1
|
Aqel S, Ahmad J, Saleh I, Fathima A, Al Thani AA, Mohamed WMY, Shaito AA. Advances in Huntington's Disease Biomarkers: A 10-Year Bibliometric Analysis and a Comprehensive Review. BIOLOGY 2025; 14:129. [PMID: 40001897 PMCID: PMC11852324 DOI: 10.3390/biology14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Neurodegenerative disorders (NDs) cause progressive neuronal loss and are a significant public health concern, with NDs projected to become the second leading global cause of death within two decades. Huntington's disease (HD) is a rare, progressive ND caused by an autosomal-dominant mutation in the huntingtin (HTT) gene, leading to severe neuronal loss in the brain and resulting in debilitating motor, cognitive, and psychiatric symptoms. Given the complex pathology of HD, biomarkers are essential for performing early diagnosis, monitoring disease progression, and evaluating treatment efficacy. However, the identification of consistent HD biomarkers is challenging due to the prolonged premanifest HD stage, HD's heterogeneous presentation, and its multiple underlying biological pathways. This study involves a 10-year bibliometric analysis of HD biomarker research, revealing key research trends and gaps. The study also features a comprehensive literature review of emerging HD biomarkers, concluding the need for better stratification of HD patients and well-designed longitudinal studies to validate HD biomarkers. Promising candidate wet HD biomarkers- including neurofilament light chain protein (NfL), microRNAs, the mutant HTT protein, and specific metabolic and inflammatory markers- are discussed, with emphasis on their potential utility in the premanifest HD stage. Additionally, biomarkers reflecting brain structural deficits and motor or behavioral impairments, such as neurophysiological (e.g., motor tapping, speech, EEG, and event-related potentials) and imaging (e.g., MRI, PET, and diffusion tensor imaging) biomarkers, are evaluated. The findings underscore that the discovery and validation of reliable HD biomarkers urgently require improved patient stratification and well-designed longitudinal studies. Reliable biomarkers, particularly in the premanifest HD stage, are crucial for optimizing HD clinical management strategies, enabling personalized treatment approaches, and advancing clinical trials of HD-modifying therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jamil Ahmad
- Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Aseela Fathima
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 50728, Malaysia;
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Reboussin É, Bastelica P, Benmessabih I, Cordovilla A, Delarasse C, Réaux-Le Goazigo A, Brignole-Baudouin F, Olmière C, Baudouin C, Buffault J, Mélik Parsadaniantz S. Evaluation of Rho kinase inhibitor effects on neuroprotection and neuroinflammation in an ex-vivo retinal explant model. Acta Neuropathol Commun 2024; 12:150. [PMID: 39300576 PMCID: PMC11412021 DOI: 10.1186/s40478-024-01859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Glaucoma is a leading cause of blindness, affecting retinal ganglion cells (RGCs) and their axons. By 2040, it is likely to affect 110 million people. Neuroinflammation, specifically through the release of proinflammatory cytokines by M1 microglial cells, plays a crucial role in glaucoma progression. Indeed, in post-mortem human studies, pre-clinical models, and ex-vivo models, RGC degeneration has been consistently shown to be linked to inflammation in response to cell death and tissue damage. Recently, Rho kinase inhibitors (ROCKis) have emerged as potential therapies for neuroinflammatory and neurodegenerative diseases. This study aimed to investigate the potential effects of three ROCKis (Y-27632, Y-33075, and H-1152) on retinal ganglion cell (RGC) loss and retinal neuroinflammation using an ex-vivo retinal explant model. METHODS Rat retinal explants underwent optic nerve axotomy and were treated with Y-27632, Y-33075, or H-1152. The neuroprotective effects on RGCs were evaluated using immunofluorescence and Brn3a-specific markers. Reactive glia and microglial activation were studied by GFAP, CD68, and Iba1 staining. Flow cytometry was used to quantify day ex-vivo 4 (DEV 4) microglial proliferation and M1 activation by measuring the number of CD11b+, CD68+, and CD11b+/CD68+ cells after treatment with control solvent or Y-33075. The modulation of gene expression was measured by RNA-seq analysis on control and Y-33075-treated explants and glial and pro-inflammatory cytokine gene expression was validated by RT-qPCR. RESULTS Y-27632 and H-1152 did not significantly protect RGCs. By contrast, at DEV 4, 50 µM Y-33075 significantly increased RGC survival. Immunohistology showed a reduced number of Iba1+/CD68+ cells and limited astrogliosis with Y-33075 treatment. Flow cytometry confirmed lower CD11b+, CD68+, and CD11b+/CD68+ cell numbers in the Y-33075 group. RNA-seq showed Y-33075 inhibited the expression of M1 microglial markers (Tnfα, Il-1β, Nos2) and glial markers (Gfap, Itgam, Cd68) and to reduce apoptosis, ferroptosis, inflammasome formation, complement activation, TLR pathway activation, and P2rx7 and Gpr84 gene expression. Conversely, Y-33075 upregulated RGC-specific markers, neurofilament formation, and neurotransmitter regulator expression, consistent with its neuroprotective effects. CONCLUSION Y-33075 demonstrates marked neuroprotective and anti-inflammatory effects, surpassing the other tested ROCKis (Y-27632 and H-1152) in preventing RGC death and reducing microglial inflammatory responses. These findings highlight its potential as a therapeutic option for glaucoma.
Collapse
Affiliation(s)
- Élodie Reboussin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Paul Bastelica
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | - Ilyes Benmessabih
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Arnaud Cordovilla
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Cécile Delarasse
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Annabelle Réaux-Le Goazigo
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Françoise Brignole-Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- Laboratoire, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | | | - Christophe Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Juliette Buffault
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Stéphane Mélik Parsadaniantz
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France.
| |
Collapse
|
3
|
Kobeissy F, Arja RD, Munoz JC, Shear DA, Gilsdorf J, Zhu J, Yadikar H, Haskins W, Tyndall JA, Wang KK. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev Mol Diagn 2024; 24:67-77. [PMID: 38275158 DOI: 10.1080/14737159.2024.2306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Major organ-based in vitro diagnostic (IVD) tests like ALT/AST for the liver and cardiac troponins for the heart are established, but an approved IVD blood test for the brain has been missing, highlighting a gap in medical diagnostics. AREAS COVERED In response to this need, Abbott Diagnostics secured FDA clearance in 2021 for the i-STAT Alinity™, a point-of-care plasma blood test for mild traumatic brain injury (TBI). BioMerieux VIDAS, also approved in Europe, utilizes two brain-derived protein biomarkers: neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP). These biomarkers, which are typically present in minimal amounts in healthy individuals, are instrumental in diagnosing mild TBI with potential brain lesions. The study explores how UCH-L1 and GFAP levels increase significantly in the bloodstream following traumatic brain injury, aiding in early and accurate diagnosis. EXPERT OPINION The introduction of the i-STAT Alinity™ and the Biomerieux VIDAS TBI blood tests mark a groundbreaking development in TBI diagnosis. It paves the way for the integration of TBI biomarker tools into clinical practice and therapeutic trials, enhancing the precision medicine approach by generating valuable data. This advancement is a critical step in addressing the long-standing gap in brain-related diagnostics and promises to revolutionize the management and treatment of mild TBI.
Collapse
Affiliation(s)
- Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rawad Daniel Arja
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jennifer C Munoz
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jiepei Zhu
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | | | | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Halabi R, Dakroub F, Haider MZ, Patel S, Amhaz NA, Reslan MA, Eid AH, Mechref Y, Darwiche N, Kobeissy F, Omeis I, Shaito AA. Unveiling a Biomarker Signature of Meningioma: The Need for a Panel of Genomic, Epigenetic, Proteomic, and RNA Biomarkers to Advance Diagnosis and Prognosis. Cancers (Basel) 2023; 15:5339. [PMID: 38001599 PMCID: PMC10670806 DOI: 10.3390/cancers15225339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Meningiomas are the most prevalent primary intracranial tumors. The majority are benign but can undergo dedifferentiation into advanced grades classified by World Health Organization (WHO) into Grades 1 to 3. Meningiomas' tremendous variability in tumor behavior and slow growth rates complicate their diagnosis and treatment. A deeper comprehension of the molecular pathways and cellular microenvironment factors implicated in meningioma survival and pathology is needed. This review summarizes the known genetic and epigenetic aberrations involved in meningiomas, with a focus on neurofibromatosis type 2 (NF2) and non-NF2 mutations. Novel potential biomarkers for meningioma diagnosis and prognosis are also discussed, including epigenetic-, RNA-, metabolomics-, and protein-based markers. Finally, the landscape of available meningioma-specific animal models is overviewed. Use of these animal models can enable planning of adjuvant treatment, potentially assisting in pre-operative and post-operative decision making. Discovery of novel biomarkers will allow, in combination with WHO grading, more precise meningioma grading, including meningioma identification, subtype determination, and prediction of metastasis, recurrence, and response to therapy. Moreover, these biomarkers may be exploited in the development of personalized targeted therapies that can distinguish between the 15 diverse meningioma subtypes.
Collapse
Affiliation(s)
- Reem Halabi
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Fatima Dakroub
- Department of Experimental Pathology, Microbiology and Immunology and Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Stuti Patel
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Nayef A. Amhaz
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Mohammad A. Reslan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Ibrahim Omeis
- Hammoud Hospital University Medical Center, Saida 652, Lebanon
- Division of Neurosurgery, Penn Medicine, Lancaster General Health, Lancaster, PA 17601, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Medeiros TB, Cosendey P, Gerin DR, de Sousa GF, Portal TM, Monteiro-de-Barros C. The effect of the sulfation patterns of dermatan and chondroitin sulfate from vertebrates and ascidians on their neuritogenic and neuroprotective properties. Int J Biol Macromol 2023; 247:125830. [PMID: 37454999 DOI: 10.1016/j.ijbiomac.2023.125830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Neurodegeneration is caused by the progressive loss of the structure and function of neurons, leading to cell death, and it is the main cause of many neurodegenerative diseases. Many molecules, such as glycosaminoglycans (GAGs), have been studied for their potential to prevent or treat these diseases. They are widespread in nature and perform an important role in neuritogenesis and neuroprotection. Here we investigated the neuritogenic and neuroprotective role of Phallusia nigra dermatan sulfate (PnD2,6S) and compared it with two distinct structures of chondroitin sulfate (C6S) and dermatan sulfate (D4S). For this study, a neuro 2A murine neuroblastoma cell line was used, and a chemical lesion was induced by the pesticide rotenone (ROT). We observed that PnD2,6S + ROT had a better neuritogenic effect than either C6S + ROT or D4S + ROT at a lower concentration (0.05 μg/mL). When evaluating the mitochondrial membrane potential, PnD2,6S showed a neuroprotective effect at a concentration of 0.4 μg/mL. These data indicate different mechanisms underlying this neuronal potential, in which the sulfation pattern is important for neuritogenic activity, while for neuroprotection all DS/CS structures had similar effects. This finding leads to a better understanding the chemical structures of PnD2,6S, C6S, and D4S and their therapeutic potential.
Collapse
Affiliation(s)
- Taiane Barreto Medeiros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Paloma Cosendey
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Diovana Ramos Gerin
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil
| | - Graziele Fonseca de Sousa
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Av. São José do Barreto, 764, Universidade Federal do Rio de Janeiro, Macaé CEP: 27910-970, RJ, Brazil; Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes CEP: 28013-602, RJ, Brazil.
| |
Collapse
|
7
|
Killick R, Elliott C, Ribe E, Broadstock M, Ballard C, Aarsland D, Williams G. Neurodegenerative Disease Associated Pathways in the Brains of Triple Transgenic Alzheimer's Model Mice Are Reversed Following Two Weeks of Peripheral Administration of Fasudil. Int J Mol Sci 2023; 24:11219. [PMID: 37446396 PMCID: PMC10342807 DOI: 10.3390/ijms241311219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The pan Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor fasudil acts as a vasodilator and has been used as a medication for post-cerebral stroke for the past 29 years in Japan and China. More recently, based on the involvement of ROCK inhibition in synaptic function, neuronal survival, and processes associated with neuroinflammation, it has been suggested that the drug may be repurposed for neurodegenerative diseases. Indeed, fasudil has demonstrated preclinical efficacy in many neurodegenerative disease models. To facilitate an understanding of the wider biological processes at play due to ROCK inhibition in the context of neurodegeneration, we performed a global gene expression analysis on the brains of Alzheimer's disease model mice treated with fasudil via peripheral IP injection. We then performed a comparative analysis of the fasudil-driven transcriptional profile with profiles generated from a meta-analysis of multiple neurodegenerative diseases. Our results show that fasudil tends to drive gene expression in a reverse sense to that seen in brains with post-mortem neurodegenerative disease. The results are most striking in terms of pathway enrichment analysis, where pathways perturbed in Alzheimer's and Parkinson's diseases are overwhelmingly driven in the opposite direction by fasudil treatment. Thus, our results bolster the repurposing potential of fasudil by demonstrating an anti-neurodegenerative phenotype in a disease context and highlight the potential of in vivo transcriptional profiling of drug activity.
Collapse
Affiliation(s)
- Richard Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Christina Elliott
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Elena Ribe
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Martin Broadstock
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Gareth Williams
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| |
Collapse
|
8
|
Yadikar H, Johnson C, Pafundi N, Nguyen L, Kurup M, Torres I, Al-Enezy A, Yang Z, Yost R, Kobeissy FH, Wang KKW. Neurobiochemical, Peptidomic, and Bioinformatic Approaches to Characterize Tauopathy Peptidome Biomarker Candidates in Experimental Mouse Model of Traumatic Brain Injury. Mol Neurobiol 2023; 60:2295-2319. [PMID: 36635478 DOI: 10.1007/s12035-022-03165-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/10/2022] [Indexed: 01/14/2023]
Abstract
Traumatic brain injury (TBI) is a multidimensional damage, and currently, no FDA-approved medicine is available. Multiple pathways in the cell are triggered through a head injury (e.g., calpain and caspase activation), which truncate tau and generate variable fragment sizes (MW 400-45,000 K). In this study, we used an open-head TBI mouse model generated by controlled cortical impact (CCI) and collected ipsilateral (IC) and contralateral (CC) mice htau brain cortices at one (D1) three (D3), and seven (D7) days post-injury. We implemented immunological (antibody-based detection) and peptidomic approaches (nano-reversed-phase liquid chromatography/tandem mass spectrometry) to investigate proteolytic tau peptidome (low molecular weight (LMW) < 10 K)) and pathological phosphorylation sites (high-molecular-weight (HMW); > 10 K) derived from CCI-TBI animal models. Our immunoblotting analysis verified tau hyperphosphorylation, HMW, and HMW breakdown products (HMW-BDP) formation of tau (e.g., pSer202, pThr181, pThr231, pSer396, and pSer404), following CCI-TBI. Peptidomic data revealed unique sequences of injury-dependent proteolytic peptides generated from human tau protein. Among the N-terminal tau peptides, EIPEGTTAEEAGIGDTPSLEDEAAGHVTQA (a.a. 96-125) and AQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQARM (a.a. 91-127). Examples of tau C-terminal peptides identified include NVSSTGSIDMVDSPQLATLADEVSASLAKQGL (a.a. 410-441) and QLATLADEVSASLAKQGL (a.a. 424-441). Our peptidomic bioinformatic tools showed the association of proteases, such as CAPN1, CAPN2, and CTSL; CASP1, MMP7, and MMP9; and ELANE, GZMA, and MEP1A, in CCI-TBI tau peptidome. In clinical trials for novel TBI treatments, it might be useful to monitor a subset of tau peptidome as targets for biomarker utility and use them for a "theranostic" approach.
Collapse
Affiliation(s)
- Hamad Yadikar
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait.
| | - Connor Johnson
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Niko Pafundi
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Lynn Nguyen
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Milin Kurup
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Isabel Torres
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Albandery Al-Enezy
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Zhihui Yang
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, 32611, USA
| | - Firas H Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA. .,Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon. .,Morehouse School of Medicine, Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), 720 Westview Dr. SW, Atlanta, GA, 30310, USA.
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA. .,Morehouse School of Medicine, Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), 720 Westview Dr. SW, Atlanta, GA, 30310, USA. .,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, 32608, USA.
| |
Collapse
|
9
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|
10
|
Yang Z, Arja RD, Zhu T, Sarkis GA, Patterson RL, Romo P, Rathore DS, Moghieb A, Abbatiello S, Robertson CS, Haskins WE, Kobeissy F, Wang KKW. Characterization of Calpain and Caspase-6-Generated Glial Fibrillary Acidic Protein Breakdown Products Following Traumatic Brain Injury and Astroglial Cell Injury. Int J Mol Sci 2022; 23:8960. [PMID: 36012232 PMCID: PMC9409281 DOI: 10.3390/ijms23168960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is the major intermediate filament III protein of astroglia cells which is upregulated in traumatic brain injury (TBI). Here we reported that GFAP is truncated at both the C- and N-terminals by cytosolic protease calpain to GFAP breakdown products (GBDP) of 46-40K then 38K following pro-necrotic (A23187) and pro-apoptotic (staurosporine) challenges to primary cultured astroglia or neuron-glia mixed cells. In addition, with another pro-apoptotic challenge (EDTA) where caspases are activated but not calpain, GFAP was fragmented internally, generating a C-terminal GBDP of 20 kDa. Following controlled cortical impact in mice, GBDP of 46-40K and 38K were formed from day 3 to 28 post-injury. Purified GFAP protein treated with calpain-1 and -2 generates (i) major N-terminal cleavage sites at A-56*A-61 and (ii) major C-terminal cleavage sites at T-383*Q-388, producing a limit fragment of 38K. Caspase-6 treated GFAP was cleaved at D-78/R-79 and D-225/A-226, where GFAP was relatively resistant to caspase-3. We also derived a GBDP-38K N-terminal-specific antibody which only labels injured astroglia cell body in both cultured astroglia and mouse cortex and hippocampus after TBI. As a clinical translation, we observed that CSF samples collected from severe human TBI have elevated levels of GBDP-38K as well as two C-terminally released GFAP peptides (DGEVIKES and DGEVIKE). Thus, in addition to intact GFAP, both the GBDP-38K as well as unique GFAP released C-terminal proteolytic peptides species might have the potential in tracking brain injury progression.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Department of Pediatrics, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - George Anis Sarkis
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Chemistry, University of Florida, Gainesville, FL 32611, USA
- National Laboratory, Biological Sciences Division/Integrative Omics, Pacific Northwest, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Robert Logan Patterson
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pammela Romo
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Disa S. Rathore
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ahmed Moghieb
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Chemistry, University of Florida, Gainesville, FL 32611, USA
- National Laboratory, Biological Sciences Division/Integrative Omics, Pacific Northwest, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Susan Abbatiello
- The Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | | | - William E. Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K. W. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- The Departments of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| |
Collapse
|
11
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Wang Z, Ren D, Zheng P. The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 2022; 37:881-887. [PMID: 35119588 PMCID: PMC9042975 DOI: 10.1007/s11011-022-00909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Epilepsy is one of the most severe neurological disorders characterized by spontaneous recurrent seizures. Although more than two-thirds of patients can be cured with anti-epileptic drugs (AEDs), the rest one-third of epilepsy patients are resistant to AEDs. A series of studies have demonstrated Rho/Rho-associated kinase (ROCK) pathway might be involved in the pathogenesis of epilepsy in the recent twenty years. Several related pathway inhibitors of Rho/ROCK have been used in the treatment of epilepsy. We searched PubMed from Jan 1, 2000 to Dec 31, 2020, using the terms "epilepsy AND Rho AND ROCK" and "seizure AND Rho AND ROCK". We selected articles that characterized Rho/ROCK in animal models of epilepsy and patients. We then chose the most relevant research studies including in-vitro, in-vivo and clinical trials. The expression of Rho/ROCK could be a potential non-invasive biomarker to apply in treatment for patients with epilepsy. RhoA and ROCK show significant upregulation in the acute and chronic stage of epilepsy. ROCK inhibitors can reduce the epilepsy, epileptic seizure-related neuronal death and comorbidities. These findings demonstrate the novel development for diagnosis and treatment for patients with epilepsy. Rho/ROCK signaling pathway inhibitors may show more promising effects in epilepsy and related neurological diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dabin Ren
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China
| | - Ping Zheng
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
13
|
Abstract
Brain scientists are now capable of collecting more data in a single experiment than researchers a generation ago might have collected over an entire career. Indeed, the brain itself seems to thirst for more and more data. Such digital information not only comprises individual studies but is also increasingly shared and made openly available for secondary, confirmatory, and/or combined analyses. Numerous web resources now exist containing data across spatiotemporal scales. Data processing workflow technologies running via cloud-enabled computing infrastructures allow for large-scale processing. Such a move toward greater openness is fundamentally changing how brain science results are communicated and linked to available raw data and processed results. Ethical, professional, and motivational issues challenge the whole-scale commitment to data-driven neuroscience. Nevertheless, fueled by government investments into primary brain data collection coupled with increased sharing and community pressure challenging the dominant publishing model, large-scale brain and data science is here to stay.
Collapse
Affiliation(s)
- John Darrell Van Horn
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Macks C, Jeong D, Lee JS. Local delivery of RhoA siRNA by PgP nanocarrier reduces inflammatory response and improves neuronal cell survival in a rat TBI model. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102343. [PMID: 33259960 PMCID: PMC8714129 DOI: 10.1016/j.nano.2020.102343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with complex pathophysiology including prolonged neuroinflammation, apoptosis, and glial scar formation. The upregulation of RhoA is a key factor in the pathological development of secondary injury following TBI. Previously, we developed a novel cationic, amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), as a nanocarrier for delivery of therapeutic nucleic acids. In a rat compression spinal cord injury model, delivery of siRNA targeting RhoA (siRhoA) by PgP resulted in RhoA knockdown; reduced astrogliosis and inflammation; and promoted axonal regeneration/sparing. Here, we evaluated the effect of RhoA knockdown by PgP/siRhoA nanoplexes in a rat controlled cortical impact TBI model. A single intraparenchymal injection of PgP/siRhoA nanoplexes significantly reduced RhoA expression, lesion volume, neuroinflammation, and apoptosis, and increased neuronal survival in the ipsilateral cortex. These results suggest that PgP/siRhoA nanoplexes can efficiently knockdown RhoA expression in the injured brain and reduce secondary injury.
Collapse
Affiliation(s)
- Christian Macks
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| | - DaUn Jeong
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| | - Jeoung Soo Lee
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
15
|
Liu R, Li Y, Zhou H, Wang H, Liu D, Wang H, Wang Z. OIP5-AS1 facilitates Th17 differentiation and EAE severity by targeting miR-140-5p to regulate RhoA/ROCK2 signaling pathway. Life Sci 2021:119108. [PMID: 33515560 DOI: 10.1016/j.lfs.2021.119108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
AIMS Multiple sclerosis (MS) is one of the commonest neurologic disorders globally. LncRNA OIP5-AS1 has been found to be implicated in the etiology of MS. This study was to explore the roles and molecular mechanisms of OIP5-AS1 in the development of MS. MATERIALS AND METHODS RT-qPCR assay was used to measure expressions of OIP5-AS1, miR-140-5p, IL-17A mRNA and RhoA mRNA. CD4+IL-17+ cell proportion was determined by flow cytometry. IL-17A secretion was examined by ELISA assay. Cell inflammatory infiltration and demyelination were assessed by histological analyses. The interaction between miR-140-5p and OIP5-AS1 or RhoA 3'UTR was validated by bioinformatical analysis and luciferase reporter assay. Western blot assay was performed to detect protein expressions of ROCK2 and RhoA. An experimental autoimmune encephalomyelitis (EAE) models was established to explore the role of OIP5-AS1 in MS in vivo. KEY FINDINGS OIP5-AS1 expression was enhanced in MS patients. Also, elevated OIP5-AS1 level was observed during T-helper 17 (Th17) differentiation. Moreover, OIP5-AS1 promoted Th17 differentiation in vitro and contributed to the development of EAE in vivo. Mechanical explorations revealed that OIP5-AS1 targeted miR-140-5p to regulate Th17 differentiation. Moreover, RhoA was a target of miR-140-5p and miR-140-5p inhibited the activation of RhoA/ROCK2 signaling. Also, RhoA upregulation abrogated the inhibitory effects of miR-140-5p on Th17 differentiation. SIGNIFICANCE OIP5-AS1 contributed to EAE development by targeting miR-140-5p/RhoA and activating RhoA/ROCK2 signaling pathway, shedding light on the roles and molecular mechanisms of OIP5-AS1 in the development of MS and providing some candidate targets for the diagnose and treatment of MS.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China.
| | - Yan Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Haitao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hao Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dequan Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Huilin Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Zhenghua Wang
- Department of Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
16
|
Yu X, Sun M, He J, Wang H, Yu M, Dong L. Accelerated Neurite Outgrowth and Neurogenesis of PC12 Cells on an Fe-doped TiO 2 Nanorod Film Triggered by Visible Light. ACS Biomater Sci Eng 2021; 7:577-585. [PMID: 33443408 DOI: 10.1021/acsbiomaterials.0c01742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acceleration of neurite outgrowth and neuronal differentiation of neural cells are critical for effective neural tissue regeneration. In addition to biochemical cues, biomaterials have proven to be a valuable tool for engineering neural cellular physiological processes. However, strategies with convenient potential spatiotemporal control are still desirable. We here design a novel Fe-doped TiO2 nanorod film using hemoglobin as the Fe source to endow it with visible-light-responsive regulated surface hydroxyl groups (-OH), which was demonstrated as the central role in mediating cell-material interactions in our previous study. The acceleration of neurite outgrowth and neuronal differentiation of PC12 cells might be attributed to the upregulated distinct terminal hydroxyl groups triggered by visible light. We also demonstrate that the actin cytoskeletal system plays a pivotal role during these processes, approved by the inhibition experiment results. This study therefore sheds light on the regulation of neurite outgrowth and neuronal differentiation of neural cells using a convenient spatiotemporal controllable strategy.
Collapse
Affiliation(s)
- Xiaowen Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Mouyuan Sun
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Jianxiang He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Lingqing Dong
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
17
|
Aguilar BJ, Zhu Y, Lu Q. Rho GTPases as therapeutic targets in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:97. [PMID: 29246246 PMCID: PMC5732365 DOI: 10.1186/s13195-017-0320-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
The progress we have made in understanding Alzheimer’s disease (AD) pathogenesis has led to the identification of several novel pathways and potential therapeutic targets. Rho GTPases have been implicated as critical components in AD pathogenesis, but their various functions and interactions make understanding their complex signaling challenging to study. Recent advancements in both the field of AD and Rho GTPase drug development provide novel tools for the elucidation of Rho GTPases as a viable target for AD. Herein, we summarize the fluctuating activity of Rho GTPases in various stages of AD pathogenesis and in several in vitro and in vivo AD models. We also review the current pharmacological tools such as NSAIDs, RhoA/ROCK, Rac1, and Cdc42 inhibitors used to target Rho GTPases and their use in AD-related studies. Finally, we summarize the behavioral modifications following Rho GTPase modulation in several AD mouse models. As key regulators of several AD-related signals, Rho GTPases have been studied as targets in AD. However, a consensus has yet to be reached regarding the stage at which targeting Rho GTPases would be the most beneficial. The studies discussed herein emphasize the critical role of Rho GTPases and the benefits of their modulation in AD.
Collapse
Affiliation(s)
- Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Yi Zhu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
18
|
Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Cell Mol Neurobiol 2017; 37:619-633. [PMID: 27380043 PMCID: PMC11482156 DOI: 10.1007/s10571-016-0398-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chen Qian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Chenyu Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Xinxin Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
19
|
Scheiblich H, Bicker G. Regulation of Microglial Phagocytosis by RhoA/ROCK-Inhibiting Drugs. Cell Mol Neurobiol 2017; 37:461-473. [PMID: 27178562 PMCID: PMC11482106 DOI: 10.1007/s10571-016-0379-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
Inflammation within the central nervous system (CNS) is a major component of many neurodegenerative diseases. The underlying mechanisms of neuronal loss are not fully understood, but the activation of CNS resident phagocytic microglia seems to be a significant element contributing to neurodegeneration. At the onset of inflammation, high levels of microglial phagocytosis may serve as an essential prerequisite for creating a favorable environment for neuronal regeneration. However, the excessive and long-lasting activation of microglia and the augmented engulfment of neurons have been suggested to eventually govern widespread neurodegeneration. Here, we investigated in a functional assay of acute inflammation how the small GTPase RhoA and its main target the Rho kinase (ROCK) influence microglial phagocytosis of neuronal debris. Using BV-2 microglia and human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA activation and microglial phagocytosis of neuronal cell fragments. Inhibition of the downstream effector ROCK with the small-molecule agents Y-27632 and Fasudil reduces the engulfment of neuronal debris and attenuates the production of the inflammatory mediator nitric oxide during stimulation with lipopolysaccharide. Our results support a therapeutic potential for RhoA/ROCK-inhibiting agents as an effective treatment of excessive inflammation and the resulting progression of microglia-mediated neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany
| | - Gerd Bicker
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
20
|
Amen Y, Zhu Q, Tran HB, Afifi MS, Halim AF, Ashour A, Shimizu K. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors. J Nat Med 2017; 71:380-388. [PMID: 28074433 DOI: 10.1007/s11418-016-1069-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.
Collapse
Affiliation(s)
- Yhiya Amen
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Qinchang Zhu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Pharmacy, School of Medicine, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen, Guangdong, 518060, China
| | - Hai-Bang Tran
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Mohamed S Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed F Halim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
21
|
Qin T, Fang F, Song M, Li R, Ma Z, Ma S. Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway. Behav Brain Res 2016; 317:147-156. [PMID: 27646771 DOI: 10.1016/j.bbr.2016.09.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
Abstract
There is increasing evidence that major depressive disorder (MDD) is also a progressive neurodegeneration disorder and neuronal damage is the major pathology of MDD. Umbelliferone, a coumarin derivative, was found in a range of plants with proved anti-oxidative, anti-inflammatory and neuroprotective effects. The primary purpose of this investigation was to evaluate whether umbelliferone could confer an antidepressant-like effect on the depressive model in rats developed by chronic unpredictable mild stress (CUMS) and explore the possible mechanism involved in its neuroprotective effects. We found that treatments with umbelliferone (15mg/kg, 30mg/kg) significantly ameliorated CUMS-induced depressive-like behaviors, such as decreased sucrose consumption, reduced locomotor activity and prolonged immobility time. Rats under CUMS stimulation treated with umbelliferone (15mg/kg, 30mg/kg) showed reduced neuronal apoptosis, as well as inhibited inflammatory cytokines levels by down-regulating Rho-associated protein kinase (ROCK) signaling and up-regulating protein kinase B (Akt) signaling. In conclusion, umbelliferone showed neuroprotective effects on CUMS-induced model of depression, which was associated with the inhibition of neuronal apoptosis modulated by ROCK/Akt pathway.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fang Fang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meiting Song
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ruipeng Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Wang X, Wang B, Li Z, Zhu G, Heng L, Zhu X, Yang Q, Ma J, Gao G. Neuroprotection effect of Y-27632 against H2O2-induced cell apoptosis of primary cultured cortical neurons. RSC Adv 2016. [DOI: 10.1039/c6ra03284b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Y-27632 protects the cortical neurons from H2O2-induced apoptosis by inhibiting oxidative stress and activation of JNK and p38 MAPKs pathways.
Collapse
Affiliation(s)
- Xingqin Wang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Bao Wang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery
- Xijing Hospital
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Gang Zhu
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Lijun Heng
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Xianke Zhu
- Department of Orthopedics
- No. 150 Central Hospital of PLA
- Luoyang
- China
| | - Qian Yang
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Jie Ma
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| | - Guodong Gao
- Department of Neurosurgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- China
| |
Collapse
|
23
|
Yan YY, Wang XM, Jiang Y, Chen H, He JT, Mang J, Shao YK, Xu ZX. The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia. Neural Regen Res 2015; 10:1441-9. [PMID: 26604905 PMCID: PMC4625510 DOI: 10.4103/1673-5374.165512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intragastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its related protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.
Collapse
Affiliation(s)
- Ya-Yun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xiao-Ming Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Han Chen
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yan-Kun Shao
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Zhong-Xin Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
24
|
Shen W, Wang L, Pi R, Li Z, Rikang Wang. L-F001, a multifunctional ROCK inhibitor prevents paraquat-induced cell death through attenuating ER stress and mitochondrial dysfunction in PC12 cells. Biochem Biophys Res Commun 2015; 464:794-9. [DOI: 10.1016/j.bbrc.2015.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 12/01/2022]
|
25
|
Li H, Zhu YH, Chi C, Wu HW, Guo J. Role of cytoskeleton in axonal regeneration after neurodegenerative diseases and CNS injury. Rev Neurosci 2015; 25:527-42. [PMID: 24622784 DOI: 10.1515/revneuro-2013-0062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/09/2014] [Indexed: 11/15/2022]
Abstract
With the occurrence of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, a number of well-functioning neurons need to be developed to make up for the loss of neurons and to restore the brain functions. Unfortunately, because the axons cannot regenerate well, brain function cannot be well compensated for even with the increasing number of newborn neurons, let alone the reformation of neural network. Cytoskeletal proteins play a crucial role in regeneration of axon. In this review, we summarize some cytoskeletal proteins, for instance, actin and actin-binding proteins, as well as tubulin and microtubule-associated proteins, and more importantly, their roles in the regulation of axonal regeneration in the brain. It will provide new opportunities for axonal regeneration after brain damage and will even bring new treatments to patients with neurodegenerative diseases.
Collapse
|
26
|
Tsintou M, Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 2015; 10:726-742. [PMID: 26109946 PMCID: PMC4468763 DOI: 10.4103/1673-5374.156966] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mechanism, central nervous system repair mechanisms are ineffective due to the imbalance of the inhibitory and excitatory factors implicated in neuroregeneration. Therefore, there is growing research interest on discovering a novel therapeutic strategy for effective spinal cord injury repair. To this direction, cell-based delivery strategies, biomolecule delivery strategies as well as scaffold-based therapeutic strategies have been developed with a tendency to seek for the answer to a combinatorial approach of all the above. Here we review the recent advances on regenerative/neural engineering therapies for spinal cord injury, aiming at providing an insight to the most promising repair strategies, in order to facilitate future research conduction.
Collapse
Affiliation(s)
- Magdalini Tsintou
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Kyriakos Dalamagkas
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Alexander Marcus Seifalian
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
- Royal Free London NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
27
|
O'Shea RD, Lau CL, Zulaziz N, Maclean FL, Nisbet DR, Horne MK, Beart PM. Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis. Front Neurosci 2015; 9:50. [PMID: 25750613 PMCID: PMC4335181 DOI: 10.3389/fnins.2015.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023] Open
Abstract
Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK) cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, “healthy” phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory/angiogenic responses were all inhibited, favoring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-ε-caprolactone (PCL) electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 μM) or Y27632 (30 μM) added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labeling, indicative of disassembly of actin stress fibers. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbor. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a “healthy biology” offers new hope for the management of inflammation in neuropathologies.
Collapse
Affiliation(s)
- Ross D O'Shea
- Department of Physiology, Anatomy and Microbiology, La Trobe University Bundoora, VIC, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia
| | - Natasha Zulaziz
- Department of Physiology, Anatomy and Microbiology, La Trobe University Bundoora, VIC, Australia
| | - Francesca L Maclean
- Research School of Engineering, The Australian National University Canberra, ACT, Australia
| | - David R Nisbet
- Research School of Engineering, The Australian National University Canberra, ACT, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia ; Department of Neurology, St. Vincent's Hospital Fitzroy, VIC, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
28
|
Nagoshi N, Fehlings MG. Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from Phase I to II. Expert Opin Investig Drugs 2015; 24:645-58. [PMID: 25645889 DOI: 10.1517/13543784.2015.1009629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Efforts in basic research have clarified mechanisms involved in spinal cord injury (SCI), and resulted in positive findings using experimental treatments including cell transplantation and drug administration preclinically. Based on accumulated results, various clinical trials have begun for human SCI. AREAS COVERED In this review, the authors focus on five investigational drugs: riluzole, minocycline, Rho protein antagonist, magnesium chloride in polyethylene glycol formulation, and basic fibroblast growth factor. All drugs have established safety and tolerability from Phase I clinical trials, and are now in Phase II. They have been proven to have neuroprotective and/or neuroregenerative effects in animal models of SCI. EXPERT OPINION To date, diverse drugs have been translated into clinical trials, but none have reached clinical application. A key gap was the lack of reliable biomarkers for SCI to fast-track Phase I/II trials. Furthermore, problems were often due to lack of adequate outcome assessments for both animal models and SCI patients. In order to advance clinical trials more quickly and with greater success, more clinically relevant animal models should be used in basic research. Clinically, it is indispensable to use appropriate outcome measurements and to construct a wide network among clinical centers to validate the efficacy of drugs.
Collapse
Affiliation(s)
- Narihito Nagoshi
- University Health Network, Toronto Western Hospital, Krembil Neuroscience Center , Toronto, ON M5T 2S8 , Canada +1 416 603 5229 ; +1 416 603 6274 ;
| | | |
Collapse
|
29
|
Autoantibodies in traumatic brain injury and central nervous system trauma. Neuroscience 2014; 281:16-23. [PMID: 25220901 DOI: 10.1016/j.neuroscience.2014.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/14/2014] [Accepted: 08/31/2014] [Indexed: 12/31/2022]
Abstract
Despite the debilitating consequences and the widespread prevalence of brain trauma insults including spinal cord injury (SCI) and traumatic brain injury (TBI), there are currently few effective therapies for most of brain trauma sequelae. As a consequence, there has been a major quest for identifying better diagnostic tools, predictive models, and directed neurotherapeutic strategies in assessing brain trauma. Among the hallmark features of brain injury pathology is the central nervous systems' (CNS) abnormal activation of the immune response post-injury. Of interest, is the occurrence of autoantibodies which are produced following CNS trauma-induced disruption of the blood-brain barrier (BBB) and released into peripheral circulation mounted against self-brain-specific proteins acting as autoantigens. Recently, autoantibodies have been proposed as the new generation class of biomarkers due to their long-term presence in serum compared to their counterpart antigens. The diagnostic and prognostic value of several existing autoantibodies is currently being actively studied. Furthermore, the degree of direct and latent contribution of autoantibodies to CNS insult is still not fully characterized. It is being suggested that there may be an analogy of CNS autoantibodies secretion with the pathophysiology of autoimmune diseases, in which case, understanding and defining the role of autoantibodies in brain injury paradigm (SCI and TBI) may provide a realistic prospect for the development of effective neurotherapy. In this work, we will discuss the accumulating evidence about the appearance of autoantibodies following brain injury insults. Furthermore, we will provide perspectives on their potential roles as pathological components and as candidate markers for detecting and assessing CNS injury.
Collapse
|
30
|
Chong CM, Shen M, Zhou ZY, Pan P, Hoi PM, Li S, Liang W, Ai N, Zhang LQ, Li CW, Yu H, Hou T, Lee SMY. Discovery of a benzofuran derivative (MBPTA) as a novel ROCK inhibitor that protects against MPP⁺-induced oxidative stress and cell death in SH-SY5Y cells. Free Radic Biol Med 2014; 74:283-93. [PMID: 24973649 DOI: 10.1016/j.freeradbiomed.2014.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/15/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disease with multifactorial etiopathogenesis. The discovery of drug candidates that act on new targets of PD is required to address the varied pathological aspects and modify the disease process. In this study, a small compound, 2-(5-methyl-1-benzofuran-3-yl)-N-(5-propylsulfanyl-1,3,4-thiadiazol-2-yl) acetamide (MBPTA) was identified as a novel Rho-associated protein kinase inhibitor with significant protective effects against 1-methyl-4-phenylpyridinium ion (MPP(+))-induced damage in SH-SY5Y neuroblastoma cells. Further investigation showed that pretreatment of SH-SY5Y cells with MBPTA significantly suppressed MPP(+)-induced cell death by restoring abnormal changes in nuclear morphology, mitochondrial membrane potential, and numerous apoptotic regulators. MBPTA was able to inhibit MPP(+)-induced reactive oxygen species (ROS)/NO generation, overexpression of inducible NO synthase, and activation of NF-κB, indicating the critical role of MBPTA in regulating ROS/NO-mediated cell death. Furthermore, MBPTA was shown to activate PI3K/Akt survival signaling, and its cytoprotective effect was abolished by PI3K and Akt inhibitors. The structural comparison of a series of MBPTA analogs revealed that the benzofuran moiety probably plays a crucial role in the anti-oxidative stress action. Taken together, these results suggest that MBPTA protects against MPP(+)-induced apoptosis in a neuronal cell line through inhibition of ROS/NO generation and activation of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingyun Shen
- Institute of Functional Nano & Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhong-Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peichen Pan
- Institute of Functional Nano & Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wang Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nana Ai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lun-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheuk-Wing Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huidong Yu
- Rongene Pharma Co., Ltd., International Business Incubator, Guangzhou Science Town, Guangdong 510663, China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
31
|
Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 2014; 6:6/4/1759091414538134. [PMID: 25289646 PMCID: PMC4189421 DOI: 10.1177/1759091414538134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin
degradation results in loss of axonal function and eventual axonal degeneration.
Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to
remyelination of denuded axons occurs regularly in early stages of MS but halts as
the pathology transitions into progressive MS. Pharmacological potentiation of
endogenous OPC maturation and remyelination is now recognized as a promising
therapeutic approach for MS. In this study, we analyzed the effects of modulating the
Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective
inhibitors of ROCK, on the transformation of OPCs into mature, myelinating
oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent
and human origin, that ROCK inhibition in OPCs results in a significant generation of
branches and cell processes in early differentiation stages, followed by accelerated
production of myelin protein as an indication of advanced maturation. Furthermore,
inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons
and remyelination in rat cerebellar tissue explants previously demyelinated with
lysolecithin. Our findings indicate that by direct inhibition of this signaling
molecule, the OPC differentiation program is activated resulting in morphological and
functional cell maturation, myelin formation, and regeneration. Altogether, we show
evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the
induction of remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Carlos E Pedraza
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Albertina Pereira
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Michelle Seng
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Chui-Se Tham
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Michael Webb
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
32
|
Crepaldi CR, Merighe GKF, Laure HJ, Rosa JC, Meirelles FV, César MDC. Isolamento e cultivo de neurônios e neuroesferas de córtex cerebral aviar. PESQUISA VETERINÁRIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013001300008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Métodos de cultivo celular são convenientes na realização de análises funcionais de alterações/interações protéicas das células neuronais, auxiliando a decifrar o interactoma de proteínas chaves na neurogênese de doenças do Sistema Nervoso Central. Por esse motivo, culturas de neurônios e neuroesferas isolados do córtex cerebral aviar representam um modelo acessível para o estudo de diversas doenças neurológicas, tal como a epilepsia. A espécie aviar apresenta peculiaridades em seu proteoma neuronal, visto a presença de uma expressão diferenciada de proteínas chaves no metabolismo energético cerebral, algumas destas (VDAC1 e VDAC2) desempenham papel importante na compreensão do mecanismo da epilepsia refratária. A metodologia estabelecida no presente estudo obteve cultivo de neuroeferas, onde as células cresceram tipicamente em aglomerados atingindo, dentro de 7 dias, o diâmetro ideal de 100-200 µm. A diferenciação celular das neuroesferas foi obtida após a aderência destas às placas tratadas com poli-D-lisina, evidenciada pela migração de fibras do interior da neuroesfera. Ao contrário das neuroesferas, os neurônios em cultivo extenderam seus neuritos após 11 dias de isolamento. Tal modelo in vitro pode ser utilizado com sucesso na identificação das variáveis neuroproteômicas, propiciando uma avaliação global das alterações dinâmicas e suas interações protéicas. Tal modelo pode ter aplicações em estudos dos efeitos de indutores da morte celular e bloqueadores de canais de membrana mitocondriais em proteínas chaves do metabolismo energético cerebral.
Collapse
|
33
|
Guan R, Xu X, Chen M, Hu H, Ge H, Wen S, Zhou S, Pi R. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem 2013; 70:613-22. [PMID: 24211637 DOI: 10.1016/j.ejmech.2013.10.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
RhoA/Rho-kinase pathway plays a pivotal role in numerous fundamental cellular functions including contraction, motility, proliferation, differentiation and apoptosis. The pathway is also involved in the development of many diseases such as vasospasm, pulmonary hypertension, cancer and central nervous systems (CNS) disorders. The inhibitors of Rho kinase have been extensively studied since the Rho/Rho-kinase pathway was verified as a target for a number of diseases. Herein, we reviewed the advances in the studies of the roles of Rho/Rho-kinase in diseases and the development of Rho-kinase inhibitors in recent five years.
Collapse
Affiliation(s)
- Ronggui Guan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang X, Liu Y, Liu C, Xie W, Huang E, Huang W, Wang J, Chen L, Wang H, Qiu P, Xu J, Zhang F, Wang H. Inhibition of ROCK2 expression protects against methamphetamine-induced neurotoxicity in PC12 cells. Brain Res 2013; 1533:16-25. [DOI: 10.1016/j.brainres.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/17/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
35
|
Cui G, Zuo T, Zhao Q, Hu J, Jin P, Zhao H, Jing J, Zhu J, Chen H, Liu B, Hua F, Ye X. ROCK mediates the inflammatory response in thrombin induced microglia. Neurosci Lett 2013; 554:82-7. [PMID: 24021807 DOI: 10.1016/j.neulet.2013.08.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
To investigate whether the ROCK pathway is involved in thrombin-induced microglial inflammatory response, thrombin-induced microglia were pretreated with the thrombin inhibitor argatroban or a ROCK inhibitor Y-27632. Microglial inflammatory response was evaluated by phagocytosis of fluorescein labeled latex beads analyses and inflammatory mediators' expression such as nitric oxide (NO) and tumor necrosis factor-alpha (TNF-а). Compared to non-induced microglia, thrombin-induced microglia show significantly enhanced phagocytotic capacity and increased ROCK, NO and TNF-а expression. Pretreatment of thrombin-induced microglia with argatroban or Y-27632 significantly decreased phagocytotic capacity and reduced ROCK, NO and TNF-α expression. Therefore, the ROCK pathway may play a vital role in the mechanisms by which thrombin induces microglia in the inflammatory response.
Collapse
Affiliation(s)
- Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs 2013; 22:537-50. [DOI: 10.1517/13543784.2013.778242] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|