1
|
Reddy R, Kolli S, Salakolusu S, Kallam S, Raghupathi J, Katari N. Characterization and Analytical Method Validation for Potential Impurities of a Merchantability Drug Substance Fluoxetine HCl. Biomed Chromatogr 2025; 39:e6069. [PMID: 39748240 PMCID: PMC11695798 DOI: 10.1002/bmc.6069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
A new selective and sensitive high-performance liquid chromatography (HPLC) method was developed for the quantification of potential impurities in fluoxetine hydrochloride. Chromatographic separation was achieved on an end-capped octadecylsilyl silica gel (Gemini-C18 150 mm × 4.6 mm, 3.0 μm) using a gradient program with triethylamine, methanol, and water as the mobile phase at a flow rate of 1.0 mL/min and monitored at 215 nm. The run time was 60 min. The method was validated to fulfill International Conference on Harmonization (ICH Q2(R2)) requirements, and this validation included specificity, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and accuracy. The calibration curve was linear over the concentration range from LOQ to 120% with respect to sample concentration. The accuracy of the method is within the acceptable limit of 80%-120%. The results obtained for all parameters were within the acceptance criteria. So, this method can be employed for the regular analysis of potential impurities in the fluoxetine hydrochloride API.
Collapse
Affiliation(s)
| | - Sunder Kumar Kolli
- Department of ChemistryBEST Innovation UniversityGorantlaAndhra PradeshIndia
- Department of ChemistryAnnamacharya Institute of Technology & SciencesHyderabadIndia
| | - Suresh Salakolusu
- Analytical Discovery ChemistryAragen Life Sciences Pvt. Ltd.HyderabadIndia
| | | | | | - Naresh Kumar Katari
- School of Chemistry & PhysicsCollege of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
2
|
Walter M, Webb SJ, Gillet VJ. Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features. J Chem Inf Model 2024; 64:3670-3688. [PMID: 38686880 PMCID: PMC11094726 DOI: 10.1021/acs.jcim.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Neural network models have become a popular machine-learning technique for the toxicity prediction of chemicals. However, due to their complex structure, it is difficult to understand predictions made by these models which limits confidence. Current techniques to tackle this problem such as SHAP or integrated gradients provide insights by attributing importance to the input features of individual compounds. While these methods have produced promising results in some cases, they do not shed light on how representations of compounds are transformed in hidden layers, which constitute how neural networks learn. We present a novel technique to interpret neural networks which identifies chemical substructures in training data found to be responsible for the activation of hidden neurons. For individual test compounds, the importance of hidden neurons is determined, and the associated substructures are leveraged to explain the model prediction. Using structural alerts for mutagenicity from the Derek Nexus expert system as ground truth, we demonstrate the validity of the approach and show that model explanations are competitive with and complementary to explanations obtained from an established feature attribution method.
Collapse
Affiliation(s)
- Moritz Walter
- Information
School, University of Sheffield, The Wave, 2 Whitham Road, Sheffield S10 2AH, U.K.
| | - Samuel J. Webb
- Lhasa
Limited, Granary Wharf
House, 2 Canal Wharf, Leeds LS11 5PY, U.K.
| | - Valerie J. Gillet
- Information
School, University of Sheffield, The Wave, 2 Whitham Road, Sheffield S10 2AH, U.K.
| |
Collapse
|
3
|
Wang Y, Chen Y, Chen Y, Luo W, Liu Y. Induction of clastogenesis and gene mutations by carbamazepine (at its therapeutically effective serum levels) in mammalian cells and the dependence on human CYP2B6 enzyme activity. Arch Toxicol 2023; 97:1753-1764. [PMID: 36995427 DOI: 10.1007/s00204-023-03489-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 μM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 μM, lower than its therapeutic serum concentrations, 17 ~ 51 μM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.
Collapse
|
4
|
Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K, Tylkowski B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maciej Staszak
- Institute of Technology and Chemical Engineering Poznan University of Technology Poznan Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering Poznan University of Technology Poznan Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering Poznan University of Technology Poznan Poland
| | - Anna Bajek
- Department of Tissue Engineering Collegium Medicum, Nicolaus Copernicus University Bydgoszcz Poland
| | - Krzysztof Roszkowski
- Department of Oncology Collegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | - Bartosz Tylkowski
- Department of Chemical Engineering University Rovira i Virgili Tarragona Spain
- Eurecat, Centre Tecnològic de Catalunya Chemical Technologies Unit Tarragona Spain
| |
Collapse
|
5
|
Waters MD, Warren S, Hughes C, Lewis P, Zhang F. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:37-63. [PMID: 35023215 DOI: 10.1002/em.22471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, β-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.
Collapse
Affiliation(s)
- Michael D Waters
- Michael Waters Consulting USA, Hillsborough, North Carolina, USA
| | | | - Claude Hughes
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
He Y, Ding H, Xia X, Qi W, Wang H, Liu W, Zheng F. GFP-fused yeast cells as whole-cell biosensors for genotoxicity evaluation of nitrosamines. Appl Microbiol Biotechnol 2021; 105:5607-5616. [PMID: 34228183 DOI: 10.1007/s00253-021-11426-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Nitrosamine compounds, represented by N-nitrosodimethylamine, are regarded as potentially genotoxic impurities (PGIs) due to their hazard warning structure, which has attracted great attention of pharmaceutical companies and regulatory authorities. At present, great research gaps exist in genotoxicity assessment and carcinogenicity comparison of nitrosamine compounds. In this work, a collection of GFP-fused yeast cells representing DNA damage repair pathways were used to evaluate the genotoxicity of eight nitrosamine compounds (10-6-105 μg/mL). The high-resolution expression profiles of GFP-fused protein revealed the details of the DNA damage repair of nitrosamines. Studies have shown that nitrosamine compounds can cause extensive DNA damage and activate multiple repair pathways. The evaluation criteria based on the total expression level of protein show a good correlation with the mammalian carcinogenicity data TD50, and the yeast cell collection can be used as a potential reliable criterion for evaluating the carcinogenicity of compounds. The assay based on DNA damage pathway integration has high sensitivity and can be used as a supplementary method for the evaluation of trace PGIs in actual production. KEY POINTS: • The genotoxicity mechanism of nitrosamines was systematically studied. • The influence of compound structure on the efficacy of genotoxicity was explored. • GFP-fused yeast cells have the potential to evaluate impurities in production.
Collapse
Affiliation(s)
- Ying He
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Haotian Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xingya Xia
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wenyi Qi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaisong Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
7
|
Yang H, Lou C, Li W, Liu G, Tang Y. Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery. Chem Res Toxicol 2020; 33:1312-1322. [DOI: 10.1021/acs.chemrestox.0c00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chaofeng Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Heflich RH, Johnson GE, Zeller A, Marchetti F, Douglas GR, Witt KL, Gollapudi BB, White PA. Mutation as a Toxicological Endpoint for Regulatory Decision-Making. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:34-41. [PMID: 31600846 DOI: 10.1002/em.22338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 05/23/2023]
Abstract
Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | - Andreas Zeller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Kristine L Witt
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
9
|
Bao C, Wang K, Ding Y, Kong J. Association Between Anti-bacterial Drug Use and Digestive System Neoplasms: A Systematic Review and Meta-analysis. Front Oncol 2019; 9:1298. [PMID: 31828038 PMCID: PMC6890852 DOI: 10.3389/fonc.2019.01298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Anti-bacterial drugs are thought to be associated with several malignancies. Objective: We conducted a systematic review and meta-analysis to assess the association between antibacterial drug exposure and the risk of digestive system neoplasms. Methods: Relevant publications reporting a relationship between antibiotic use and the risk of cancer were identified in PubMed, EMBASE, and Cochrane Central Register through June 2018. The random-effects model was selected to pool the risk ratios (RRs) and determine 95% confidence intervals (95% CIs). We performed subgroup analyses by tumor organ site, individual antibacterial drug class, and drug dose accumulation. Results: A total of 17 eligible studies (four randomized trials and 13 observational studies) involving 77,284 cancer patients were included in our analyses. Anti-bacterial drug exposure slightly increased the risk of overall digestive system cancer (RR, 1.12; 95% CI, 1.10-1.14), stomach and small intestine (RR, 1.12; 95% CI, 1.07-1.17), anorectocolonic (RR, 1.08; 95% CI, 1.05-1.12), and hepatobiliary and pancreatic cancers (RR, 1.18; 95% CI, 1.14-1.22). For different anti-bacterial drugs classes, nitroimidazoles (RR, 1.17; 95% CI, 1.09-1.26) and quinolones (RR, 1.18; 95% CI, 1.11-1.26) showed a modest association with the risk of cancers incidence. The risks of digestive system cancers increased with the rise of drug dose accumulation: low (RR, 1.08; 95% CI, 1.05-1.11), intermediate (RR, 1.15; 95% CI, 1.12-1.18), and high (RR, 1.22; 95% CI, 1.18-1.26). Conclusions: Anti-bacterial drug exposure was associated with the risks of digestive system cancer occurrence in our analysis.
Collapse
Affiliation(s)
| | - Ke Wang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | - Jinliang Kong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Costa R, Oliveira NG, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of bupropion: integrative overview of relevant clinical and forensic aspects. Drug Metab Rev 2019; 51:293-313. [DOI: 10.1080/03602532.2019.1620763] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rafaela Costa
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- IINFACTS – Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| |
Collapse
|
11
|
SHOKRZADEH M, MOHAMMADPOUR A, MODANLOO M, HASSANI M, BARGHI NG, NIROOMAND P. CYTOTOXIC EFFECTS OF ARIPIPRAZOLE ON MKN45 AND NIH3T3 CELL LINES AND GENOTOXIC EFFECTS ON HUMAN PERIPHERAL BLOOD LYMPHOCYTES. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:155-159. [DOI: 10.1590/s0004-2803.201900000-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
ABSTRACT BACKGROUND: Gastric cancer is known as the fourth most common cancer. Current treatments for cancer have damaged the sensitive tissues of the healthy body, and in many cases, cancer will be recurrent. Therefore, need for treatments that are more effective is well felt. Researchers have recently shifted their attention towards antipsychotic dopamine antagonists to treat cancer. The anticancer activities of aripiprazole remain unknown. OBJECTIVE: This study aimed to evaluate the efficacy and safety of aripiprazole on gastric cancer and normal cell lines. METHODS: In this regard, the cytotoxicity and genotoxicity of aripiprazole were investigated in MKN45 and NIH3T3 cell lines by methyl tetrazolium assay and on peripheral blood lymphocytes by micronucleus assay. For this purpose, cells were cultured in 96 wells plate. Stock solutions of aripiprazole and cisplatin were prepared. After cell incubation with different concentrations of aripiprazole (1, 10, 25, 50, 100 and 200 μL), methyl tetrazolium solution was added. For micronucleus assay fresh blood was added to RPMI culture medium 1640 supplemented, and different concentrations of aripiprazole (50, 100 and 200 μL) were added. RESULTS: The finding of present study showed that the IC50 of aripiprazole in the cancer cell line (21.36 μg/mL) was lower than that in the normal cell line (54.17 μg/mL). Moreover, the micronucleus assay showed that the frequency of micronuclei of aripiprazole at concentrations below 200 μM was much less than cisplatin. CONCLUSION: Aripiprazole can be a good cytotoxic compound and good candidate for further studies of cancer therapy.
Collapse
|
12
|
Honma M, Kitazawa A, Cayley A, Williams RV, Barber C, Hanser T, Saiakhov R, Chakravarti S, Myatt GJ, Cross KP, Benfenati E, Raitano G, Mekenyan O, Petkov P, Bossa C, Benigni R, Battistelli CL, Giuliani A, Tcheremenskaia O, DeMeo C, Norinder U, Koga H, Jose C, Jeliazkova N, Kochev N, Paskaleva V, Yang C, Daga PR, Clark RD, Rathman J. Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis 2019; 34:3-16. [PMID: 30357358 PMCID: PMC6402315 DOI: 10.1093/mutage/gey031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Abstract
The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure–activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kanagawa, Japan
| | - Airi Kitazawa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kanagawa, Japan
| | - Alex Cayley
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | | | - Chris Barber
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, Canal Wharf, Leeds, UK
| | | | | | | | | | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy
| | - Giuseppa Raitano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy
| | - Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria
| | - Petko Petkov
- Laboratory of Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria
| | - Cecilia Bossa
- Istituto Superiore di Sanita', Viale Regina Elena, Rome, Italy
| | - Romualdo Benigni
- Istituto Superiore di Sanita', Viale Regina Elena, Rome, Italy.,Alpha-Pretox, Via G. Pascoli, Rome, Italy
| | | | | | | | | | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.,Department of Computer and Systems Sciences, Stockholm University, SE Kista, Sweden
| | - Hiromi Koga
- Fujitsu Kyushu Systems Limited, Higashihie, Hakata-ku, Fukuoka, Japan
| | - Ciloy Jose
- Fujitsu Kyushu Systems Limited, Higashihie, Hakata-ku, Fukuoka, Japan
| | | | - Nikolay Kochev
- IdeaConsult Ltd., A. Kanchev str., Sofia, Bulgaria.,Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Vesselina Paskaleva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Chihae Yang
- Molecular Networks GmbH and Altamira LLC, Neumeyerstrasse Nürnberg, Germany and Candlewood Drive, Columbus, OH, USA
| | | | | | - James Rathman
- Molecular Networks GmbH and Altamira LLC, Neumeyerstrasse Nürnberg, Germany and Candlewood Drive, Columbus, OH, USA.,Chemical and Biomolecular Engineering, The Ohio State University, W. Woodruff Ave. Columbus, OH, USA
| |
Collapse
|
13
|
Ayabaktı S, Yavuz Kocaman A. Cytogenotoxic effects of venlafaxine hydrochloride on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 2018; 43:192-199. [PMID: 30025480 DOI: 10.1080/01480545.2018.1486410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The potential genotoxic effect of venlafaxine hydrochloride (venlafaxine), an antidepressant drug-active ingredient, was investigated by using in vitro chromosome aberrations (CAs) and cytokinesis-block micronucleus (CBMN) assays in human peripheral blood lymphocytes (PBLs). Mitotic index (MI) and cytokinesis-block proliferation index (CBPI) were also calculated to determine the cytotoxicity of this active drug. For this aim, the human PBLs were treated with 25, 50, and 100 µg/ml venlafaxine for 24 h and 48 h. The results of this study showed that venlafaxine significantly induced the formation of structural CA and MN for all concentrations (25, 50, and 100 µg/ml) and treatment periods (24 h and 48 h) when compared with the negative and the solvent control (except 25 µg/ml at 48 h for MN). In addition, the increases in the percentage of structural CA and MN were concentration-dependent for both treatment times. With regard to cell cycle kinetics, venlafaxine significantly decreased the MI at all concentrations, and also CBPI at the higher concentrations for both treatment times as compared to the control groups. The present results indicate for the first time that venlafaxine had significant clastogenic and cytotoxic effects at the tested concentrations (25, 50, and 100 µg/ml) in the human PBLs, in vitro; therefore, its excessive and careless use may pose a potential risk to human health.
Collapse
Affiliation(s)
- Selim Ayabaktı
- Basic and Applied Sciences Institute, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Sciences and Letters, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vollmer G, Wallace H, Benford D, Calò G, Dahan A, Dusemund B, Mulder P, Németh-Zámboriné É, Arcella D, Baert K, Cascio C, Levorato S, Schutte M, Vleminckx C. Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA J 2018; 16:e05243. [PMID: 32625895 PMCID: PMC7009406 DOI: 10.2903/j.efsa.2018.5243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poppy seeds are obtained from the opium poppy (Papaver somniferum L.). They are used as food and to produce edible oil. The opium poppy plant contains narcotic alkaloids such as morphine and codeine. Poppy seeds do not contain the opium alkaloids, but can become contaminated with alkaloids as a result of pest damage and during harvesting. The European Commission asked EFSA to provide an update of the Scientific Opinion on opium alkaloids in poppy seeds. The assessment is based on data on morphine, codeine, thebaine, oripavine, noscapine and papaverine in poppy seed samples. The CONTAM Panel confirms the acute reference dose (ARfD) of 10 μg morphine/kg body weight (bw) and concluded that the concentration of codeine in the poppy seed samples should be taken into account by converting codeine to morphine equivalents, using a factor of 0.2. The ARfD is therefore a group ARfD for morphine and codeine, expressed in morphine equivalents. Mean and high levels of dietary exposure to morphine equivalents from poppy seeds considered to have high levels of opium alkaloids (i.e. poppy seeds from varieties primarily grown for pharmaceutical use) exceed the ARfD in most age groups. For poppy seeds considered to have relatively low concentrations of opium alkaloids (i.e. primarily varieties for food use), some exceedance of the ARfD is also seen at high levels of dietary exposure in most surveys. For noscapine and papaverine, the available data do not allow making a hazard characterisation. However, comparison of the dietary exposure to the recommended therapeutical doses does not suggest a health concern for these alkaloids. For thebaine and oripavine, no risk characterisation was done due to insufficient data. However, for thebaine, limited evidence indicates a higher acute lethality than for morphine and the estimated exposure could present a health risk.
Collapse
|
15
|
Guan D, Fan K, Spence I, Matthews S. QSAR ligand dataset for modelling mutagenicity, genotoxicity, and rodent carcinogenicity. Data Brief 2018. [PMID: 29516034 PMCID: PMC5835004 DOI: 10.1016/j.dib.2018.01.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Five datasets were constructed from ligand and bioassay result data from the literature. These datasets include bioassay results from the Ames mutagenicity assay, Greenscreen GADD-45a-GFP assay, Syrian Hamster Embryo (SHE) assay, and 2 year rat carcinogenicity assay results. These datasets provide information about chemical mutagenicity, genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Davy Guan
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Kevin Fan
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Ian Spence
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| | - Slade Matthews
- Pharmacoinformatics Laboratory, Sydney Medical School, The University of Sydney, Australia
| |
Collapse
|
16
|
Guan D, Fan K, Spence I, Matthews S. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction. Regul Toxicol Pharmacol 2018; 94:8-15. [PMID: 29337192 DOI: 10.1016/j.yrtph.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
In vitro genotoxicity bioassays are cost-efficient methods of assessing potential carcinogens. However, many genotoxicity bioassays are inappropriate for detecting chemicals eliciting non-genotoxic mechanisms, such as tumour promotion, this necessitates the use of in vivo rodent carcinogenicity (IVRC) assays. In silico IVRC modelling could potentially address the low throughput and high cost of this assay. We aimed to develop and combine computational QSAR models of novel bioassays for the prediction of IVRC results and compare with existing software. QSAR models were generated from existing Ames (n = 6512), Syrian Hamster Embryonic (SHE, n = 410), ISSCAN rodent carcinogenicity (ISC, n = 834) and GreenScreen GADD45a-GFP (n = 1415) chemical datasets. These models mapped the molecular descriptors of each compound to their respective assay result using machine learning algorithms (adaboost, k-Nearest Neighbours, C.45 Decision Tree, Multilayer Perceptron, Random Forest). The best performing models were combined with k-Nearest Neighbours to create a cascade model for IVRC prediction. High QSAR model performance was observed from ten time 10-fold cross-validation with above 80% accuracy and 0.85 AUC for each assay dataset. The cascade model predicted rat carcinogenicity with 69.3% accuracy and 0.700 AUC. This study demonstrates the novelty of a combined approach for IVRC prediction, with higher performance than existing software.
Collapse
Affiliation(s)
- Davy Guan
- Sydney Medical School, The University of Sydney, Australia
| | - Kevin Fan
- Sydney Medical School, The University of Sydney, Australia
| | - Ian Spence
- Sydney Medical School, The University of Sydney, Australia
| | - Slade Matthews
- Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
17
|
Myden A, Guesne SJ, Cayley A, Williams RV. Utility of published DNA reactivity alerts. Regul Toxicol Pharmacol 2017; 88:77-86. [DOI: 10.1016/j.yrtph.2017.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
|
18
|
Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:296-324. [PMID: 28299826 DOI: 10.1002/em.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The process of developing international (ICH) guidelines is described, and the main guidelines reviewed are the ICH S2(R1) guideline that includes the genotoxicity test battery for human pharmaceuticals, and the ICH M7 guideline for assessing and limiting potentially mutagenic impurities and degradation products in drugs. Key aspects of the guidelines are reviewed in the context of drug development, for example the incorporation of genotoxicity assessment into non-clinical toxicity studies, and ways to develop and assess weight of evidence. In both guidelines, the existence of "thresholds" or non-linear dose responses for genotoxicity plays a part in the strategies. Differences in ICH S2(R1) protocol recommendations from OECD guidelines are highlighted and rationales explained. The use of genotoxicity data during clinical development and in assessment of carcinogenic potential is also described. There are no international guidelines on assessment of potentially genotoxic metabolites, but some approaches to safety assessment are discussed for these. Environ. Mol. Mutagen. 58:296-324, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
19
|
Hemingway R, Fowkes A, Williams RV. Carbamates and ICH M7 classification: Making use of expert knowledge. Regul Toxicol Pharmacol 2017; 86:392-401. [DOI: 10.1016/j.yrtph.2017.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023]
|
20
|
Fujita Y, Morita T, Matsumura S, Kawamoto T, Ito Y, Nishiyama N, Honda H. Comprehensive retrospective evaluation of existing in vitro chromosomal aberration test data by cytotoxicity index transformation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:38-49. [DOI: 10.1016/j.mrgentox.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 01/28/2023]
|
21
|
Lan J, Gou N, Rahman SM, Gao C, He M, Gu AZ. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3202-14. [PMID: 26855253 PMCID: PMC6321748 DOI: 10.1021/acs.est.5b05097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ecological and health concern of mutagenicity and carcinogenicity potentially associated with an overwhelmingly large and ever-increasing number of chemicals demands for cost-effective and feasible method for genotoxicity screening and risk assessment. This study proposed a genotoxicity assay using GFP-tagged yeast reporter strains, covering 38 selected protein biomarkers indicative of all the seven known DNA damage repair pathways. The assay was applied to assess four model genotoxic chemicals, eight environmental pollutants and four negative controls across six concentrations. Quantitative molecular genotoxicity end points were derived based on dose response modeling of a newly developed integrated molecular effect quantifier, Protein Effect Level Index (PELI). The molecular genotoxicity end points were consistent with multiple conventional in vitro genotoxicity assays, as well as with in vivo carcinogenicity assay results. Further more, the proposed genotoxicity end point PELI values quantitatively correlated with both comet assay in human cell and carcinogenicity potency assay in mice, providing promising evidence for linking the molecular disturbance measurements to adverse outcomes at a biological relevant level. In addition, the high-resolution DNA damaging repair pathway alternated protein expression profiles allowed for chemical clustering and classification. This toxicogenomics-based assay presents a promising alternative for fast, efficient and mechanistic genotoxicity screening and assessment of drugs, foods, and environmental contaminants.
Collapse
Affiliation(s)
- Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sheikh Mokhles Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ce Gao
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
- (Miao He) .
| | - April Z. Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Corresponding Authors (April Z. Gu)
| |
Collapse
|
22
|
Frequent Use of Antibiotics Is Associated with Colorectal Cancer Risk: Results of a Nested Case-Control Study. Dig Dis Sci 2016; 61:255-64. [PMID: 26289256 PMCID: PMC4700063 DOI: 10.1007/s10620-015-3828-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microbiotical dysbiosis induced by a Western diet seems to be associated with an increased risk of developing colorectal cancer (CRC). Few other factors with an effect on the colonic microbiota and their association with CRC have been evaluated. AIM We investigated whether the use of antibiotics is associated with CRC risk. METHODS Data on the use of antibiotics and comedication were extracted from a health insurance database for subjects with a diagnostic-related group for CRC between 2006 and 2011 and four age- and sex-matched controls. Antibiotic use was categorized according to the number of prescriptions during a 5-year follow-up period (1-6 years prior to CRC). Multivariable conditional binary logistic regression analysis was used to estimate odds ratios (ORs) and 95 % confidence intervals (95 % CIs) for different levels of use. RESULTS A total of 4029 cases (47 % male, mean age at diagnosis 71 ± 11 years) and 15,988 controls were included. Antibiotics had been prescribed to 2630 (65.3 %) cases and 10,234 (64.0 %) controls (p = 0.13). An increasing use of antibiotics was associated with an increasing risk of CRC [multivariable OR for high (≥8 prescriptions) vs. no prescriptions: 1.26, 95 % CI 1.11-1.44, p-trend <0.01]. For each increase of 5 prescriptions, the OR for CRC was 1.05 (95 % CI 1.01-1.09). CONCLUSION We found an association between the use of antibiotics, especially when used frequently, and the risk of developing CRC. Further studies are needed to establish under which conditions the use of antibiotics increases the risk of developing CRC.
Collapse
|
23
|
Barber C, Cayley A, Hanser T, Harding A, Heghes C, Vessey JD, Werner S, Weiner SK, Wichard J, Giddings A, Glowienke S, Parenty A, Brigo A, Spirkl HP, Amberg A, Kemper R, Greene N. Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained. Regul Toxicol Pharmacol 2015; 76:7-20. [PMID: 26708083 DOI: 10.1016/j.yrtph.2015.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/27/2022]
Abstract
The relative wealth of bacterial mutagenicity data available in the public literature means that in silico quantitative/qualitative structure activity relationship (QSAR) systems can readily be built for this endpoint. A good means of evaluating the performance of such systems is to use private unpublished data sets, which generally represent a more distinct chemical space than publicly available test sets and, as a result, provide a greater challenge to the model. However, raw performance metrics should not be the only factor considered when judging this type of software since expert interpretation of the results obtained may allow for further improvements in predictivity. Enough information should be provided by a QSAR to allow the user to make general, scientifically-based arguments in order to assess and overrule predictions when necessary. With all this in mind, we sought to validate the performance of the statistics-based in vitro bacterial mutagenicity prediction system Sarah Nexus (version 1.1) against private test data sets supplied by nine different pharmaceutical companies. The results of these evaluations were then analysed in order to identify findings presented by the model which would be useful for the user to take into consideration when interpreting the results and making their final decision about the mutagenic potential of a given compound.
Collapse
Affiliation(s)
- Chris Barber
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Alex Cayley
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
| | - Thierry Hanser
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Alex Harding
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Crina Heghes
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Jonathan D Vessey
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Stephane Werner
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Sandy K Weiner
- Janssen Research & Development, 1400 McKean Road, Spring House, PA, 19477, United States
| | - Joerg Wichard
- Bayer Pharma AG, Investigational Toxicology, Muellerstr. 178, S 116, D-13353, Berlin, Germany
| | - Amanda Giddings
- GlaxoSmithKline Pre-Clinical Development, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Susanne Glowienke
- Novartis Pharma AG, Pre-Clinical Safety, Werk Klybeck, CH-4057, Basel, Switzerland
| | - Alexis Parenty
- Novartis Pharma AG, Pre-Clinical Safety, Werk Klybeck, CH-4057, Basel, Switzerland
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Hans-Peter Spirkl
- Sanofi-Aventis Deutschland GmbH, R&D DSAR/Preclinical Safety FF, Industriepark Hoechst, Bldg. H823, Room 116, D-65926, Frankfurt, Germany
| | - Alexander Amberg
- Sanofi-Aventis Deutschland GmbH, R&D DSAR/Preclinical Safety FF, Industriepark Hoechst, Bldg. H823, Room 116, D-65926, Frankfurt, Germany
| | - Ray Kemper
- Vertex Pharmaceuticals, Discovery and Investigative Toxicology, 50 Northern Ave, Boston, MA, United States
| | - Nigel Greene
- Compound Safety Prediction, Pfizer Global Research & Development, 558 Eastern Point Road, Groton, CT, 06340, United States
| |
Collapse
|
24
|
Hansen MM, Jolly RA, Linder RJ. Boronic Acids and Derivatives—Probing the Structure–Activity Relationships for Mutagenicity. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00150] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marvin M. Hansen
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Robert A. Jolly
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ryan J. Linder
- Small Molecule Design and Development and ‡Health/Safety/Environmental, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
25
|
Istifli ES, Topaktaş M. In vitro genotoxicity and cytotoxicity of a particular combination of pemetrexed and cefixime in human peripheral blood lymphocytes. SPRINGERPLUS 2015; 4:35. [PMID: 25653913 PMCID: PMC4312319 DOI: 10.1186/s40064-015-0803-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022]
Abstract
This study aims to find the genotoxic and cytotoxic effects of a particular combination of pemetrexed (PMX) and cefixime (CFX) in human peripheral blood lymphocytes. Chromosome aberration (CA), sister chromatid exchange (SCE), and micronucleus (MN) tests were used to assess genotoxicity. Whereas, the cytotoxicity was evaluated by using mitotic index (MI), proliferation index (PI), and nuclear division index (NDI). Our tests were proceeded with concentrations of 12.5 + 450, 25 + 800, 37.5 + 1150, and 50 + 1500 μg/mL of a mixture of PMX and CFX separately for 24 hr and 48 hr. The combination of PMX + CFX did not induce the CA or SCE in human peripheral blood lymphocytes when compared with both the control and the solvent control. MN in human peripheral blood lymphocytes was not significantly increased after treatment with a particular combination of PMX + CFX. However, PMX + CFX significantly decreased the MI, PI and NDI at all concentrations for 24- and 48-hr treatment periods when compared with both controls. Generally, PMX + CFX inhibited cell proliferation more than positive control (MMC) and showed a higher cytotoxic effect than MMC at both treatment periods. These results were compared with individual effects of PMX and CFX. As a result, it was observed that a particular combination of PMX + CFX was not genotoxic. However, the combination synergistically increase cytotoxicity in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Erman Salih Istifli
- Department of Biology, Faculty of Science and Letter, Cukurova University, 01330 Adana, Turkey
| | - Mehmet Topaktaş
- Department of Biology, Faculty of Science and Letter, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
26
|
Reddy AVB, Jaafar J, Umar K, Majid ZA, Aris AB, Talib J, Madhavi G. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: A comprehensive review. J Sep Sci 2015; 38:764-79. [DOI: 10.1002/jssc.201401143] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jafariah Jaafar
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia; Johor Malaysia
| | - Khalid Umar
- Department of Environmental Engineering; Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
| | - Zaiton Abdul Majid
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia; Johor Malaysia
| | - Azmi Bin Aris
- Department of Environmental Engineering; Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
| | - Juhaizah Talib
- Department of Environmental Engineering; Faculty of Civil Engineering; Universiti Teknologi Malaysia; Johor Malaysia
| | | |
Collapse
|
27
|
Ando M, Yoshikawa K, Iwase Y, Ishiura S. Usefulness of monitoring γ-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. ACTA ACUST UNITED AC 2014; 19:1246-54. [PMID: 24980598 DOI: 10.1177/1087057114541147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Formation of the phosphorylated protein γ-H2AX is a well-established marker of DNA strand breakage induced by DNA-damaging compounds. Many of these genotoxic compounds also inhibit cell division, leading to arrest at specific points in the cell cycle. Detection of γ-H2AX in combination with cell cycle arrest may therefore be useful for estimating the genotoxicity of experimental compounds. In this study, we examined γ-H2AX formation and cell cycle arrest using high-content screening (HCS) as a method for determining genotoxicity. HepG2 cells were treated with a panel of compounds and then stained with Hoechst 33342 and anti-γ-H2AX, anti-phospho-histone H3, and anti-tubulin antibodies. In total, 19 genotoxic and 7 nongenotoxic compounds were tested in this study. γ-H2AX production was observed within 1 h posttreatment for the majority of Ames-positive compounds, topoisomerase inhibitors, and DNA polymerase inhibitors. Cell cycle arrest in either the S or G2 phase was detected for all DNA-damaging compounds 24 h posttreatment, whereas tubulin-targeting compounds were shown to induce cell cycle arrest in the mitotic phase. Together, these results show that HCS is a simple, rapid, and effective tool for estimating the genotoxicity of compounds through detection of γ-H2AX production and cell cycle arrest.
Collapse
Affiliation(s)
- Masamitsu Ando
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yoshikawa
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan
| | - Yumiko Iwase
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Contrera JF. Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals. Regul Toxicol Pharmacol 2013; 67:285-93. [DOI: 10.1016/j.yrtph.2013.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022]
|
29
|
Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL, Dobo KL, Gervais V, Glowienke S, Gompel JV, Greene N, Muster W, Nicolette J, Reddy MV, Thybaud V, Vock E, White AT, Müller L. Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 2013; 67:39-52. [DOI: 10.1016/j.yrtph.2013.05.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
|
30
|
Snyder RD, Holt PA, Maguire JM, Trent JO. Prediction of noncovalent Drug/DNA interaction using computational docking models: studies with over 1350 launched drugs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:668-681. [PMID: 23893771 DOI: 10.1002/em.21796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
Noncovalent chemical/DNA interactions, for example, intercalation and groove-binding, may be more important to genomic integrity than previously appreciated, and there may very well be genotoxic consequences of that binding. It is of importance, then, to develop methods allowing a determination or prediction of such interactions. This would have particular utility in the pharmaceutical industry where genotoxicity is, for the most part, disallowed in new drug entities. We have previously used DNA docking simulations to assess if molecules had structure and charge characteristics which could accommodate noncovalent binding via, for example, electrostatic/hydrogen bonding. We here extend those earlier studies by examining a series of over 1,350 "launched" drugs for ability to noncovalently bind 10 different DNA sequences using two computational programs: Autodock and Surflex. These drugs were also evaluated for binding to the crystallographic ATP-binding site of human topoisomerase II. The results obtained clearly demonstrate multiple series of noncovalent DNA binding structure activity relationships which would not have been predicted based on cursory structural examination. Many drugs within these series are genotoxic although not via any commonly recognized structural covalent alerts. The present studies confirm previously implicated features such as N-dialkyl groups and specific N-aryl ketones as potential genotoxic chemical moieties acting through noncovalent mechanisms. These initial studies provide considerable evidence that DNA intercalation may be an important, largely overlooked, source of drug-induced genotoxicity and further suggest involvement of topoisomerase in that genotoxicity.
Collapse
|
31
|
Valencia A, Prous J, Mora O, Sadrieh N, Valerio LG. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities. Toxicol Appl Pharmacol 2013; 273:427-34. [PMID: 24090816 DOI: 10.1016/j.taap.2013.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/04/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry(SM), a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90% was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84±1% sensitivity, 81±1% specificity, 83±1% concordance and 79±1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity.
Collapse
Affiliation(s)
- Antoni Valencia
- Prous Institute for Biomedical Research, Rambla de Catalunya, 135, 3-2, Barcelona 08008, Spain
| | | | | | | | | |
Collapse
|
32
|
Dow LK, Hansen MM, Pack BW, Page TJ, Baertschi SW. The Assessment of Impurities for Genotoxic Potential and Subsequent Control in Drug Substance and Drug Product. J Pharm Sci 2013; 102:1404-18. [DOI: 10.1002/jps.23462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/09/2022]
|
33
|
Escobar P, Kemper R, Tarca J, Nicolette J, Kenyon M, Glowienke S, Sawant S, Christensen J, Johnson T, McKnight C, Ward G, Galloway S, Custer L, Gocke E, O’Donovan M, Braun K, Snyder R, Mahadevan B. Bacterial mutagenicity screening in the pharmaceutical industry. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 752:99-118. [DOI: 10.1016/j.mrrev.2012.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
|
34
|
The Evolution, Scientific Reasoning and Use of ICH S2 Guidelines for Genotoxicity Testing of Pharmaceuticals. GLOBAL APPROACH IN SAFETY TESTING 2013. [DOI: 10.1007/978-1-4614-5950-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
35
|
Silva Nunes MFD, da Silva Nunes R, Silva Kahl VF, Moysés Reyes J, da Silva J. Use of buccal micronucleus assay to determine mutagenicity induced by amfepramone in humans and the protective effects of vitamin C. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1121-1128. [PMID: 24274153 DOI: 10.1080/15287394.2013.841533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The abusive use of amfepramone in Brazilian population has grown in recent years. Few studies have been conducted on amphetamine with respect to DNA damage, and there have been no apparent investigations examining the influence of amfepramone on humans. The aim of this study was to determine the possible mutagenic actions of amfepramone on humans using the micronucleus (MN) assay with buccal cells and the effects of supplementation with vitamin C as a potential protective agent. The study included 108 females with 52 as control and 56 taking amfepramone at 120 mg/d for at least the whole previous month. All women were intentionally selected to be nonsmokers and nondrinkers. After 30 d of amfepramone women were given amfepramone plus vitamin C use at 1000 mg/d for another month. Results showed a marked increase in the number of MN in amfepramone users in both basal and differentiated cells, indicating a mutagenic action. After vitamin C supplementation, a significant decrease in the frequency of MN and apoptosis was observed. Evidence indicates that the main mechanism of action of amfepramone in inducing DNA damage occurs through formation of reactive oxygen species (ROS), intercalation and topoisomerase binding, attributed to the presence of an N-dialkyl group. In addition, data demonstrated that vitamin C effectively inhibited amfepramone-induced DNA damage.
Collapse
|
36
|
Abstract
Use of predictive technologies is an important aspect of many efforts in today's research, development, and regulatory landscapes. Computational methods as predictive tools for supporting drug safety assessments is of widespread interest as the field of in silico assessments rapidly changes with emerging technologies and the large amount of existing data available for modeling. There are challenges associated with application of in silico analyses for drug toxicity predictions and need for strategies and harmonization to enable an acceptable in silico evaluation for prediction of specific toxicity assay outcomes. This chapter will provide an overview focused on computational tools using structure-activity relationships and will highlight initiatives for use of computational assessments and realistic applications for predictive modeling in evaluating potential toxicities of drug-related molecules.
Collapse
|
37
|
Abstract
Quantitative structure activity relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to quantitative structure in vitro-in vivo relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Chemistry, The Rutgers Center for Computational and Integrative Biology, Rutgers University, 315 Penn St., Camden, NJ, 08102, USA.
| |
Collapse
|
38
|
Valerio, LG, Cross KP. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*. Toxicol Appl Pharmacol 2012; 260:209-21. [DOI: 10.1016/j.taap.2012.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
39
|
Dobo KL, Greene N, Fred C, Glowienke S, Harvey JS, Hasselgren C, Jolly R, Kenyon MO, Munzner JB, Muster W, Neft R, Vijayaraj Reddy M, White AT, Weiner S. In silico methods combined with expert knowledge rule out mutagenic potential of pharmaceutical impurities: An industry survey. Regul Toxicol Pharmacol 2012; 62:449-55. [DOI: 10.1016/j.yrtph.2012.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/23/2012] [Indexed: 11/16/2022]
|
40
|
Fioravanzo E, Bassan A, Pavan M, Mostrag-Szlichtyng A, Worth AP. Role of in silico genotoxicity tools in the regulatory assessment of pharmaceutical impurities. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:257-277. [PMID: 22369620 DOI: 10.1080/1062936x.2012.657236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The toxicological assessment of genotoxic impurities is important in the regulatory framework for pharmaceuticals. In this context, the application of promising computational methods (e.g. Quantitative Structure-Activity Relationships (QSARs), Structure-Activity Relationships (SARs) and/or expert systems) for the evaluation of genotoxicity is needed, especially when very limited information on impurities is available. To gain an overview of how computational methods are used internationally in the regulatory assessment of pharmaceutical impurities, the current regulatory documents were reviewed. The software recommended in the guidelines (e.g. MCASE, MC4PC, Derek for Windows) or used practically by various regulatory agencies (e.g. US Food and Drug Administration, US and Danish Environmental Protection Agencies), as well as other existing programs were analysed. Both statistically based and knowledge-based (expert system) tools were analysed. The overall conclusions on the available in silico tools for genotoxicity and carcinogenicity prediction are quite optimistic, and the regulatory application of QSAR methods is constantly growing. For regulatory purposes, it is recommended that predictions of genotoxicity/carcinogenicity should be based on a battery of models, combining high-sensitivity models (low rate of false negatives) with high-specificity ones (low rate of false positives) and in vitro assays in an integrated manner.
Collapse
|
41
|
Recent trends in statistical QSAR modeling of environmental chemical toxicity. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:381-411. [PMID: 22945576 DOI: 10.1007/978-3-7643-8340-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quantitative cheminformatics approaches such as QSAR modeling find growing applications in chemical risk assessment. Traditional methods rely on the use of calculated chemical descriptors of molecules and relatively small training sets. However, in recent years, there is a trend toward the increased use of in vitro biological testing approaches to reduce both the length of experimental studies and the animal use for chemical risk assessment. Furthermore, there is also much greater emphasis on model validation using external datasets to enable the reliable use of computational models as part of regulatory decision making. In this chapter, recent trends emphasizing the need for both careful curation of experimental data prior to model development and rigorous model validation are investigated. Furthermore, recent approaches to chemical toxicity prediction that employ both chemical descriptors and in vitro screening data for developing novel hybrid chemical/biological models are being reviewed. Examples of respective application studies that employ novel workflows for model developments are described and recent important efforts by several academic, nonprofit, and industrial groups to start placing both data and, especially, models in the public domain are discussed.
Collapse
|
42
|
Shamovsky I, Ripa L, Börjesson L, Mee C, Nordén B, Hansen P, Hasselgren C, O’Donovan M, Sjö P. Explanation for Main Features of Structure–Genotoxicity Relationships of Aromatic Amines by Theoretical Studies of Their Activation Pathways in CYP1A2. J Am Chem Soc 2011; 133:16168-85. [DOI: 10.1021/ja206427u] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Börjesson
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Christine Mee
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Bo Nordén
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Peter Hansen
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | | | - Mike O’Donovan
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Peter Sjö
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| |
Collapse
|
43
|
Snodin DJ. Genotoxic Impurities: A Regulatory Toxicology Commentary on Recent Articles in Organic Process Research & Development. Org Process Res Dev 2011. [DOI: 10.1021/op200205b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J Snodin
- Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol, BS6 7BG U.K
| |
Collapse
|
44
|
Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T. Comparative Evaluation ofin SilicoSystems for Ames Test Mutagenicity Prediction: Scope and Limitations. Chem Res Toxicol 2011; 24:843-54. [DOI: 10.1021/tx2000398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mahadevan B, Snyder RD, Waters MD, Benz RD, Kemper RA, Tice RR, Richard AM. Genetic toxicology in the 21st century: reflections and future directions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:339-54. [PMID: 21538556 PMCID: PMC3160238 DOI: 10.1002/em.20653] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/18/2011] [Indexed: 05/19/2023]
Abstract
A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24-28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. An abbreviated history is presented, highlighting the current standard battery of genotoxicity assays and persistent challenges. Application of computational toxicology to safety testing within a regulatory setting is discussed as a means for reducing the need for animal testing and human clinical trials, and current approaches and applications of in silico genotoxicity screening approaches across the pharmaceutical industry were surveyed and are reported here. The expanded use of toxicogenomics to illuminate mechanisms and bridge genotoxicity and carcinogenicity, and new public efforts to use high-throughput screening technologies to address lack of toxicity evaluation for the backlog of thousands of industrial chemicals in the environment are detailed. The Tox21 project involves coordinated efforts of four U.S. Government regulatory/research entities to use new and innovative assays to characterize key steps in toxicity pathways, including genotoxic and nongenotoxic mechanisms for carcinogenesis. Progress to date, highlighting preliminary test results from the National Toxicology Program is summarized. Finally, an overview is presented of ToxCast™, a related research program of the U.S. Environmental Protection Agency, using a broad array of high throughput and high content technologies for toxicity profiling of environmental chemicals, and computational toxicology modeling. Progress and challenges, including the pressing need to incorporate metabolic activation capability, are summarized.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Merck Research Laboratories, Genetic Toxicology, Mechanistic and Predictive Toxicology, Summit, New Jersey, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Paules RS, Aubrecht J, Corvi R, Garthoff B, Kleinjans JC. Moving forward in human cancer risk assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:739-743. [PMID: 21147607 PMCID: PMC3114805 DOI: 10.1289/ehp.1002735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The current safety paradigm for assessing carcinogenic properties of drugs, cosmetics, industrial chemicals, and environmental exposures relies mainly on in vitro genotoxicity testing followed by 2-year rodent bioassays. This testing battery is extremely sensitive but has low specificity. Furthermore, rodent bioassays are associated with high costs, high animal burden, and limited predictive value for human risks. OBJECTIVES We provide a response to a growing appeal for a paradigm change in human cancer risk assessment. METHODS To facilitate development of a road map for this needed paradigm change in carcinogenicity testing, a workshop titled "Genomics in Cancer Risk Assessment" brought together toxicologists from academia and industry and government regulators and risk assessors from the United States and the European Union. Participants discussed the state-of-the-art in developing alternative testing strategies for carcinogenicity, with emphasis on potential contributions from omics technologies. RESULTS AND CONCLUSIONS The goal of human risk assessment is to decide whether a given exposure to an agent is acceptable to human health and to provide risk management measures based on evaluating and predicting the effects of exposures on human health. Although exciting progress is being made using genomics approaches, a new paradigm that uses these methods and human material when possible would provide mechanistic insights that may inform new predictive approaches (e.g., in vitro assays) and facilitate the development of genomics-derived biomarkers. Regulators appear to be willing to accept such approaches where use is clearly defined, evidence is strong, and approaches are qualified for regulatory use.
Collapse
Affiliation(s)
- Richard S Paules
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
47
|
Fellows MD, Boyer S, O'Donovan MR. The incidence of positive results in the mouse lymphoma TK assay (MLA) in pharmaceutical screening and their prediction by MultiCase MC4PC. Mutagenesis 2011; 26:529-32. [DOI: 10.1093/mutage/ger012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Giordani A, Kobel W, Gally HU. Overall impact of the regulatory requirements for genotoxic impurities on the drug development process. Eur J Pharm Sci 2011; 43:1-15. [PMID: 21420491 DOI: 10.1016/j.ejps.2011.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 01/18/2011] [Accepted: 03/05/2011] [Indexed: 11/19/2022]
Abstract
In the last decade a considerable effort has been made both by the regulators and the pharmaceutical industry to assess genotoxic impurities (GTI) in pharmaceutical products. Though the control of impurities in drug substances and products is a well established and consolidated procedure, its extension to GTI has given rise to a number of problems, both in terms of setting the limits and detecting these impurities in pharmaceutical products. Several papers have dealt with this issue, discussing available regulations, providing strategies to evaluate the genotoxic potential of chemical substances, and trying to address the analytical challenge of detecting GTI at trace levels. In this review we would like to discuss the available regulations, the toxicological background for establishing limits, as well as the analytical approaches used for GTI assessment. The final aim is that of providing a complete overview of the topic with updated available information, to address the overall GTI issue during the development of new drug substances.
Collapse
|
49
|
Hoffmann GR, Laterza AM, Sylvia KE, Tartaglione JP. Potentiation of the mutagenicity and recombinagenicity of bleomycin in yeast by unconventional intercalating agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:130-144. [PMID: 20839230 DOI: 10.1002/em.20592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Interactions between bleomycin (BLM) and conventional or unconventional intercalating agents were analyzed in an assay for mitotic gene conversion at the trp5 locus and reversion of the ilv1-92 allele in Saccharomyces cerevisiae strain D7. BLM is a potent recombinagen and mutagen in the assay. Various chemicals modulate the genetic activity of BLM, producing either antimutagenic effects or enhanced genotoxicity. Effects of cationic amino compounds include enhancement of BLM activity by aminoacridines and protection against BLM by aliphatic amines. The potentiation of BLM is similar to findings in a micronucleus-based BLM amplification assay in Chinese hamster V79 cells. In this study, the amplification of BLM activity was explored in yeast using known intercalators, compounds structurally related to known intercalators, and unconventional intercalators that were identified on the basis of computer modeling or results in the Chinese hamster BLM amplification assay. As shown in previous studies, the classical intercalator 9-aminoacridine (9AA) caused dose-dependent enhancement of BLM activity. Other compounds found to enhance the induction of mitotic recombination and point mutations in strain D7 were chlorpromazine, chloroquine, mefloquine, tamoxifen, diphenhydramine, benzophenone, and 3-hydroxybenzophenone. The increased activity was detectable by cotreatment of yeast with BLM and the modulator compound in growth medium or by separate interaction of the intercalator with DNA followed by BLM treatment of nongrowing cells in buffer. The data support the interpretation drawn from micronucleus assays in mammalian cells that BLM enhancement results from DNA intercalation and may be useful in detecting noncovalent interactions with DNA. Environ.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of Holy Cross, Worcester, Massachusetts 01610-2395, USA.
| | | | | | | |
Collapse
|
50
|
Zan U, Topaktas M, Istifli ES. In vitro genotoxicity of rocuronium bromide in human peripheral lymphocytes. Cytotechnology 2011; 63:239-45. [PMID: 21253831 DOI: 10.1007/s10616-011-9334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022] Open
Abstract
Rocuronium bromide (RB), an aminosteroid type neuromuscular blocking agent, acts by reducing or inhibiting the depolarising effect of acetylcholine on the terminal disc of the muscle cell. To our knowledge, there is no adequate information on the genotoxic effects of RB, up to now. In the present study, possible genotoxic effects of RB have been determined by means of sister chromatid exchange (SCE), chromosome aberration (CA) and micronucleus (MN) analyses in human peripheral blood lymphocytes. The human peripheral blood lymphocytes were exposed to three different concentrations of RB (60, 80 and 100 μg/mL) for 24- and 48-h. In this study, RB increased the frequency of CAs, however, did not increase the frequency of SCEs. RB did not decrease the proliferation index (PI) and mitotic index (MI). Accordingly, RB increased the frequency of micronucleus (MN) but did not decrease the nuclear division index (NDI). Findings from this study suggest that rocuronium bromide is clastogenic but not cytotoxic to cultured human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Umit Zan
- Department of Biology, Institute of Basic and Applied Sciences, Çukurova University, Adana, Turkey
| | | | | |
Collapse
|