1
|
Omidifar N, Masoumzadeh R, Saghi SA, Nikmanesh A, Shokripour M, Mousavi SM, Nikmanesh Y, Gholami A. A New Approach in the Early Electrochemical Diagnosis of Hepatitis B Virus Infection using Carbon-based Nanomaterials. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:166-182. [PMID: 38523523 DOI: 10.2174/0118722105285022240311062943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 03/26/2024]
Abstract
The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal-organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/ Fe3O4/Prussian Blue (GO/Fe3O4/PB) immunosensor, and graphene oxide-ferrocene-CS/Au (GOFc- CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Masoumzadeh
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Nikmanesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
4
|
Li X, Liu T, Zhang Y, Ni X, Hossain MN, Chen X, Huang H, Kraatz HB. A novel electrochemical immunosensor for hepatitis B surface antigen based on Fe 3O 4 nanoflowers and heterogeneous chain reaction signal amplification strategy. Talanta 2021; 221:121459. [PMID: 33076081 DOI: 10.1016/j.talanta.2020.121459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Herein, a novel sandwich-type electrochemical immunosensor was fabricated based on Fe3O4 nanoflowers (Fe3O4 NFs) and heterogeneous chain reaction (HCR) signal amplification strategy for the sensitive detection of hepatitis B surface antigen (HBsAg). The aldehyde-functionalized Fe3O4 NFs are used as a supporting matrix to immobilize the hepatitis B surface antibody 1 (HBsAb1). The biotin-modified single-strand DNA (biotin-S0) was connected onto the biotin-HBsAb2 via linkage of streptavidin (SA), followed by addition of methylene blue (MB) modified single strand DNA1 (MB-S1) and DNA2 (MB-S2) for HCR signal amplification. The designed immunosensor exhibited a detection linear range of 0.5 pg mL-1-0.25 ng mL-1 and a low detection limit of 0.16 pg mL-1, with excellent stability, selectivity and reproducibility. Furthermore, HBsAg is detected in the serum samples with a stable and fast response, indicating that the proposed immunosensor has a promising potential application in clinical analysis.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Tianchen Liu
- Nanjing Foreign Language School, Nanjing, 210018, PR China
| | - Yun Zhang
- Zhongda Hospital, Affiliated to Southeast University, Nanjing, 210009, PR China
| | - Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065, Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065, Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
5
|
Wang Y, Hu Y, He Q, Yan J, Xiong H, Wen N, Cai S, Peng D, Liu Y, Liu Z. Metal-organic frameworks for virus detection. Biosens Bioelectron 2020; 169:112604. [PMID: 32980805 PMCID: PMC7489328 DOI: 10.1016/j.bios.2020.112604] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Virus severely endangers human life and health, and the detection of viruses is essential for the prevention and treatment of associated diseases. Metal-organic framework (MOF), a novel hybrid porous material which is bridged by the metal clusters and organic linkers, has become a promising biosensor platform for virus detection due to its outstanding properties including high surface area, adjustable pore size, easy modification, etc. However, the MOF-based sensing platforms for virus detection are rarely summarized. This review systematically divided the detection platforms into nucleic acid and immunological (antigen and antibody) detection, and the underlying sensing mechanisms were interpreted. The nucleic acid sensing was discussed based on the properties of MOF (such as metal ion, functional group, geometry structure, size, porosity, stability, etc.), revealing the relationship between the sensing performance and properties of MOF. Moreover, antibodies sensing based on the fluorescence detection and antigens sensing based on molecular imprinting or electrochemical immunoassay were highlighted. Furthermore, the remaining challenges and future development of MOF for virus detection were further discussed and proposed. This review will provide valuable references for the construction of sophisticated sensing platform for the detection of viruses, especially the 2019 coronavirus.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yaqin Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Nachuan Wen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
6
|
Application of carbon nanomaterials in human virus detection. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2020; 5. [PMCID: PMC7509950 DOI: 10.1016/j.jsamd.2020.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human-pathogenic viruses are still a chief reason for illness and death on the globe, as epitomized by the COVID-19 pandemic instigated by a coronavirus in 2020. Multiple novel sensors have been invented because diseases must be detected and diagnosed as early as possible, and recognition methods have to be carried out with minimal invasivity. Sensors have been particularly developed focusing on miniaturization by the use of nanomaterials for fabricating nanosensors. The nano-sized nature of nanomaterials and their exclusive optical, electronical, magnetical, and mechanical attributes can enhance patient care through the use of sensors with minimal invasivity and extreme sensitivity. Amongst the nanomaterials utilized for fabricating nano-sensors, carbon-based nanomaterials are promising as these sensors respond better to signals in various sensing settings. This review provides an overview of the recent developments in carbon nanomaterial-based biosensors for viral recognition based on the biomarkers that arise from the infection, the nucleic acids from the viruses, and the entire virus. The role of carbon nanomaterials is highlighted by the improvement of sensor and recognition functionality. The Dengue virus, Ebola virus, Hepatits virus, human immunodeficiency virus (HIV), influenza virus, Zika virus and Adenovirus are the virus types reviewed to illustrate the implementation of the techniques. Finally, the drawbacks and advantages of carbon nanomaterial-based biosensors for viral recognition are identified and discussed.
Collapse
|
7
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
8
|
Chemiluminescent Optical Fiber Immunosensor Combining Surface Modification and Signal Amplification for Ultrasensitive Determination of Hepatitis B Antigen. SENSORS 2020; 20:s20174912. [PMID: 32878030 PMCID: PMC7506923 DOI: 10.3390/s20174912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Optical fiber based immunosensors are very attractive for biomarker detection. In order to improve the sensor response, we propose a promising strategy which combines porous-layer modification of the fiber surface and streptavidin-biotin-peroxidase nano-complex signal amplification in chemiluminescent detection. Two hepatitis B antigens, hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg), are used as the targets for analysis using the proposed sensor. Comparing to immunoassays using normal optical fiber sensors, the response of the present sensor is enhanced by a factor of 4.8 and 6.7 for detection of HBsAg and HBeAg, respectively. The limit-of-quantitation of the proposed method is as low as 0.3 fg/mL (0.01 fg/mL) with a wide linear response range of 3 fg/mL–150 ng/mL (0.1 fg/mL–160 ng/mL) for sensing HBsAg (HBeAg). Quantitative determination of HBsAg and HBeAg in human serum samples is performed, showing the applicability of the proposed method for biomarker detection.
Collapse
|
9
|
Wei S, Xiao H, Cao L, Chen Z. A Label-Free Immunosensor Based on Graphene Oxide/Fe 3O 4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. BIOSENSORS 2020; 10:E24. [PMID: 32183297 PMCID: PMC7146221 DOI: 10.3390/bios10030024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
In this article, a highly sensitive label-free immunosensor based on a graphene oxide (GO)/Fe3O4/Prussian blue (PB) nanocomposite modified electrode was developed for the determination of human hepatitis B surface antigen (HBsAg). In this electrochemical immunoassay system, PB was used as a redox probe, while GO/Fe3O4/PB nanocomposites and AuNPs were prepared and coated on screen-printed electrodes to enhance the detection sensitivity and to immobilize the hepatitis B surface antibody (HBsAb). The immunosensor was fabricated based on the principle that the decrease in peak currents of PB is proportional to the concentration of HBsAg captured on the modified immunosensor. The experimental results revealed that the immunosensor exhibited a sensitive response to HBsAg in the range of 0.5 pg·mL-1 to 200 ng·mL-1, and with a low detection limit of 0.166 pg·mL-1 (S/N = 3). Furthermore, the proposed immunosensor was used to detect several clinical serum samples with acceptable results, and it also showed good reproducibility, selectivity and stability, which may have a promising potential application in clinical immunoassays.
Collapse
Affiliation(s)
- Shanshan Wei
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.W.); (H.X.)
| | - Haolin Xiao
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.W.); (H.X.)
| | - Liangli Cao
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhencheng Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.W.); (H.X.)
| |
Collapse
|
10
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|
11
|
Tian Z, Mi L, Wu Y, Shao F, Zou M, Zhou Z, Liu S. Visual Electrofluorochromic Detection of Cancer Cell Surface Glycoprotein on a Closed Bipolar Electrode Chip. Anal Chem 2019; 91:7902-7910. [PMID: 31135138 DOI: 10.1021/acs.analchem.9b01760] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work reports an electrofluorochromic strategy on the basis of electric field control of fluorescent signal generation on bipolar electrodes (BPEs) for visualizing cancer cell surface glycoprotein (mucin 1). The device included two separate cells: anodic sensing cell and cathodic reporting cell, which were connected by a screen-printing electrode patterned on poly(ethylene terephthalate) (PET) membrane. In the sensing cell, anti-MUC1 antibody immobilized on a chitosan-multiwalled carbon nanotube (CS-MWCNT)-modified anodic BPE channel was used for capturing mucin-1 (MUC1) or MCF-7 cancer cells. Then ferrocene (Fc)-labeled mucin 1 aptamers were introduced through hybridization. Under an applied voltage, the ferrocene was oxidized and the electroactive molecules of 1,4-benzoquinone (BQ) in the cathodic reporting cell were reduced according to electroneutrality. This produced a strongly basic 1,4-benzoquinone anion radical (BQ•-), which turned on the fluorescence of pH-responsive fluorescent molecules of (2-(2-(4-hydroxystyryl)-6-methyl-4 H-pyran-4-ylidene)malononitrile) (SPM) coexisting in the cathode reporting cell for both spectrophotometric detection and imaging. This strategy allowed sensitive detection of MUC1 at a concentration down to 10 fM and was capable of detecting a minimum of three MCF-7 cells. Furthermore, the amount of MUC1 on MCF-7 cells was calculated to be 6.02 × 104 molecules/cell. Our strategy also had the advantages of high temporal and spatial resolution, short response time, and high luminous contrast and is of great significance for human health and the promotion of life science development.
Collapse
Affiliation(s)
- Zhaoyan Tian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Li Mi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Yafeng Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Fengying Shao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ) , No. A3, Gaobeidian Road, Chaoyang District , Beijing 100123 , China
| | - Zhenxian Zhou
- Nanjing Second Hospital , No. 121, Jiangjiayuan, Gulou District , Nanjing , Jiangsu , China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| |
Collapse
|