Jan Tack
- KU Leuven, Translational Research in Gastrointestinal Disorders, O&N I, Herestraat 49, B-3001, Leuven, Belgium
| | - Freddy Troost
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Universiteitssingel 40, NL-6229 ER, Maastricht, the Netherlands
| | - Nicolas Verhaert
- KU Leuven, Research Group Experimental Oto-rhino-laryngology, O&N II, Herestraat 49, B-3001, Leuven, Belgium
| | - Theodor Doll
- Hannover Medical School, Institute of AudioNeuroTechnology VIANNA, Stadtfelddamm 34, D-30625, Hannover, Germany
| | - Patrick Wagner
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| |
Collapse
|
27
|
Viter R, Kunene K, Genys P, Jevdokimovs D, Erts D, Sutka A, Bisetty K, Viksna A, Ramanaviciene A, Ramanavicius A. Photoelectrochemical Bisphenol S Sensor Based on ZnO‐Nanoroads Modified by Molecularly Imprinted Polypyrrole. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900232] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roman Viter
- Institute of Chemical Physics, and Institute of Atomic Physics and SpectroscopyUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
- NanoTechnas – Center of Nanotechnology and Materials ScienceFaculty of Chemistry and GeosciencesVilnius University Naugarduko 24 LT‐03225 Vilnius Lithuania
| | - Kwanele Kunene
- Department of ChemistryDurban University of Technology P.O Box 1334 Durban 4000 South Africa
- Faculty of ChemistryUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
| | - Povilas Genys
- Research Laboratory of Functional Materials TechnologiesFaculty of Materials Science and Applied ChemistryRiga Technical University P. Valdena 3/7 1048 Riga Latvia
| | - Daniels Jevdokimovs
- Institute of Chemical Physics, and Institute of Atomic Physics and SpectroscopyUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
| | - Donats Erts
- Institute of Chemical Physics, and Institute of Atomic Physics and SpectroscopyUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
- Sumy State UniversityCenter for Collective Use of Scientific Equipment 31, Sanatornaya st. 40018 Sumy Ukraine
| | - Andris Sutka
- Institute of Chemical Physics, and Institute of Atomic Physics and SpectroscopyUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
- Research Laboratory of Functional Materials TechnologiesFaculty of Materials Science and Applied ChemistryRiga Technical University P. Valdena 3/7 1048 Riga Latvia
| | - Krishna Bisetty
- Department of ChemistryDurban University of Technology P.O Box 1334 Durban 4000 South Africa
| | - Arturs Viksna
- Faculty of ChemistryUniversity of Latvia 19 Raina Boulevard LV 1586 Riga Latvia
| | - Almira Ramanaviciene
- Research Laboratory of Functional Materials TechnologiesFaculty of Materials Science and Applied ChemistryRiga Technical University P. Valdena 3/7 1048 Riga Latvia
| | - Arunas Ramanavicius
- Research Laboratory of Functional Materials TechnologiesFaculty of Materials Science and Applied ChemistryRiga Technical University P. Valdena 3/7 1048 Riga Latvia
| |
Collapse
|
28
|
Molecularly Imprinted Polyresorcinol Based Capacitive Sensor for Sulphanilamide Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Ramakers G, Wackers G, Trouillet V, Welle A, Wagner P, Junkers T. Laser-Grafted Molecularly Imprinted Polymers for the Detection of Histamine from Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gijs Ramakers
- Institute for Materials Research (IMO), Universiteit Hasselt, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Gideon Wackers
- Department Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | | | | | - Patrick Wagner
- Department Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Tanja Junkers
- Institute for Materials Research (IMO), Universiteit Hasselt, Martelarenlaan 42, 3500 Hasselt, Belgium
- Polymer Reaction Design Group, School of Chemistry, Rainforest Walk 19, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
30
|
Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Crit Rev Anal Chem 2018; 48:293-304. [PMID: 29309211 DOI: 10.1080/10408347.2017.1422966] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.
Collapse
Affiliation(s)
- Megha A Deshmukh
- a RUSA-Center for Advanced Sensor Technology, Department of Physics , Dr Babasaheb Ambedkar Marathwada University , Aurangabad , MS , India.,b NanoTechnas - Centre of Nanotechnology and Material Science , Faculty of Chemistry and Geosciences, Vilnius University , Vilnius , Lithuania
| | - Mahendra D Shirsat
- a RUSA-Center for Advanced Sensor Technology, Department of Physics , Dr Babasaheb Ambedkar Marathwada University , Aurangabad , MS , India
| | - Almira Ramanaviciene
- b NanoTechnas - Centre of Nanotechnology and Material Science , Faculty of Chemistry and Geosciences, Vilnius University , Vilnius , Lithuania
| | - Arunas Ramanavicius
- b NanoTechnas - Centre of Nanotechnology and Material Science , Faculty of Chemistry and Geosciences, Vilnius University , Vilnius , Lithuania.,c Department of Physical Chemistry , Faculty of Chemistry and Geosciences, Vilnius University , Vilnius , Lithuania
| |
Collapse
|
31
|
Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens Bioelectron 2017; 102:540-552. [PMID: 29220802 DOI: 10.1016/j.bios.2017.11.069] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Neurotransmitters are important biochemical molecules that control behavioral and physiological functions in central and peripheral nervous system. Therefore, the analysis of neurotransmitters in biological samples has a great clinical and pharmaceutical importance. To date, various methods have been developed for their assay. Of the various methods, the electrochemical sensors demonstrated the potential of being robust, selective, sensitive, and real time measurements. Recently, conducting polymers (CPs) and their composites have been widely employed in the fabrication of various electrochemical sensors for the determination of neurotransmitters. Hence, this review presents a brief introduction to the electrochemical biosensors, with the detailed discussion on recent trends in the development and applications of electrochemical neurotransmitter sensors based on CPs and their composites. The review covers the sensing principle of prime neurotransmitters, including glutamate, aspartate, tyrosine, epinephrine, norepinephrine, dopamine, serotonin, histamine, choline, acetylcholine, nitrogen monoxide, and hydrogen sulfide. In addition, the combination with other analytical techniques was also highlighted. Detection challenges and future prospective of the neurotransmitter sensors were discussed for the development of biomedical and healthcare applications.
Collapse
Affiliation(s)
- Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Rajendra N Goyal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
32
|
Henao-Escobar W, del Torno-de Román L, Domínguez-Renedo O, Alonso-Lomillo M, Arcos-Martínez M. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Jiang L, Hu J, Foord JS. Electroanalysis of Hydrogen Peroxide at Boron Doped Diamond Electrode Modified by Silver Nanoparticles and Haemoglobin. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Shahrokhian S, Ranjbar S, Ghalkhani M. Modification of the Electrode Surface by Ag Nanoparticles Decorated Nano Diamond-graphite for Voltammetric Determination of Ceftizoxime. ELECTROANAL 2015. [DOI: 10.1002/elan.201500377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Janíková-Bandžuchová L, Šelešovská R, Schwarzová-Pecková K, Chýlková J. Sensitive voltammetric method for rapid determination of pyridine herbicide triclopyr on bare boron-doped diamond electrode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|