1
|
Cui Y, Luo Z, Wang X, Liang S, Hu G, Chen X, Zuo J, Zhou L, Guo H, Wang X. Analyzing risk factors and constructing a predictive model for superficial esophageal carcinoma with submucosal infiltration exceeding 200 micrometers. BMC Gastroenterol 2024; 24:350. [PMID: 39370515 PMCID: PMC11457335 DOI: 10.1186/s12876-024-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVE Submucosal infiltration of less than 200 μm is considered an indication for endoscopic surgery in cases of superficial esophageal cancer and precancerous lesions. This study aims to identify the risk factors associated with submucosal infiltration exceeding 200 micrometers in early esophageal cancer and precancerous lesions, as well as to establish and validate an accompanying predictive model. METHODS Risk factors were identified through least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. Various machine learning (ML) classification models were tested to develop and evaluate the most effective predictive model, with Shapley Additive Explanations (SHAP) employed for model visualization. RESULTS Predictive factors for early esophageal invasion into the submucosa included endoscopic ultrasonography or magnifying endoscopy> SM1(P<0.001,OR = 3.972,95%CI 2.161-7.478), esophageal wall thickening(P<0.001,OR = 12.924,95%CI,5.299-33.96), intake of pickled foods(P=0.04,OR = 1.837,95%CI,1.03-3.307), platelet-lymphocyte ratio(P<0.001,OR = 0.284,95%CI,0.137-0.556), tumor size(P<0.027,OR = 2.369,95%CI,1.128-5.267), the percentage of circumferential mucosal defect(P<0.001,OR = 5.286,95%CI,2.671-10.723), and preoperative pathological type(P<0.001,OR = 4.079,95%CI,2.254-7.476). The logistic regression model constructed from the identified risk factors was found to be the optimal model, demonstrating high efficacy with an area under the curve (AUC) of 0.922 in the training set, 0.899 in the validation set, and 0.850 in the test set. CONCLUSION A logistic regression model complemented by SHAP visualizations effectively identifies early esophageal cancer reaching 200 micrometers into the submucosa.
Collapse
Affiliation(s)
- Yutong Cui
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Lu Zhou
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Digestive endoscopy center, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 63700, Sichuan, China.
| |
Collapse
|
2
|
Chen Y, Yang Z, Zhou Z, Liu EJ, Luo W, He Z, Han W, Liu Y. Metabolism-dependent mutagenicity of two structurally similar tobacco-specific nitrosamines (N-nitrosonornicotine and N-nitrosoanabasine) in human cells, partially different CYPs being activating enzymes. Toxicology 2024; 504:153774. [PMID: 38490321 DOI: 10.1016/j.tox.2024.153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 μM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 μM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 μM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 μM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China; School of Clinical Technology, Sichuan Vocational College of Health and Rehabilitation, 3 Deming Road, Zigong, Sichuan Province 643000, China
| | - Zhao Zhou
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ellery J Liu
- International High School Section, Guangzhou Experimental Foreign Language School, 599 Guanghuayi Road, Guangzhou 510440, China
| | - Wenwen Luo
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhini He
- Research Center of Food Safety and Health, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Weili Han
- Department of inspection and quarantine, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
4
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Dong L, Jiang Z, Yang L, Hu F, Zheng W, Xue P, Jiang S, Andersen ME, He G, Crabbe MJC, Qu W. The genotoxic potential of mixed nitrosamines in drinking water involves oxidative stress and Nrf2 activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128010. [PMID: 34929594 DOI: 10.1016/j.jhazmat.2021.128010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrosamine by-products in drinking water are designated as probable human carcinogens by the IARC, but the health effects of simultaneous exposure to multiple nitrosamines in drinking water remain unknown. Genotoxicity assays were used to assess the effects of both individual and mixed nitrosamines in finished drinking water produced by a large water treatment plant in Shanghai, China. Cytotoxicity and genotoxicity were measured at 1, 10-, 100- and 1000-fold actual concentrations by the Ames test, Comet assay, γ-H2AX assay, and the cytokinesis-block micronuclei assay; oxidative stress and the Nrf2 pathway were also assessed. Nitrosamines detected in drinking water included NDMA (36.45 ng/L), NDPA (44.68 ng/L), and NEMA (37.27 ng/L). Treatment with a mixture of the three nitrosamines at 1000-fold actual drinking-water concentration induced a doubling of revertants in Salmonella typhimurium strain TA100, DNA and chromosome damage in HepG2 cells, while 1-1000-fold concentrations of compounds applied singly lacked these effects. Treatment with 100- and 1000-fold concentrations increased ROS, GSH, and MDA and decreased SOD activity. Thus, nitrosamine mixtures showed greater genotoxic potential than that of the individual compounds. N-Acetylcysteine protected against the nitrosamine-induced chromosome damage, and Nrf2 pathway activation suggested that oxidative stress played pivotal roles in the genotoxic property of the nitrosamine mixtures.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lili Yang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fen Hu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Peng Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Songhui Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | | | - Gengsheng He
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
7
|
Kang JC, Valerio LG. Investigating DNA adduct formation by flavor chemicals and tobacco byproducts in electronic nicotine delivery system (ENDS) using in silico approaches. Toxicol Appl Pharmacol 2020; 398:115026. [PMID: 32353386 DOI: 10.1016/j.taap.2020.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
The presence of flavors is one of the commonly cited reasons for use of e-cigarettes by youth; however, the potential harms from inhaling these chemicals and byproducts have not been extensively studied. One mechanism of interest is DNA adduct formation, which may lead to carcinogenesis. We identified two chemical classes of flavors found in tobacco products and byproducts, alkenylbenzenes and aldehydes, documented to form DNA adducts. Using in silico toxicology approaches, we identified structural analogs to these chemicals without DNA adduct information. We conducted a structural similarity analysis and also generated in silico model predictions of these chemicals for genotoxicity, mutagenicity, carcinogenicity, and skin sensitization. The empirical and in silico data were compared, and we identified strengths and limitations of these models. Good concordance (80-100%) was observed between DNA adduct formation and models predicting mammalian mutagenicity (mouse lymphoma sassy L5178Y) and skin sensitization for both chemical classes. On the other hand, different prediction profiles were observed for the two chemical classes for the modeled endpoints, unscheduled DNA synthesis and bacterial mutagenicity. These results are likely due to the different mode of action between the two chemical classes, as aldehydes are direct acting agents, while alkenylbenzenes require bioactivation to form electrophilic intermediates, which form DNA adducts. The results of this study suggest that an in silico prediction for the mouse lymphoma assay L5178Y, may serve as a surrogate endpoint to help predict DNA adduct formation for chemicals found in tobacco products such as flavors and byproducts.
Collapse
Affiliation(s)
- Jueichuan Connie Kang
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA; US Public Health Service Commissioned Corps, Rockville, MD, USA.
| | - Luis G Valerio
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA
| |
Collapse
|
8
|
Mustra Rakic J, Wang XD. Role of lycopene in smoke-promoted chronic obstructive pulmonary disease and lung carcinogenesis. Arch Biochem Biophys 2020; 689:108439. [PMID: 32504553 DOI: 10.1016/j.abb.2020.108439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are a major cause of morbidity and mortality worldwide, with cigarette smoking being the single most important risk factor for both. Emerging evidence indicates alterations in reverse cholesterol transport-mediated removal of excess cholesterol from lung, and intracellular cholesterol overload to be involved in smoke-promoted COPD and lung cancer development. Since there are currently few effective treatments for COPD and lung cancer, it is important to identify food-derived, biologically active compounds, which can protect against COPD and lung cancer development. High intake of the carotenoid lycopene, as one of phytochemicals, is associated with a decreased risk of chronic lung lesions. This review article summarizes and discusses epidemiologic evidence, in vitro and in vivo studies regarding the prevention of smoke-promoted COPD and lung carcinogenesis through dietary lycopene as an effective intervention strategy. We focus on the recent research implying that lycopene preventive effect is through targeting the main genes involved in reverse cholesterol transport. This review also indicates gaps in knowledge about the function of lycopene against COPD and lung cancer, offering directions for further research.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
9
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
10
|
Pascale RM, Simile MM, Peitta G, Seddaiu MA, Feo F, Calvisi DF. Experimental Models to Define the Genetic Predisposition to Liver Cancer. Cancers (Basel) 2019; 11:cancers11101450. [PMID: 31569678 PMCID: PMC6826893 DOI: 10.3390/cancers11101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent human cancer and the most frequent liver tumor. The study of genetic mechanisms of the inherited predisposition to HCC, implicating gene-gene and gene-environment interaction, led to the discovery of multiple gene loci regulating the growth and multiplicity of liver preneoplastic and neoplastic lesions, thus uncovering the action of multiple genes and epistatic interactions in the regulation of the individual susceptibility to HCC. The comparative evaluation of the molecular pathways involved in HCC development in mouse and rat strains differently predisposed to HCC indicates that the genes responsible for HCC susceptibility control the amplification and/or overexpression of c-Myc, the expression of cell cycle regulatory genes, and the activity of Ras/Erk, AKT/mTOR, and of the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways, the methionine cycle, and DNA repair pathways in mice and rats. Comparative functional genetic studies, in rats and mice differently susceptible to HCC, showed that preneoplastic and neoplastic lesions of resistant mouse and rat strains cluster with human HCC with better prognosis, while the lesions of susceptible mouse and rats cluster with HCC with poorer prognosis, confirming the validity of the studies on the influence of the genetic predisposition to hepatocarinogenesis on HCC prognosis in mouse and rat models. Recently, the hydrodynamic gene transfection in mice provided new opportunities for the recognition of genes implicated in the molecular mechanisms involved in HCC pathogenesis and prognosis. This method appears to be highly promising to further study the genetic background of the predisposition to this cancer.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria A Seddaiu
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| |
Collapse
|
11
|
Tsou HH, Ko HT, Chen CT, Wang TW, Lee CH, Liu TY, Wang HT. Betel quid containing safrole enhances metabolic activation of tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:13-21. [PMID: 31071628 DOI: 10.1016/j.envpol.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Cigarette smoking (CS) and betel quid (BQ) chewing are two known risk factors that have synergistic potential for the enhancing the development of oral squamous cell carcinoma (OSCC) in Taiwan. Most mutagens and carcinogens are metabolically activated by cytochrome P450 (CYP450) to exert their mutagenicity or carcinogenicity. Previous studies have shown that metabolic activation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2A6 activity determines NNK-induced carcinogenesis. In addition, safrole affects cytochrome P450 activity in rodents. However, the effect of BQ safrole on the metabolism of tobacco-specific NNK and its carcinogenicity remains elusive. This study demonstrates that safrole (1 mg/kg/d) induced CYP2A6 activity, reduced urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels, and increased NNK-induced DNA damage, including N7-methylguanine, 8-OH-deoxyguanosine and DNA strand breaks in a Syrian golden hamster model. Furthermore, altered NNK metabolism and increased NNK-induced DNA damage were also observed in healthy subjects with CS and BQ chewing histories compared to healthy subjects with CS histories. In conclusion, BQ containing safrole induced tobacco-specific NNK metabolic activation, resulting in higher NNK-induced genotoxicity. This study provides valuable insight into the synergistic mechanisms of CS- and BQ-induced OSCC.
Collapse
Affiliation(s)
- Han-Hsing Tsou
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Tung Ko
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Tzu Chen
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Wen Wang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Yun Liu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
12
|
Mittelstaedt RA, Dobrovolsky VN, Revollo JR, Pearce MG, Wang Y, Dad A, McKinzie PB, Rosenfeldt H, Yucesoy B, Yeager R, Hu SC, Tang Y, Min S, Kang HK, Yang DJ, Basavarajappa M, Heflich RH. Evaluation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) mutagenicity using in vitro and in vivo Pig-a assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 837:65-72. [PMID: 30595212 DOI: 10.1016/j.mrgentox.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a genotoxic carcinogen found in tobacco and tobacco smoke. Several in vitro and in vivo assays have been used for evaluating the genotoxicity of tobacco smoke and tobacco smoke constituents like NNK, yet it is not clear which in vitro assays are most appropriate for extrapolating the in vitro responses of these test agents to animal models and humans. The Pig-a gene mutation assay can be performed in vitro, in laboratory animals, and in humans, a potential benefit in estimating in vivo responses from in vitro data. In the current study we used Pig-a as a reporter of gene mutation both in vitro, in L5178Y/Tk+/- cells, and in vivo, in Sprague-Dawley rats. NNK significantly increased Pig-a mutant frequency in L5178Y/Tk+/- cells, but only at concentrations of 100 μg/ml and greater, and only in the presence of S9 activation. Pig-a mutations in L5178Y/Tk+/- cells were detected in 80% of the NNK-induced mutants, with the predominate mutation being G→A transition; vehicle control mutants contained deletions. In the in vivo study, rats were exposed to NNK daily for 90 days by inhalation, a common route of exposure to NNK for humans. Although elevated mutant frequencies were detected, these responses were not clearly associated with NNK exposure, so that overall, the in vivo Pig-a assays were negative. Thus, while NNK induces mutations in the in vitro Pig-a assay, the in vivo Pig-a assay has limited ability to detect NNK mutagenicity under conditions relevant to NNK exposure in smokers.
Collapse
Affiliation(s)
- Roberta A Mittelstaedt
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Vasily N Dobrovolsky
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Javier R Revollo
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Mason G Pearce
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Yiying Wang
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Azra Dad
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Page B McKinzie
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Hans Rosenfeldt
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Berran Yucesoy
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Raymond Yeager
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Shu-Chieh Hu
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Yunan Tang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Seonggi Min
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Hyun-Ki Kang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Dong-Jin Yang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Mallikarjuna Basavarajappa
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Robert H Heflich
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA.
| |
Collapse
|
13
|
Deng J, Guo L, Wu B. Circadian Regulation of Hepatic Cytochrome P450 2a5 by Peroxisome Proliferator-Activated Receptor γ. Drug Metab Dispos 2018; 46:1538-1545. [PMID: 30154104 DOI: 10.1124/dmd.118.083071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human CYP2A6 (Cyp2a5 in mice) plays an important role in metabolism and detoxification of various drugs and chemicals. Here, we investigated a potential role of peroxisome proliferator-activated receptor γ (Ppar-γ) in circadian regulation of the Cyp2a5 enzyme. We first showed that Cyp2a5 mRNA and protein in mouse liver displayed robust circadian oscillations. Consistent with a circadian protein pattern, Cyp2a5-mediated 7-hydroxylation of coumarin was circadian time-dependent. Formation of 7-hydroxycoumarin was more extensive at a dosing time of Zeitgeber time 2 (ZT2) than that at ZT14. Interestingly, the nuclear receptor Ppar-γ was also a circadian gene. Circadian Ppar-γ protein level was strongly correlated with the Cyp2a5 mRNA level (r = 0.989). Furthermore, Ppar-γ activation (by a selective agonist, rosiglitazone) upregulated Cyp2a5 expression in Hepa-1c1c7 cells, whereas Ppar-γ knockdown downregulated Cyp2a5 expression. Also, Ppar-γ knockdown blunted the rhythmicity of Cyp2a5 mRNA in serum-shocked Hepa-1c1c7 cells. In addition, a combination of promoter truncation analysis, mobility shift, and chromatin immunoprecipitation assays revealed that Ppar-γ directly bound to a PPAR response element (i.e., the -1418- to -1396-bp region) within Cyp2a5 promoter and activated the gene transcription. Taken together, Ppar-γ was a transcriptional activator of Cyp2a5, and its rhythmic expression contributed to circadian expression of Cyp2a5.
Collapse
Affiliation(s)
- Jiangming Deng
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
15
|
Henderson LM, Claw KG, Woodahl EL, Robinson RF, Boyer BB, Burke W, Thummel KE. P450 Pharmacogenetics in Indigenous North American Populations. J Pers Med 2018; 8:jpm8010009. [PMID: 29389890 PMCID: PMC5872083 DOI: 10.3390/jpm8010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Indigenous North American populations, including American Indian and Alaska Native peoples in the United States, the First Nations, Métis and Inuit peoples in Canada and Amerindians in Mexico, are historically under-represented in biomedical research, including genomic research on drug disposition and response. Without adequate representation in pharmacogenetic studies establishing genotype-phenotype relationships, Indigenous populations may not benefit fully from new innovations in precision medicine testing to tailor and improve the safety and efficacy of drug treatment, resulting in health care disparities. The purpose of this review is to summarize and evaluate what is currently known about cytochrome P450 genetic variation in Indigenous populations in North America and to highlight the importance of including these groups in future pharmacogenetic studies for implementation of personalized drug therapy.
Collapse
Affiliation(s)
- Lindsay M Henderson
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Katrina G Claw
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Renee F Robinson
- Southcentral Foundation, Anchorage, AK 99508, USA.
- United States Public Health Service, Department of Human Services, Washington, DC 20201, USA.
| | - Bert B Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Wylie Burke
- Bioethics & Humanities, University of Washington, Seattle, WA 98195, USA.
| | - Kenneth E Thummel
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Kobayashi S, Sata F, Sasaki S, Braimoh TS, Araki A, Miyashita C, Goudarzi H, Kobayashi S, Kishi R. Modification of adverse health effects of maternal active and passive smoking by genetic susceptibility: Dose-dependent association of plasma cotinine with infant birth size among Japanese women-The Hokkaido Study. Reprod Toxicol 2017; 74:94-103. [PMID: 28893607 DOI: 10.1016/j.reprotox.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We aimed to assess the individual dose-response effects of eight maternal polymorphisms encoding polycyclic aromatic hydrocarbon-metabolizing and DNA-repair genes on prenatal cotinine levels according to infant birth size. METHODS In total, 3263 Japanese pregnant women were assigned to five groups based on plasma cotinine levels during the 8th month of pregnancy, as measured using ELISA (cut-offs: 0.21, 0.55, 11.48, and 101.67ng/mL). Analyses were performed using multiple linear regression. RESULTS Birth weight reduction showed a dose-dependent relationship with prenatal cotinine levels (P for trend<0.001). When considering the specific aromatic hydrocarbon receptor (AHR) (G>A, Arg554Lys; db SNP ID: rs2066853) and X-ray cross-complementing gene 1 (XRCC1) (C>T, Arg194Trp, rs1799782) genotypes, a larger birth weight reduction was noted among infants born to mothers with the highest cotinine level. CONCLUSION Infants born to women with specific AHR and XRCC1 genotypes may have higher genetic risks for birth weight reduction.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Public Health Sciences, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo 162-8473, Japan
| | - Seiko Sasaki
- Department of Public Health Sciences, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Titilola Serifat Braimoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Public Health Sciences, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Sachiko Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|
17
|
Kumondai M, Hosono H, Orikasa K, Arai Y, Arai T, Sugimura H, Ozono S, Sugiyama T, Takayama T, Sasaki T, Hirasawa N, Hiratsuka M. Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers. Biol Pharm Bull 2016; 39:84-89. [PMID: 26725431 DOI: 10.1248/bpb.b15-00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Several of the procarcinogens inhaled in tobacco smoke, the primary risk factor for bladder cancer, are activated by CYP2A6. The association between the whole-gene deletion of CYP2A6 (CYP2A6*4) and a reduced risk of bladder cancer was suggested in Chinese Han smokers. However, there is no evidence for association between the risk of bladder cancer and CYP2A6 genotypes in the Japanese population. Using genomic DNA from smokers of the Japanese population (163 bladder cancer patients and 116 controls), we conducted a case-control study to assess the association between CYP2A6 polymorphisms and the risk of bladder cancer. Determination of CYP2A6 genotypes was carried out by amplifying each exon of CYP2A6 using polymerase chain reaction (PCR) and Sanger sequencing. The CYP2A6*4 allele was identified by an allele-specific PCR assay. Bladder cancer risk was evaluated using the activity score (AS) system based on CYP2A6 genotypes. The odds ratios (95% confidence interval) for the AS 0, AS 0.5, AS 1.0, and AS 1.5 groups were 0.46 (0.12-1.83), 0.43 (0.15-1.25), 0.86 (0.40-1.86), and 1.36 (0.60-3.06), respectively. In conclusion, although decreased CYP2A6 AS tended to reduce the risk of bladder cancer in Japanese smokers, no significant association was recognized in this population. However, given the relatively small size of the sample, further study is required to conclude the lack of a statistically significant association between CYP2A6 genotypes and the risk of bladder cancer.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zeng Q, Zhang SH, Liao J, Miao DY, Wang XY, Yang P, Yun LJ, Liu AL, Lu WQ. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:23-29. [PMID: 25910456 DOI: 10.1016/j.jhazmat.2015.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shao-Hui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Experiment Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jing Liao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Dong-Yue Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xin-Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Luo-Jia Yun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ai-Lin Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
19
|
Hosono H, Kumondai M, Arai T, Sugimura H, Sasaki T, Hirasawa N, Hiratsuka M. CYP2A6 genetic polymorphism is associated with decreased susceptibility to squamous cell lung cancer in Japanese smokers. Drug Metab Pharmacokinet 2015; 30:263-268. [PMID: 26091970 DOI: 10.1016/j.dmpk.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 2A6 (CYP2A6) is an enzyme involved in the metabolism of tobacco carcinogens, which are important risk factors in lung cancer. We and others have previously reported that CYP2A6*4, a whole-gene deletion polymorphism, is associated with lower risk of lung cancer than the wild-type allele. However, the genotyping method used in these previous studies considered only the CYP2A6*4 allele; this lead to insufficient classification of the CYP2A6 genotype, thereby underestimating the frequencies of the deficient alleles. In this study, CYP2A6 genotypes of Japanese smokers (110 individuals with squamous cell lung cancer (SQCC) and 132 sex-matched cancer-free controls) were determined using a sequencing-based approach to determine CYP2A6 haplotypes. The risk of SQCC was evaluated using the activity score (AS) system to predict CYP2A6 phenotype from its genotype. The risk of developing SQCC was significantly lower in the poor metabolizers assigned as AS 0.5 (adjusted odds ratio [OR] = 0.13, 95% CI = 0.04-0.45, P = 0.001) and AS 0 (adjusted OR = 0.15, 95% CI = 0.03-0.82, P = 0.028) than in the extensive metabolizers assigned as AS 2.0. In conclusion, CYP2A6 genetic polymorphisms may play important roles in the development of SQCC in Japanese smokers.
Collapse
Affiliation(s)
- Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takamitsu Sasaki
- Department of Environmental and Health Science, Tohoku Pharmaceutical University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
20
|
Li MY, Liu Y, Liu LZ, Kong AWY, Zhao Z, Wu B, Long X, Wu J, Ng CSH, Wan IYP, Du J, Mok TSK, Underwood MJ, Chen GG. Estrogen receptor alpha promotes smoking-carcinogen-induced lung carcinogenesis via cytochrome P450 1B1. J Mol Med (Berl) 2015; 93:1221-33. [PMID: 26041383 DOI: 10.1007/s00109-015-1300-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 05/16/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Smoking carcinogen N-nitrosamines such as 4-methylnitrosamino-l-3-pyridyl-butanone (NNK) require metabolic activation to exert their genotoxicity. The first activation step is mainly catalyzed by cytochrome P450 (CYP) family. Estrogen receptor α (ERα) plays a role in lung pathology. The association between them is unknown. In this study, we explored the relationship and function of CYP1B1 and ERα in NNK-induced lung tumorigenesis. CYP1B1 and ERα expression was analyzed in human lung cancer tissues and NNK-induced lung tumor of A/J mice. Cell lines NCI-H23 and NCI-H460 were employed to further study the responsible mechanisms using various cellular and molecular approaches. Our in vivo experiments demonstrated that CYP1B1 and ERα were over-expressed at the early stage of NNK-induced lung tumorigenesis. Microarray analysis found that ERα was involved in the extracellular-signal-regulated kinase (ERK)/MAPK pathway. NNK activated RAS/ERK/AP1 as it remarkably increased the levels of p-ERK, c-Fos, and c-Jun but inhibited multiple negative regulators of Ras/ERK/AP1, Pdcd4, Spry1, Spry2, and Btg2 through up-regulating miR-21. Both CYP1B1 siRNA and ERK-specific inhibitor U0126 suppressed NNK-mediated ERα up-regulation, suggesting that ERα was downstream of CYP1B1 and ERK. ERK inactivation led to the accumulation of CYP1B1, indicating that CYP1B1 was upstream of ERK activation. Inhibition of ERK or ERα decreased NNK-induced cell proliferation. Blockage of CYP1B1 or ERα induced apoptosis of lung cancer cells. Collectively, NNK-mediated ERα induction is via CYP1B1 and ERK and contributes to the lung carcinogenesis. The inhibition of CYP1B1, ERK, or ERα may arrest the lung cancer cell growth, implicating a pivotal strategy for the treatment of lung cancer. KEY MESSAGES Smoking carcinogen NNK requires metabolic activation to exert their genotoxicity. CYP1B1 is the enzyme to catalyze NNK. NNK activates CYP1B1 and ERK to induce ERα. Inhibition of CYP1B1, ERK, or ERα arrests the lung cancer cell growth.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Yi Liu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong.,Guangdong Medical College, Zhangjiang, Guangdong, China
| | - Li-Zhong Liu
- Department of Pathophysiology, Faculty of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Angel W Y Kong
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Zhili Zhao
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Bin Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guang Dong Medical College, Zhanjiang, Guangdong, China
| | - Xiang Long
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guang Dong Medical College, Zhanjiang, Guangdong, China
| | - Calvin S H Ng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Innes Y P Wan
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tony S K Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Malcolm J Underwood
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong.
| |
Collapse
|
21
|
Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: Alternative approaches. Regul Toxicol Pharmacol 2015; 71:601-23. [DOI: 10.1016/j.yrtph.2014.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 08/06/2014] [Indexed: 11/21/2022]
|
22
|
Peng XE, Chen HF, Hu ZJ, Shi XS. Independent and combined effects of environmental factors and CYP2C19 polymorphisms on the risk of esophageal squamous cell carcinoma in Fujian Province of China. BMC MEDICAL GENETICS 2015; 16:15. [PMID: 25927305 PMCID: PMC4422422 DOI: 10.1186/s12881-015-0156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/18/2015] [Indexed: 12/28/2022]
Abstract
Background The purpose of this study was to explore the effects of CYP2C19 gene polymorphisms and various environmental factors and their interactions on the risk of esophageal squamous cell carcinoma (ESCC) in a Chinese Han population. Methods A 1:2 frequency-matched case control study of 285 patients and 570 controls was conducted from June 2010 to May 2011 in AnXi of Fujian province, China. Environmental factors were investigated using a self-administered questionnaire and genotypes were determined using polymerase chain reaction restriction fragment length polymorphism based methods. Unconditional logistic regression models were used for statistical evaluation. Results Current or former smoking, consumption of pickled vegetables or hot beverages/food, having a first degree relative with ESCC and history of reflux esophagitis were significantly associated with increased ESCC risk, whereas tea drinking and consumption of fresh vegetables and fruits were significantly associated with decreased risk. The CYP2C19*2 GA/AA genotype was significantly more prevalent in ESCC patients and individuals with at least one copy of the CYP2C19*2 A allele had a 3.19-fold increased risk (adjusted 95% confidence interval (CI): 2.21–4.61, P < 0.001) of ESCC compared with those without this allele. We found no significant associations between CYP2C19*3 genotypes and ESCC. The Cyp2C19*2 polymorphism appeared to have a multiplicative joint effect with tea drinking and hot beverage/food consumption (gene–tea drinking: Pinteraction = 0.042; hot beverage/food consumption: Pinteraction = 6.98 × 10−6) and an additive joint effect with pickled vegetable consumption (interaction contrast ratio = 1.96, 95% CI: 0.12–3.80). Conclusions Our findings suggest that the CYP2C19*2 polymorphism plays an important role in the development of ESCC in the Chinese population, modified by tea drinking and consumption of pickled vegetables or hot beverages/food. Further studies are warranted to confirm our results. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0156-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-E Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fujian, China.
| | - Hua-Fang Chen
- CDC of XiaMen, 681-685Shengguang Road, Xiamen, China.
| | - Zhi-Jian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
| | - Xi-Shun Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
| |
Collapse
|
23
|
Daly AK. Polymorphic Variants of Cytochrome P450. CYTOCHROME P450 FUNCTION AND PHARMACOLOGICAL ROLES IN INFLAMMATION AND CANCER 2015; 74:85-111. [DOI: 10.1016/bs.apha.2015.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Buist H, Bausch-Goldbohm R, Devito S, Venhorst J, Stierum R, Kroese E. WITHDRAWN: Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: An alternative approach. Regul Toxicol Pharmacol 2014; 70:392. [DOI: 10.1016/j.yrtph.2014.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 11/25/2022]
|
25
|
Sharma KL, Agarwal A, Misra S, Kumar A, Kumar V, Mittal B. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol 2014; 35:5431-5439. [PMID: 24535777 DOI: 10.1007/s13277-014-1708-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/29/2014] [Indexed: 02/07/2023] Open
Abstract
Gallbladder carcinoma is a highly aggressive cancer with female predominance. Interindividual differences in the effectiveness of the activation/detoxification of environmental carcinogens and endogenous estrogens may play a crucial role in cancer susceptibility. The present study included 410 patients with carcinoma of the gallbladder (GBC) and 230 healthy subjects. This study examined association of CYP1A1-MspI, CYP1A1-Ile462Val, and CYP1B1-Val432Leu with GBC susceptibility. CYP1A1-MspI [CC] and CYP1A1-Ile462Val [iso/val] genotypes were found to be significantly associated with GBC (p=0.006 and p=0.03, respectively), as compared to healthy controls, while CYP1B1-Val432Leu was not associated with GBC. The CYP1A1 haplotype [C-val] showed a significant association with GBC (p=0.006). On stratification based on gender, the CYP1A1-MspI [CC] genotype showed an increased risk of GBC in females (p=0.018). In case-only analysis, tobacco users with CYP1A1-MspI [CT] genotypes were at a higher risk of GBC (p=0.008). Subdividing the GBC patients on the basis of gallstone status, the CYP1A1 haplotype [C-val] imparted a higher risk in patients without stones when compared to controls (p=0.001). The results remained significant even after applying Bonferroni correction. Multivariate analysis revealed an increased risk of CYP1A1 iso/val and val/val genotypes in GBC patients having BMI >25 (p=0.021). The CYP1A1 polymorphisms may confer increased risk of GBC, probably due to impaired xenobiotic or hormone metabolism through a gallstone-independent pathway.
Collapse
Affiliation(s)
- Kiran Lata Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India,
| | | | | | | | | | | |
Collapse
|
26
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
Wang H, Song K, Chen Z, Yu Y. Poor metabolizers at the cytochrome P450 2C19 loci is at increased risk of developing cancer in Asian populations. PLoS One 2013; 8:e73126. [PMID: 24015291 PMCID: PMC3754911 DOI: 10.1371/journal.pone.0073126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/16/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND CYP2C19 encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of cancer. In the past decade, two common polymorphisms among CYP2C19 (CYP2C19*2 and CYP2C19*3) that are responsible for the poor metabolizers (PMs) phenotype in humans and cancer susceptibility have been investigated extensively; however, these studies have yielded contradictory results. METHODS AND RESULTS To investigate this inconsistency, we conducted a comprehensive meta-analysis of 11,554 cases and 16,592 controls from 30 case-control studies. Overall, the odds ratio (OR) of cancer was 1.52 [95% confidence interval (CI): 1.23-1.88, P<10(-4)] for CYP2C19 PMs genotypes. However, this significant association vanished when the analyses were restricted to 5 larger studies (no. of cases ≥ 500 cases). In the subgroup analysis for different cancer types, PMs genotypes had an effect of increasing the risks of esophagus cancer, gastric cancer, lung cancer and hepatocellular carcinoma as well as head neck cancer. Significant results were found in Asian populations when stratified by ethnicity; whereas no significant associations were found among Caucasians. Stratified analyses according to source of controls, significant associations were found only in hospital base controls. CONCLUSIONS Our meta-analysis suggests that the CYP2C19 PMs genotypes most likely contributes to cancer susceptibility, particularly in the Asian populations.
Collapse
Affiliation(s)
- Hong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Kang Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zenggan Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- * E-mail: (ZGC); (YMY)
| | - Yanmin Yu
- Department of Breast Surgery, Huangpu Central Hospital of Shanghai, Shanghai, People’s Republic of China
- * E-mail: (ZGC); (YMY)
| |
Collapse
|
28
|
Functional polymorphisms in the CYP2C19 gene contribute to digestive system cancer risk: evidence from 11,042 subjects. PLoS One 2013; 8:e66865. [PMID: 23874401 PMCID: PMC3712993 DOI: 10.1371/journal.pone.0066865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background CYP2C19 belongs to the cytochrome P450 superfamily of enzymes involved in activating and detoxifying many carcinogens and endogenous compounds, which has attracted considerable attention as a candidate gene for digestive system cancer. CYP2C19 has two main point mutation sites (CYP2C19*2, CYP2C19*3) leading to poor metabolizer (PM) phenotype. In the past decade, the relationship between CYP2C19 polymorphism and digestive system cancer has been reported in various ethnic groups; however, these studies have yielded contradictory results. Methods To clarify this inconsistency, we performed this meta-analysis. Databases including Pubmed, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. Results In total, 18 studies with 4,414 cases and 6,628 controls were included. Overall, significantly elevated digestive system cancer risk was associated CYP2C19 PM with OR of 1.66 (95%CI: 1.31–2.10, P<10−5) when all studies were pooled into the meta-analysis. There was strong evidence of heterogeneity (P = 0.006), which largely disappeared after stratification by cancer type. In the stratified analyses according to cancer type, ethnicity, control source and sample size, significantly increased risks were found. Conclusions In summary, our meta-analysis suggested that the PM phenotype caused by the variation on CYP2C19 gene is associated with increased risk of digestive system cancer, especially in East Asians.
Collapse
|
29
|
Yao L, Wang HC, Liu JZ, Xiong ZM. Quantitative assessment of the influence of cytochrome P450 2C19 gene polymorphisms and digestive tract cancer risk. Tumour Biol 2013; 34:3083-91. [DOI: 10.1007/s13277-013-0875-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/16/2013] [Indexed: 12/14/2022] Open
|
30
|
Nakada T, Kiyotani K, Iwano S, Uno T, Yokohira M, Yamakawa K, Fujieda M, Saito T, Yamazaki H, Imaida K, Kamataki T. Lung tumorigenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway. J Toxicol Sci 2012; 37:555-63. [PMID: 22687995 DOI: 10.2131/jts.37.555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously found that genetic polymorphism in cytochrome P450 2A6 (CYP2A6) is one of the potential determinants of tobacco-related lung cancer risk. It has been reported that the plasma concentration of cotinine, a major metabolite of nicotine, in carriers of wild-type alleles of CYP2A6 is considerably higher than that in carriers of null or reduced-function alleles of CYP2A6, raising the possibility that cotinine plays an important role in the development of lung cancer. As a novel mechanism of lung tumorigenesis mediated by CYP2A6, we investigated the effects of cotinine on the suppression of apoptosis and promotion of lung tumor growth. In human lung adenocarcinoma A549 cells, cotinine inhibited doxorubicin-induced cell death by suppressing caspase-mediated apoptosis. Enhanced phosphorylation of Akt, a key factor responsible for cell survival and inhibition of apoptosis, was detected after cotinine treatment. These data suggest that cotinine suppresses caspase-mediated apoptosis induced by doxorubicin through activation of the PI3K/Akt pathway. Furthermore, we clarified that cotinine significantly facilitated tumor growth in the Lewis lung cancer model and accelerated development of lung adenomas induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mice. We herein propose that cotinine induces tumor promotion by inhibiting apoptosis and enhancing cellular proliferation, thus underlining the importance of CYP2A6 in tobacco-related lung tumorigenesis.
Collapse
Affiliation(s)
- Tomohisa Nakada
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chiang HC, Wang CK, Tsou TC. Differential distribution of CYP2A6 and CYP2A13 in the human respiratory tract. Respiration 2012; 84:319-26. [PMID: 22890016 DOI: 10.1159/000339591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human CYP2A6 and CYP2A13 play important roles in metabolic activation of many pulmonary carcinogens and thus their expression and distribution may determine the pulmonary susceptibility to metabolically activated carcinogens and the following lung cancer development. Because of the 93.5% of amino acid identity between CYP2A6 and CYP2A13, generation of antibodies specific to CYP2A6 or CYP2A13 has limited immunohistochemical (IHC) analysis of CYP2A6 and CYP2A13 levels in the respiratory tract. OBJECTIVES This study aimed to determine the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissue with IHC analysis. METHODS With computer-aided protein sequence analyses, candidate epitopes of 15 amino acids in the C-terminal domains of CYP2A6 and CYP2A13 were selected for antibody generation. Specificity of these two antibodies was confirmed with immunoblot and immunofluorescence analyses. With these two selective antibodies, the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissues, including tracheae, bronchi, bronchioles and alveoli, was determined. RESULTS IHC results showed that both CYP2A6 and CYP2A13 were markedly expressed in epithelial cells of tracheae and bronchi and that only CYP2A6 was detected in bronchiolar epithelial cells of peripheral lungs. A limitation of the present study is the cross-reactivity of our CYP2A6 antibody to the functional inactive CYP2A7. CONCLUSIONS The differential distribution patterns of CYP2A6 and CYP2A13 in the respiratory tract are of importance in considering the pulmonary susceptibility to carcinogens and the following lung cancer development.
Collapse
Affiliation(s)
- Huai-chih Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
32
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
33
|
Wagner ED, Hsu KM, Lagunas A, Mitch WA, Plewa MJ. Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 741:109-15. [DOI: 10.1016/j.mrgentox.2011.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
34
|
Chiang HC, Wang CY, Lee HL, Tsou TC. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation--a mammalian cell-based mutagenesis approach. Toxicol Appl Pharmacol 2011; 253:145-52. [PMID: 21473878 DOI: 10.1016/j.taap.2011.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/21/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that ≥70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the α-hydroxylation of NNK; and the α-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O(6)-methylguanine (O(6)-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK α-hydroxylation.
Collapse
Affiliation(s)
- Huai-Chih Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | |
Collapse
|
35
|
Miyahara E, Nishie M, Takumi S, Miyanohara H, Nishi J, Yoshiie K, Oda H, Takeuchi M, Komatsu M, Aoyama K, Horiuchi M, Takeuchi T. Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms. FEMS Microbiol Lett 2011; 317:109-16. [DOI: 10.1111/j.1574-6968.2011.02215.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Song X, Siriwardhana N, Rathore K, Lin D, Wang HCR. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Mol Carcinog 2010; 49:450-63. [PMID: 20146248 DOI: 10.1002/mc.20616] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Breast cancer is the most common type of cancer among women in northern America and northern Europe; dietary prevention is a cost-efficient strategy to reduce the risk of this disease. To identify dietary components for the prevention of human breast cancer associated with long-term exposure to environmental carcinogens, we studied the activity of grape seed proanthocyanidin extract (GSPE) in suppression of cellular carcinogenesis induced by repeated exposures to low doses of environmental carcinogens. We used combined carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), at picomolar concentrations, to repeatedly treat noncancerous, human breast epithelial MCF10A cells to induce cellular acquisition of cancer-related properties of reduced dependence on growth factors, anchorage-independent growth, and acinar-conformational disruption. Using these properties as biological target endpoints, we verified the ability of GSPE to suppress combined NNK- and B[a]P-induced precancerous cellular carcinogenesis and identified the minimal, noncytotoxic concentration of GSPE required for suppressing precancerous cellular carcinogenesis. We also identified that hydroxysteroid-11-beta-dehydrogenase 2 (HSD11B2) may play a role in NNK- and B[a]P-induced precancerous cellular carcinogenesis, and its expression may act as a molecular target endpoint in GSPE's suppression of precancerous cellular carcinogenesis. And, the ability of GSPE to reduce gene expression of cytochrome-P450 enzymes CYP1A1 and CYP1B1, which can bioactivate NNK and B[a]P, possibly contributes to the preventive mechanism for GSPE in suppression of precancerous cellular carcinogenesis. Our model system with biological and molecular target endpoints verified the value of GSPE for the prevention of human breast cell carcinogenesis induced by repeated exposures to low doses of multiple environmental carcinogens.
Collapse
Affiliation(s)
- Xiaoyu Song
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
37
|
Hakura A, Hori Y, Uchida K, Sawada S, Suganuma A, Aoki T, Tsukidate K. Inhibitory Effect of Dimethyl Sulfoxide on the Mutagenicity of Promutagens in the Ames Test. Genes Environ 2010. [DOI: 10.3123/jemsge.32.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Bozdag G, Alp A, Saribas Z, Tuncer S, Aksu T, Gurgan T. CYP17 and CYP2C19 gene polymorphisms in patients with endometriosis. Reprod Biomed Online 2009; 20:286-90. [PMID: 20113968 DOI: 10.1016/j.rbmo.2009.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/18/2009] [Accepted: 10/20/2009] [Indexed: 11/16/2022]
Abstract
Endometriosis seems to be the result of a complex interaction between environmental factors and various genes. In this regard, the cytochrome subfamily 17 (CYP17) may play an important role by altering the biosynthesis of sex steroids. CYP2C19 is also an important member of the cytochrome P450 (CYP) family, and related mutations may result in an inability to fully metabolize environmental chemicals and cytokines, leading to several diseases. This study sought to determine whether there is a relationship between endometriosis and CYP17 T>C, CYP2C19 *2 and CYP2C19 *3 polymorphisms. When samples from 46 patients with endometriosis and 39 healthy controls were analysed, A2A2 type mutation of the CYP17 gene was observed to be more frequent in patients with endometriosis (34.8 versus 7.7%, P = 0.003). No association was found between the severity of endometriosis and CYP2C19 *2 or CYP2C19 *3 polymorphisms of the CYP2C19 gene. These results suggest that mutations related with sex steroid metabolism seem to have an important role in endometriosis. However, the relation between detoxification ability and endometriosis should be examined in further studies with larger sample sizes.
Collapse
Affiliation(s)
- Gurkan Bozdag
- Department of Obstetrics and Gynecology, Hacettepe University, School of Medicine, Hacettepe, 06100 Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cytochrome P450 (CYP450) enzymes are predominantly involved in the Phase I metabolism of xenobiotics. Metabolic inhibition and induction can give rise to clinically important drug-drug interactions. Metabolic stability is a prerequisite for sustaining the therapeutically relevant concentrations, and very often drug candidates are sacrificed due to poor metabolic profiles. Computational tools such as quantitative structure-activity relationships are widely used to study different metabolic end points successfully to accelerate the drug discovery process. There are a lot of computational studies on clinically important CYPs already reported in recent years. But other clinically significant families are to yet be explored computationally. Powerfulness of quantitative structure-activity relationship will drive computational chemists to develop new potent and selective inhibitors of different classes of CYPs for the treatment of different diseases with least drug-drug interactions. Furthermore, there is a need to enhance the accuracy, interpretability and confidence in the computational models in accelerating the drug discovery pathways.
Collapse
Affiliation(s)
- Kunal Roy
- Jadavpur University, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics Lab, Kolkata 700 032, India.
| | | |
Collapse
|
40
|
Singh AP, Shah PP, Ruwali M, Mathur N, Pant MC, Parmar D. Polymorphism in cytochrome P4501A1 is significantly associated with head and neck cancer risk. Cancer Invest 2009; 27:869-76. [PMID: 19639480 DOI: 10.1080/07357900902849657] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A case control study was undertaken to investigate the association of polymorphisms in cytochrome P4501A1 (CYP1A1) with squamous cell carcinoma of head and neck (HNSCC) in North Indian population. The variant genotypes of CYP1A1*2A and CYP1A1*2C were found to be overrepresented in cases when compared to controls. The HNSCC risk also increased several folds in cases with combination of variant genotypes of CYP1A1*2A or CYP1A1*2C with null genotype of glutathione-S-transferase M1 (GSTM1), a phase II enzyme, particularly in cases who were tobacco users (smokers and tobacco chewers), demonstrating the role of gene-gene and gene-environment interactions in the development of HNSCC.
Collapse
|
41
|
Xu B, Chen Z, Qi F, Ma J, Wu F. Rapid degradation of new disinfection by-products in drinking water by UV irradiation: N-Nitrosopyrrolidine and N-nitrosopiperidine. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2009.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Delgado ME, Haza AI, García A, Morales P. Myricetin, quercetin, (+)-catechin and (-)-epicatechin protect against N-nitrosamines-induced DNA damage in human hepatoma cells. Toxicol In Vitro 2009; 23:1292-7. [PMID: 19628030 DOI: 10.1016/j.tiv.2009.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 07/03/2009] [Accepted: 07/16/2009] [Indexed: 01/27/2023]
Abstract
The aim of this study was to investigate the protective effect of myricetin, quercetin, (+)-catechin and (-)-epicatechin, against N-nitrosodibutylamine (NDBA) and N-nitrosopiperidine (NPIP)-induced DNA damage in human hepatoma cells (HepG2). DNA damage (strand breaks and oxidized purines/pyrimidines) was evaluated by the alkaline single-cell gel electrophoresis or Comet assay. (+)-Catechin at the lowest concentration (10 microM) showed the maximum reduction of DNA strand breaks (23%), the formation of endonuclease III (Endo III, 19-21%) and formamidopyrimidine-DNA glycosylase (Fpg, 28-40%) sensitive sites induced by NDBA or NPIP. (-)-Epicatechin also decreased DNA strand breaks (10 microM, 20%) and the oxidized pyrimidines/purines (33-39%) induced by NDBA or NPIP, respectively. DNA strand breaks induced by NDBA or NPIP were weakly reduced by myricetin at the lowest concentration (0.1 microM, 10-19%, respectively). Myricetin also reduced the oxidized purines (0.1 microM, 17%) and pyrimidines (0.1 microM, 15%) induced by NDBA, but not the oxidized pyrimidines induced by NPIP. Quercetin did not protect against NDBA-induced DNA damage, but it reduced the formation of Endo III and Fpg sensitive sites induced by NPIP (0.1 microM, 17-20%, respectively). In conclusion, our results indicate that (+)-catechin and (-)-epicatechin at the concentrations tested protect human derived cells against oxidative DNA damage effects of NDBA and NPIP. However, myricetin at the concentrations tested only protects human cells against oxidative DNA damage induced by NDBA and quercetin against oxidative DNA damage induced by NPIP.
Collapse
Affiliation(s)
- M E Delgado
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 2009; 9:187. [PMID: 19531241 PMCID: PMC2703651 DOI: 10.1186/1471-2407-9-187] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/16/2009] [Indexed: 02/08/2023] Open
Abstract
CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Department of Medicine, Division of Forensic Sciences and Toxicology, University of Crete, Crete, Greece.
| | | | | |
Collapse
|
44
|
Shah PP, Singh AP, Singh M, Mathur N, Mishra BN, Pant MC, Parmar D. Association of functionally important polymorphisms in cytochrome P4501B1 with lung cancer. Mutat Res 2008; 643:4-10. [PMID: 18573508 DOI: 10.1016/j.mrfmmm.2008.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/30/2008] [Accepted: 05/08/2008] [Indexed: 11/17/2022]
Abstract
In the present study, genotype and haplotype frequencies of four polymorphisms of cytochrome P450 1B1 (CYP1B1) that cause amino acid changes (Arg-Gly at codon 48, Ala-Ser at codon 119, Leu-Val at 432 and Asn-Ser at codon 453) were studied in 200 patients suffering from lung cancer and equal number of controls. A significant difference was observed for the distribution of variant genotypes of CYP1B1Arg48Gly and Ala119Ser polymorphisms (CYP1B1*2) in cases when compared to the controls. No significant difference was observed for the distribution of variant genotypes of CYP1B1Leu432Val (CYP1B1*3) and CYP1B1Asn453Ser (CYP1B1*4) polymorphism. When the four SNPs were analyzed using a haplotype approach, SNPs at codon 48 (Arg48Gly) and codon 119 (Ala119Ser) exhibited complete linkage disequilibrium (LD) in all the cases and controls. Significant differences in the distribution of the three haplotypes (G-T-C-A, G-T-G-A and G-T-C-G) were observed in the cases when compared to controls. Tobacco use in the form of smoking as well as chewing was found to significantly increase the risk of lung cancer in patients by interacting with CYP1B1Ala119Ser genotypes demonstrating the role of gene-environment interaction in lung cancer. Further, the risk of lung cancer increased several fold in the patients carrying the genotype combinations of CYP1B1Ala119Ser and CYP1B1Leu432Val with GSTM1, a phase II enzyme suggesting the importance of gene-gene interactions in enhancing the susceptibility to lung cancer.
Collapse
Affiliation(s)
- Parag P Shah
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre), P.O. Box 80, M.G. Marg, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee HS, Yang M. Applications of CYP-450 expression for biomonitoring in environmental health. Environ Health Prev Med 2008; 13:84-93. [PMID: 19568886 DOI: 10.1007/s12199-007-0009-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/15/2007] [Indexed: 11/25/2022] Open
Abstract
Cytochrome P450s (CYPs) are one of the first steps in the metabolism of xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which are bioactivated into carcinogens. As such, changes in CYP expression are potential biomarkers in human biomonitoring applications. For the proper biomonitoring of environmental toxicants, it is important to understand the biological relevance of each biomarker and the associations among the biomarkers for uses as exposure, effects, and susceptibility biomarkers. Here, we have reviewed various aspects of CYPs for biomonitoring environmental health in terms of the CYP substrates, such as PAHs, aromatic amines, benzene/toluene, and tobacco smoking-related nitrosamines. This review also includes association studies between CYP phenotypical alterations and other exposure, susceptibility, and effect biomarkers. The association studies were mainly performed in CYP gene-transfected cells and noninvasive human biospecies, such as urine and peripheral blood. In conclusion, we suggest that phenotypical alterations in CYPs with exposure to environmental toxicants are useful as susceptibility or effect biomarkers, particularly when the phenotype-related genotypes are unknown.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Department of Toxicology, College of Pharmacy, Sookmyung Women's University, 53-12 Chungpa-dong 2 Ka, Yongsan-Ku, Seoul, Republic of Korea
| | | |
Collapse
|
46
|
Mittal G, Vadhera S, Brar APS, Soni G. Protective role of dietary fibre on N-nitrosopyrrolidine-induced toxicity in hypercholesterolemic rats. Hum Exp Toxicol 2007; 26:91-8. [PMID: 17370866 DOI: 10.1177/0960327107071864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-nitrosopyrrolidine (NPYR) is an important carcinogen, frequently present in the environment and food chain. Oral administration of NPYR to experimental rats evoked severe biochemical and pathological changes. In the present investigation, the protective role of dietary fibre on NPYR-induced toxicity in hypercholesterolemic rats was studied. Supplementation of chickpea seed coat fibre in the diet reduced the hepato-toxic effects of NPYR, as evident from the decreased hepatic degeneration and improved liver weight index compared to control. Administration of NPYR resulted in an increase in the osmotic fragility of erythrocytes in the experimental animals. The antioxidant potential of experimental animals decreased in the NPYR-fed group, which was evident from the increased in vitro lipid peroxidation (LPO) of erythrocytes. However, chickpea seed coat fibre considerably reduced the peroxidative damage done by NPYR. Administration of NPYR resulted in a substantial and significant increase in LPO in all tissues, to a varying degree, though the effect was maximum in the case of the liver. Inclusion of chickpea seed coat fibre considerably reduced the peroxidative damage caused by NPYR in all tissues. The effect of NPYR administration on antioxidant potential was variable in different tissues, but the effect was reduced considerably on inclusion of chickpea seed coat fibre in the diet, providing reasonable protection against NPYR-induced oxidative stress, and, hence, its toxicity. Histopathological analysis of different tissues (heart, liver, lungs, spleen and kidneys) showed mild to severe pathological changes among the control and experimental groups. However, the pathological effects of NPYR administration were markedly reduced with the addition of chickpea seed coat fibre in the diet.
Collapse
Affiliation(s)
- G Mittal
- Department of Biochemistry and Chemistry, Punjab Agricultural University, Ludhiana 141 004, India
| | | | | | | |
Collapse
|
47
|
Sansen S, Hsu MH, Stout CD, Johnson EF. Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants. Arch Biochem Biophys 2007; 464:197-206. [PMID: 17540336 PMCID: PMC2773796 DOI: 10.1016/j.abb.2007.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/21/2007] [Accepted: 04/24/2007] [Indexed: 11/26/2022]
Abstract
Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B'-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.
Collapse
Affiliation(s)
- Stefaan Sansen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Mei-Hui Hsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - C. David Stout
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- To whom to address correspondence: Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, MB8, La Jolla, CA 92037 USA, 858-784-8738, 858-784-2857 fax,
| | - Eric F. Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
- To whom to address correspondence: Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-255, La Jolla, CA 92037 USA, 858-784-7918, 858-784-7978 fax,
| |
Collapse
|
48
|
Oda Y, Watanabe T, Yamazaki H, Hirayama T. Genotoxic Activation of the Environmental Pollutant 3-Nitrobenzanthrone by Human Cytochrome P450 Enzymes Expressed in Salmonella typhimurium umu Tester Strains. Genes Environ 2007. [DOI: 10.3123/jemsge.29.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Abstract
This paper introduces one of our projects performed at Hokkaido University. During the course of pharmacokinetic studies of SM-12502, which was under development as an anti-platelet-activating factor agent, we found three individuals who showed a slow metabolic phenotype in its pharmacokinetics. Analyzing the genes for CYP2A6 from the three, we discovered that they had the whole CYP2A6 gene deletion (CYP2A6*4C). Genetically engineered Salmonella YG7108 cells expressing human P450 were established to compare the mutagen-producing capacity of the P450 enzymes for various N-nitrosamines. We found that CYP2A6 was involved in the metabolic activation of N-nitrosamines with relatively bulky alkyl chains such as a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which has been known to cause lung tumors in rodents. Thus, to examine the hypothesis that individuals possessing the CYP2A6*4C have a reduced risk of cancer due to the lack of the metabolic activation of certain carcinogens in tobacco smoke, a case-control study was performed. The results clearly indicated a significant association between the CYP2A6 genotype and lung cancer risk in smokers. In contrast, there was no significant relationship between them in nonsmokers. In addition, our results showed that the reduced risk of cancer was caused by the reduced activity of CYP2A6. Thus it was expected that the inhibition of the enzyme would result in a reduced cancer risk caused by smoking. The results of experiments using mice which were treated with NNK, a carcinogenic nitrosamine contained in tobacco smoke, together with 8-methoxypsolaren, a strong inhibitor of CYP2A6, indicated that the inhibition of CYP2A6 completely abolished the occurrence of adenoma.
Collapse
Affiliation(s)
- Tetsuya Kamataki
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo City, Japan.
| |
Collapse
|
50
|
Emmert B, Bünger J, Keuch K, Müller M, Emmert S, Hallier E, Westphal GA. Mutagenicity of cytochrome P450 2E1 substrates in the Ames test with the metabolic competent S. typhimurium strain YG7108pin3ERb5. Toxicology 2006; 228:66-76. [PMID: 16978761 DOI: 10.1016/j.tox.2006.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/14/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED Poor metabolic competence of in vitro systems was proposed to be one of their major shortcomings accounting for false negative results in genotoxicity testing. For several "low molecular weight cancer suspects" this was specifically attributed to the lack of cytochrome P450 2E1 (CYP2E1) in conventional in vitro metabolising systems. One promising attempt to overcome this problem is the transfection of "methyltransferase-deficient"S. typhimurium strains with the plasmid pin3ERb5. This plasmid contains DNA encoding for a complete electron transport chain, comprising P450 reductase, cytochrome b5 and cytochrome P450 2E1. In order to answer the question if CYP2E1 substrates that yield negative or inconclusive results in the Ames test can be activated by metabolic competent bacterial strains, we used YG7108pin3ERb5 to investigate the following compounds: acetamide, acrylamide, acrylonitrile, allyl chloride, ethyl acrylate, ethyl carbamate, methyl-methacrylate, vinyl acetate, N-nitrosopyrrolidine, trichloroethylene and tetrachloroethylene. N-Nitrosodiethylamine served as a positive control. In addition to these known or proposed CYP2E1 substrates, we investigated the polycyclic aromatic hydrocarbon benzo[alpha]pyrene and the heterocyclic aromatic amines 2-aminofluorene and 2-aminoanthracene. RESULTS The extensive metabolic competence of the transformed strain is underlined by results showing strong mutagenicity between 10 and 500 micro g N-nitrosopyrrolidine per plate. Unexpectedly, 2-aminoanthracene was mutagenic at a concentration range between 25 and 250 micro g per plate using YG7108pin3ERb5. Moreover, we demonstrate for the first time a clear response of sufficiently characterised allyl chloride in the Ames test at a reasonably low concentration range between 300 and 1500 micro g per plate. We achieved similar results in the parent strain YG7108 with conventional metabolic activation. Without metabolic activation less pronounced mutagenicity occurred, suggesting a contribution of a direct alkylating effect. Propylene oxide is usually contained in allyl chloride as stabilizer at amounts up to 0.09%. Though YG7108 revealed to be very sensitive towards propylene oxide, allyl chloride dissolved in water was not mutagenic, showing that no water soluble compounds contribute to its mutagenicity. None of the remaining compounds showed mutagenic effects using YG7108pin3ERb5. CONCLUSION YG7108pin3ERb5 and its parent strain YG7108 are sensitive for compounds which are negative in conventional tester strains including N-nitrosodiethylamine, N-nitrosopyrrolidine, propylene oxide and allyl chloride.
Collapse
Affiliation(s)
- Birgit Emmert
- Department of Occupational and Social Health, Georg-August-University Göttingen, Waldweg 37, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|