1
|
Sánchez-Álvarez AA, Velasco-Velázquez MA, Cordova-Bahena L. In Silico Identification of 2,4-Diaminopyrimidine-Based Compounds as Potential CK1ε Inhibitors. Pharmaceuticals (Basel) 2025; 18:741. [PMID: 40430559 PMCID: PMC12114667 DOI: 10.3390/ph18050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Casein kinase 1 epsilon (CK1ε) plays a critical role in cancer progression by activating oncogenic signaling pathways, making it a target for cancer therapy. However, no inhibitors are currently available for clinical use, highlighting the need for novel therapeutic candidates. Methods: This study aimed to identify potential CK1ε inhibitors. To achieve this, a modified version of a previously reported pharmacophore model was applied to an ultra-large database of over 100 million compounds for virtual screening. Hits were filtered based on drug-likeness and pH-dependent pharmacophore compliance and then grouped according to their structural core. A representative compound from each structural group underwent molecular dynamic (MD) simulations and binding free energy calculations to predict its stability and affinity, allowing extrapolation of the results to the entire set of candidates. Results: Pharmacophore matching initially identified 290 compounds. After energy minimization, and an assessment of drug-likeness and pharmacophore compliance, we selected 29 structurally related candidates. MD simulations showed that most of the compounds representative of structural groups had stable binding modes, favorable intermolecular interactions, and free energies comparable to those of previously reported CK1ε inhibitors. An analysis of additional members of the most promising structural group showed that two 2,4-diaminopyrimidine-based compounds likely inhibit CK1ε. Conclusions: These findings provide structural insights into the design of CK1ε inhibitors, supporting compound optimization and the eventual development of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Axel A. Sánchez-Álvarez
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
- Graduate Program in Chemical Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis Cordova-Bahena
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City 04510, Mexico
| |
Collapse
|
2
|
Leya M, Phan Van T, Kim JW, Kim B. Casein kinase 1 epsilon (CK1ε) as a potential therapeutic target in chronic liver disease. J Vet Sci 2025; 26:e30. [PMID: 40461423 PMCID: PMC12146023 DOI: 10.4142/jvs.24321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 06/11/2025] Open
Abstract
IMPORTANCE Chronic liver disease (CLD) is a significant global health concern, often progressing to hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma in both humans and animals. Despite substantial research efforts, effective CLD treatments remain scarce. Casein kinase 1 epsilon (CK1ε), a serine/threonine kinase, plays a pivotal role in several critical signaling pathways, including the Wingless/Integrated (Wnt)/β-catenin, HIPPO, and mitogen-activated protein kinase (MAPK) pathways, all of which contribute to liver disease progression. OBSERVATIONS CK1ε regulates key pathways that drive liver fibrosis, inflammation, and cancer. Its involvement in lipid metabolism and adipogenesis links CK1ε to metabolic dysfunctional-associated steatotic liver disease. Elevated CK1ε levels are observed in disease models beyond CLD, underscoring its broad role in pathological conditions. Moreover, CK1ε phosphorylates critical proteins such as Wnt/β-catenin, RAS/MAPK, phosphoinositide 3-kinase/protein kinase B, transcription coactivators yes-associated protein 1 and the PDZ-binding motif, and Sprouty homolog 2, suggesting potential influence on liver cell function and fibrosis development. Preclinical models demonstrate that CK1ε inhibitors, including PF-4800567, PF-670462, and IC261, effectively reduce tumor growth and fibrosis of variable etiologies. CONCLUSIONS AND RELEVANCE CK1ε's central role in liver disease progression makes it a compelling target for therapeutic strategies. Targeting CK1ε with small molecules or gene therapies could offer novel treatment avenues for CLD. However, challenges related to target specificity and safety must be addressed. Further research and translational studies could pave the way for precision medicine approaches, enhancing treatment outcomes for both animals and humans with CLD.
Collapse
Affiliation(s)
- Mwense Leya
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, 13301 Windhoek, Namibia
| | - Thach Phan Van
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Jong-Won Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
3
|
Hakami MA, Hazazi A, Almoyad MAA, Wahab S, Alqarni MH, Foudah AI, Albaqami A, Khalid M. Identification of potential casein kinase I isoform epsilon inhibitors from phytoconstituents: implications for targeted anticancer therapeutics. J Biomol Struct Dyn 2025:1-13. [PMID: 40302244 DOI: 10.1080/07391102.2025.2497462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/06/2024] [Indexed: 05/02/2025]
Abstract
Casein kinase I isoform epsilon (CK1ε) demonstrates significant implications in cancer pathogenesis, influencing key cellular processes linked to oncogenesis. Its regulatory roles in cell survival, proliferation, and modulation of oncogenic pathways highlight CK1ε as a potential target for therapeutic strategies in diverse cancer types. In this research, a virtual screening of phytoconstituents from the IMPPAT2.0 database was conducted to find potential inhibitors targeting CK1ε. Initially, compounds adhering to Lipinski's rule of five were retrieved, followed by filtering based on binding affinities and subsequent interaction analyses to refine the selection. Finally, two compounds, Chrysin-7-O-Glucuronide and Rhodiolin, demonstrated considerable affinities with specific interactions at the CK1ε ATP binding site (involving SER17, SER19, and LYS38), forming hydrogen bonds, and were identified for further analysis via PASS server. Employing all-atom molecular dynamic (MD) simulations for 200 ns, structural deviation, residual fluctuation, compactness by radius of gyration, solvent accessible surface area calculation, principal component analysis, and free energy landscapes, were conducted. These findings suggest that Chrysin-7-O-Glucuronide and Rhodiolin warrant further investigation in experimental and clinical research as potential candidates for developing anticancer therapeutics targeting CK1ε kinase.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Ru K, Cui L, Wu C, Tan XX, An WT, Wu Q, Ma YT, Hao Y, Xiao X, Bai J, Liu X, Xia XF, Zhao MQ. Exploring the molecular and immune landscape of cellular senescence in lung adenocarcinoma. Front Immunol 2024; 15:1347770. [PMID: 39267750 PMCID: PMC11390420 DOI: 10.3389/fimmu.2024.1347770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The connection between aging and cancer is complex. Previous research has highlighted the association between the aging process of lung adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap in confirming this through single-cell data validation. Here, we aim to develop a novel aging-related prognostic model for LUAD, and verify the alterations in the genome and immune microenvironment linked to cellular senescence. Methods We integrated a comprehensive collection of senescence genes from the GenAge and CellAge databases and employed the least absolute shrinkage and selection operator (LASSO) Cox analysis to construct and validate a novel prognostic model for LUAD. This model was then utilized to examine the relationship between aging, tumor somatic mutations, and immune cell infiltration. Additionally, we explored the heterogeneity of senescence and intercellular communication within the LUAD tumor microenvironment (TME) through single-cell transcriptomic data analysis. Results By exploring the expression profiles of 586 cellular senescence-related genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk model included 10 ARGs and validated it as an independent prognostic predictor for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited better survival, lower tumor mutation burden (TMB), lower somatic mutation frequency, lower tumor proliferation rate, and an immune activated phenotype compared to patients with high aging scores (HAS group). While the HAS group was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8- CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated with tumor immune escape and tumor progression, were also enriched in the HAS group. Additionally, our study also indicated that senescence levels were heterogeneous in the LUAD tumor microenvironment (TME), especially with tumor cells in the LAS group showing higher age scores compared to those in the HAS group. Conclusions Collectively, our findings underscore that ARRS through ARGs serves as a robust biomarker for the prognosis in LUAD.
Collapse
Affiliation(s)
- Kun Ru
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Cui
- Geneplus-Beijing Institute, Beijing, China
| | - Cong Wu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin X Tan
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wen T An
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Wu
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yu T Ma
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Hao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Xiao
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
| | - Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xue F Xia
- Geneplus-Beijing Institute, Beijing, China
| | - Miao Q Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Long NH, Lee SJ. Targeting casein kinase 1 for cancer therapy: current strategies and future perspectives. Front Oncol 2023; 13:1244775. [PMID: 38023245 PMCID: PMC10666751 DOI: 10.3389/fonc.2023.1244775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Casein Kinase 1 (CK1) is a family of serine/threonine protein kinases that play a crucial role in various cellular processes, including cell proliferation, survival, and metabolism. The dysregulation of CK1 expression has been implicated in the development and progression of several types of cancer, making it an attractive target for anticancer therapy. In this review, we provide an overview of the current strategies employed to target CK1 for cancer therapy and discuss the future perspectives in this field. We highlight the different approaches, including small molecule inhibitors, RNA interference, genome editing, and immunotherapies, which hold immense potential for targeted modulation of CK1 activity in cancer cells. Furthermore, we discuss the challenges associated with targeting CK1 and propose potential strategies to overcome these hurdles. Overall, targeting CK1 holds great promise as a therapeutic strategy for cancer treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Huang K, Jia Z, Li H, Peng Y, Chen X, Luo N, Song T, Wang Y, Shi X, Kuang S, Yang G. Proto-oncogene FAM83A contributes to casein kinase 1-mediated mitochondrial maintenance and white adipocyte differentiation. J Biol Chem 2022; 298:102339. [PMID: 35931121 PMCID: PMC9493395 DOI: 10.1016/j.jbc.2022.102339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.
Collapse
Affiliation(s)
- Kuilong Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907; Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou China, 215123
| | - Haoran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Ying Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Xiaochang Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an, Shaanxi, China, 710021
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Tongxing Song
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Yingqian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Xin'e Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA, 47907
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China, 712100.
| |
Collapse
|
7
|
Characterization of Aging-Related Genes to Predict Prognosis and Evaluate the Tumor Immune Microenvironment in Malignant Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:1271378. [PMID: 35368886 PMCID: PMC8970875 DOI: 10.1155/2022/1271378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022]
Abstract
Objective. Malignant melanoma (MM) is one of the most malignant types of skin cancer and its incidence and mortality rates are increasing worldwide. Aging is well recognized as a significant risk factor for cancer. However, few studies have analyzed in depth the association between aging-related genes (AGs) and malignant melanoma prognosis with tumor immune microenvironment. Methods. Here, we downloaded 471 MM patients from The Cancer Genome Atlas (TCGA) with RNA sequence and clinicopathological data. 58 AGs from the TCGA dataset were examined using Cox regression and the LASSO assay. As a result, a gene signature for aging-related genes was created. The time-dependent ROC curve and Kaplan–Meier analysis were calculated to determine its predictive capability. Moreover, we created a nomogram for the clinicopathologic variables and the AGs gene signature to determine overall survival (OS). We also explored the association between three immune checkpoints, immune cell infiltration, and the aging-related gene signature. Results. We established an aging risk model to identify and predict the immune microenvironment in malignant melanoma. Then we developed and validated a prognosis risk model using three AGs (CSNK1E, C1QA, and SOD-2) in the GSE65904 dataset. The aging signature was positively associated with clinical and molecular characteristics and can be used as a prognostic factor for malignant melanoma. The low aging risk score was associated with a poor prognosis and indicated an immunosuppressive microenvironment. Conclusions. To summarize, we established and validated a model of aging risk based on three aging-related genes that acted as an independent prognostic predictor of overall survival. Besides, it also characterized the immune response in the malignant melanoma microenvironment and could provide a potential indicator of individualized immunotherapy in malignant melanoma.
Collapse
|
8
|
Sato F, Bhawal UK, Osaki S, Sugiyama N, Oikawa K, Muragaki Y. Differential immunohistochemical expression of DEC1, CK‑1ε, and CD44 in oral atypical squamous epithelium and carcinoma in situ. Mol Med Rep 2022; 25:159. [PMID: 35266015 PMCID: PMC8941534 DOI: 10.3892/mmr.2022.12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Presence of nuclear atypia during histological investigation is often a cause of concern for pathologists while identifying tumor and non-tumor cells in a biopsy sample of oral mucosa. Nuclear atypia is observed in severe inflammation, ulcers and reactive changes. Therefore, additional methods, such as immunohistochemistry, may help precise diagnosis. When the atypia is suggestive of tumorous or reactive origin, the lesion is diagnosed as atypical squamous epithelium (ASE). When there is severe nuclear atypia in the mucosa, such as in disorders of nuclear polarity, large nuclei, and clear nucleolus, the lesion is diagnosed as carcinoma in situ (CIS). However, it is not easy to distinguish ASE and CIS using hematoxylin and eosin staining. The present study aimed to distinguish ASE from CIS using immunohistochemistry. A total of 32 biopsy samples of either ASE or CIS cases were selected and the level of casein kinase 1ε (CK-1ε), differentiated embryonic chondrocyte gene 1 (DEC1), proliferating cell nuclear antigen (PCNA) and CD44, which are four protein markers which have been previously linked to cancer progression, were analyzed. CK-1ε and CD44 expression was higher in CIS samples than in ASE samples. However, DEC1 expression was lower in CIS samples than in ASE samples. PCNA expression was not markedly different between the two groups. Additionally, it was found that DEC1-overexpressing cells had decreased levels of CK-1ε and CD44 compared with control cells, while CK-1ε-overexpressing cells had relatively unchanged levels of CD44, DEC1 and PCNA. These results suggested that DEC1 negatively regulates the expression of CK-1ε and CD44. Thus, DEC1, CK-1ε, and CD44 were identified as mechanistically linked and clinically relevant protein biomarkers, which could help distinguish ASE and CIS.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto‑gun, Shizuoka 411‑8777, Japan
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271‑8587, Japan
| | - Shoko Osaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Nao Sugiyama
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| |
Collapse
|
9
|
Córdova-Bahena L, Sánchez-Álvarez AA, Ruiz-Moreno AJ, Velasco-Velázquez MA. Repositioning of Etravirine as a Potential CK1ε Inhibitor by Virtual Screening. Pharmaceuticals (Basel) 2021; 15:8. [PMID: 35056065 PMCID: PMC8778358 DOI: 10.3390/ph15010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
CK1ε is a key regulator of WNT/β-catenin and other pathways that are linked to tumor progression; thus, CK1ε is considered a target for the development of antineoplastic therapies. In this study, we performed a virtual screening to search for potential CK1ε inhibitors. First, we characterized the dynamic noncovalent interactions profiles for a set of reported CK1ε inhibitors to generate a pharmacophore model, which was used to identify new potential inhibitors among FDA-approved drugs. We found that etravirine and abacavir, two drugs that are approved for HIV infections, can be repurposed as CK1ε inhibitors. The interaction of these drugs with CK1ε was further examined by molecular docking and molecular dynamics. Etravirine and abacavir formed stable complexes with the target, emulating the binding behavior of known inhibitors. However, only etravirine showed high theoretical binding affinity to CK1ε. Our findings provide a new pharmacophore for targeting CK1ε and implicate etravirine as a CK1ε inhibitor and antineoplastic agent.
Collapse
Affiliation(s)
- Luis Córdova-Bahena
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.C.-B.); (A.A.S.-Á.); (A.J.R.-M.)
- Unidad Periférica de Investigación en Biomedicina Traslacional CMN 20 de noviembre ISSSTE, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
| | - Axel A. Sánchez-Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.C.-B.); (A.A.S.-Á.); (A.J.R.-M.)
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angel J. Ruiz-Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.C.-B.); (A.A.S.-Á.); (A.J.R.-M.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.C.-B.); (A.A.S.-Á.); (A.J.R.-M.)
- Unidad Periférica de Investigación en Biomedicina Traslacional CMN 20 de noviembre ISSSTE, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Wang S, Wang X, Yang X, Liu F, Li J, Li W, Bai Z, Wang H, Mao J, Li T, He K, Wang H. Comprehensive kinomic study via a chemical proteomic approach reveals kinome reprogramming in hepatocellular carcinoma tissues. Proteomics 2021; 22:e2100141. [PMID: 34932872 DOI: 10.1002/pmic.202100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Kinases are attractive therapeutic targets since they are commonly altered in cancers. Here, to identify kinases of potential therapeutic interest in HCC, a quantitative kinomic study of tumour and adjacent non-tumour liver tissues was performed using a chemical proteomics approach. In total, 124 kinases were found differentially expressed and they were distributed over all nine kinase groups. Exploration of The Cancer Genome Atlas (TCGA) data showed that the dysregulation of 45 kinases was correlated with poor prognosis in HCC patients. We then tested 11 inhibitors targeting 12 crucial protein kinases alone or in combination for their ability to inhibit cell growth in Hep3B and PLC/PRF/5 cell lines. Six inhibitors significantly reduced viability in both cell lines. Combination inhibition of polo-like kinase 1 (PLK1) and casein kinase 1 epsilon (CSNK1E) significantly induced growth arrest in both cell lines synergistically. In summary, our analysis presents the most complete view of kinome reprogramming in HCC and provides novel insight into crucial kinases in HCC and potential therapeutic targets for HCC treatment. Moreover, the identification of hundreds of differentially expressed kinases forms a rich resource for novel drug targets or diagnostic biomarker discovery. Data are available via ProteomeXchange (identifier PXD023806).
Collapse
Affiliation(s)
- Shufeng Wang
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xinzheng Wang
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xin Yang
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Feng Liu
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jin Li
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhaofang Bai
- Department of Liver Disease, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Hongbo Wang
- Department of Hepatobiliary Surgery Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tingting Li
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Kun He
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hongxia Wang
- National Center of Biomedical Analysis, Beijing, 100850, China
| |
Collapse
|
11
|
Lin HH, Robertson KL, Bisbee HA, Farkas ME. Oncogenic and Circadian Effects of Small Molecules Directly and Indirectly Targeting the Core Circadian Clock. Integr Cancer Ther 2021; 19:1534735420924094. [PMID: 32493076 PMCID: PMC7273620 DOI: 10.1177/1534735420924094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are essential for controlling the cell cycle, cellular
proliferation, and apoptosis, and hence are tightly linked to cell fate. Several
recent studies have used small molecules to affect circadian oscillations;
however, their concomitant cellular effects were not assessed, and they have not
been compared under similar experimental conditions. In this work, we use five
molecules, grouped into direct versus indirect effectors of the circadian clock,
to modulate periods in a human osteosarcoma cell line (U2OS) and determine their
influences on cellular behaviors, including motility and colony formation.
Luciferase reporters, whose expression was driven via Bmal1- or
Per2-promoters, were used to facilitate the visualization
and quantitative analysis of circadian oscillations. We show that all molecules
increase or decrease the circadian periods of Bmal1 and
Per2 in a dose-dependent manner, but period length does not
correlate with the extent of cell migration or proliferation. Nonetheless,
molecules that affected circadian oscillations to a greater degree resulted in
substantial influence on cellular behaviors (ie, motility and colony formation),
which may also be attributable to noncircadian targets. Furthermore, we find
that the ability and extent to which the molecules are able to affect
oscillations is independent of whether they are direct or indirect modulators.
Because of the numerous connections and feedback between the circadian clock and
other pathways, it is important to consider the effects of both in assessing
these and other compounds.
Collapse
Affiliation(s)
- Hui-Hsien Lin
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | |
Collapse
|
12
|
Lu JW, Lin SH, Yeh CM, Yeh KT, Huang LR, Chen CY, Lin YM. Cytoplasmic CK1ε Protein Expression Is Correlated With Distant Metastasis and Survival in Patients With Melanoma. In Vivo 2021; 34:2905-2911. [PMID: 32871831 DOI: 10.21873/invivo.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Casein kinase 1 epsilon (CK1ε) is a member of the casein kinase 1 family, which includes highly conserved and ubiquitous serine/threonine protein kinases. Recent research has revealed that CK1ε plays an important role in a variety of human cancer types; however, its role in human melanoma remains unclear. The aim of this study was to elucidate the clinical role of CK1ε in patients with melanoma. PATIENTS AND METHODS Samples from 34 patients with melanoma were analyzed by immunohistochemical staining. Formalin-fixed paraffin-embedded tissue microarrays were also examined by two histopathologists to assess CK1ε protein expression in humans. RESULTS Cytoplasmic CK1ε protein expression was significantly lower in tumor tissue than in normal tissue. Lack of cytoplasmic CK1ε protein was significantly correlated with distant metastasis (p=0.022) and poorer survival (p=0.030). However, Kaplan-Meier survival analysis revealed that elevated expression of cytoplasmic CK1ε protein was not significantly associated with the overall survival of patients with melanoma. Univariate and multivariate analyses demonstrated that lack of cytoplasmic CK1ε protein expression was related to distant metastasis (p<0.001 and p=0.004), showing that CK1ε was a prognostic factor. CONCLUSION CK1ε protein expression might serve as a prognostic indicator in the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Lan-Ru Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Chia-Yu Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
13
|
Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem 2021; 28:1585-1604. [PMID: 32660395 DOI: 10.2174/0929867327666200713185413] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Astone M, Santoro MM. Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discov Today 2021; 26:1164-1184. [PMID: 33549826 DOI: 10.1016/j.drudis.2021.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The circadian clock regulates a wide range of molecular pathways and biological processes. The expression of clock genes is often altered in cancer, fostering tumor initiation and progression. Inhibition and activation of core circadian clock genes, as well as treatments that restore circadian rhythmicity, have been successful in counteracting tumor growth in different experimental models. Here, we provide an up-to-date overview of studies that show the therapeutic effects of targeting the clock molecular machinery in cancer, both genetically and pharmacologically. We also highlight future areas for progress that offer a promising path towards innovative anticancer strategies. Substantial limitations in the current understanding of the complex interplay between the circadian clock and cancer in vivo need to be addressed in order to allow clock-targeting therapies in cancer.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, I-35131, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padova, I-35131, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|
15
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
16
|
Bono B, Franco G, Riva V, Garbelli A, Maga G. Novel Insights into the Biochemical Mechanism of CK1ε and its Functional Interplay with DDX3X. Int J Mol Sci 2020; 21:ijms21176449. [PMID: 32899434 PMCID: PMC7503845 DOI: 10.3390/ijms21176449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
Casein Kinase 1 epsilon (CK1ε) is a member of the serine (Ser)/threonine (Thr) CK1 family, known to have crucial roles in several biological scenarios and, ever more frequently, in pathological contexts, such as cancer. Recently, the human DEAD-box RNA helicase 3 X-linked (DDX3X), involved in cancer proliferation and viral infections, has been identified as one of CK1ε substrates and its positive regulator in the Wnt/β-catenin network. However, the way by which these two proteins influence each other has not been fully clarified. In order to further investigate their interplay, we defined the kinetic parameters of CK1ε towards its substrates: ATP, casein, Dvl2 and DDX3X. CK1ε affinity for ATP depends on the nature of the substrate: increasing of casein concentrations led to an increase of KmATP, while increasing DDX3X reduced it. In literature, DDX3X is described to act as an allosteric activator of CK1ε. However, when we performed kinase reactions combining DDX3X and casein, we did not find a positive effect of DDX3X on casein phosphorylation by CK1ε, while both substrates were phosphorylated in a competitive manner. Moreover, CK1ε positively stimulates DDX3X ATPase activity. Our data provide a more detailed kinetic characterization on the functional interplay of these two proteins.
Collapse
|
17
|
Vena F, Bayle S, Nieto A, Quereda V, Aceti M, Frydman SM, Sansil SS, Grant W, Monastyrskyi A, McDonald P, Roush WR, Teng M, Duckett D. Targeting Casein Kinase 1 Delta Sensitizes Pancreatic and Bladder Cancer Cells to Gemcitabine Treatment by Upregulating Deoxycytidine Kinase. Mol Cancer Ther 2020; 19:1623-1635. [PMID: 32430484 PMCID: PMC7415672 DOI: 10.1158/1535-7163.mct-19-0997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.
Collapse
Affiliation(s)
- Francesca Vena
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Simon Bayle
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Ainhoa Nieto
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Victor Quereda
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | | | - Sylvia M Frydman
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Samer S Sansil
- Translational Research Core, Moffitt Cancer Center, Tampa, Florida
| | - Wayne Grant
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
18
|
Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol 2020; 432:3498-3514. [DOI: 10.1016/j.jmb.2020.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
19
|
Yuan F, Li D, Guo M, Fang T, Sun J, Qi F, Rao Q, Zhao Z, Huang P, Yang B, Xia J. IC261 suppresses progression of hepatocellular carcinoma in a casein kinase 1 δ/ε independent manner. Biochem Biophys Res Commun 2020; 523:809-815. [PMID: 31954519 DOI: 10.1016/j.bbrc.2019.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide that responds poorly to existing therapies. The Casein kinase 1 (CK1) isoforms CK1δ and CK1ε are reported to be highly expressed in several tumor types, and both genetic and pharmacological inhibition of CK1δ/ε activity has deleterious effects on tumor cell growth. IC261, an CK1δ/ε selectively inhibitor, shows anti-tumor effect against pancreatic tumor and glioblastoma, but its role in HCC remains poorly characterized. In our research, IC261 displayed time- and dose-dependent inhibition of HCC cell proliferation, and induced G2/M arrest and cell apoptosis in vitro. However, the anti-tumor effects of IC261 was independent of CK1δ/ε. Additionally, IC261 was verified to induce centrosome fragmentation during mitosis independent of CK1δ status, and intraperitoneal injection of IC261 to HCCLM3 xenograft models inhibited tumor growth. Taken together, our data indicated that IC261 has therapeutic potential for HCC.
Collapse
Affiliation(s)
- Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Donghe Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; School of Life Sciences and Biotechnology and School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Qianwen Rao
- Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, PR China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
20
|
Zhou J, Li X, Zhang M, Gong J, Li Q, Shan B, Wang T, Zhang L, Zheng T, Li X. The aberrant expression of rhythm genes affects the genome instability and regulates the cancer immunity in pan-cancer. Cancer Med 2020; 9:1818-1829. [PMID: 31927791 PMCID: PMC7050078 DOI: 10.1002/cam4.2834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Although emerging studies showed that certain rhythm genes regulate cancer progression, the expression and roles of the vast majority of rhythm genes in human cancer are largely unknown, and the hallmarks of cancer regulated by rhythm genes have not been detected. In this study, we detected the expression changes of rhythm genes in pan-cancer and found that almost all rhythm genes mutated in all cancer types, and their expression level was significantly altered partially due to abnormal methylation, and several rhythm genes regulate the expression of other rhythm genes in various cancer types. Furthermore, we revealed that rhythm genes are significantly enriched in genome instability and the expression of certain rhythm genes is correlated with the tumor mutation burden, microsatellite instability, and the expression of DNA damage repair genes in most of the detected cancer types. Moreover, rhythm genes are associated with the infiltration of immune cells and the efficiency of immune blockade therapy. This study provides a comprehensive understanding of the roles of rhythm genes in cancer immunity, which may provide a novel method for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xinhui Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Ji'nan Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Baocong Shan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Kotrbová A, Ovesná P, Gybel' T, Radaszkiewicz T, Bednaříková M, Hausnerová J, Jandáková E, Minář L, Crha I, Weinberger V, Záveský L, Bryja V, Pospíchalová V. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Am J Cancer Res 2020; 10:537-552. [PMID: 31903136 PMCID: PMC6929979 DOI: 10.7150/thno.37423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
High grade serous carcinoma of the ovary, fallopian tube, and peritoneum (HGSC) is the deadliest gynecological disease which results in a five-year survival rate of 30% or less. HGSC is characterized by the early and rapid development of metastases accompanied by a high frequency of ascites i.e. the pathological accumulation of fluid in peritoneum. Ascites constitute a complex tumor microenvironment and contribute to disease progression by largely unknown mechanisms. Methods: Malignant ascites obtained from HGSC patients who had undergone cytoreductive surgery were tested for their ability to induce WNT signaling in the Kuramochi cell line, a novel and clinically relevant in vitro model of HGSC. Next, cancer spheroids (the main form of metastatic cancer cells in ascites) were evaluated with respect to WNT signaling. Kuramochi cells were used to determine the role of individual WNT signaling branches in the adoption of metastatic stem cell-like behavior by HGSC cells. Furthermore, we analyzed genomic and transcriptomic data on WNT/Planar Cell Polarity (PCP) components retrieved from public cancer databases and corroborated with primary patient samples and validated antibodies on the protein level. Results: We have shown that ascites are capable of inducing WNT signaling in primary HGSC cells and HGSC cell line, Kuramochi. Importantly, patients whose ascites cannot activate WNT pathway present with less aggressive disease and a considerably better outcome including overall survival (OS). Functionally, the activation of non-canonical WNT/PCP signaling by WNT5A (and not canonical WNT/β-catenin signaling by WNT3A) promoted the metastatic stem-cell (metSC) like behavior (i.e. self-renewal, migration, and invasion) of HGSC cells. The pharmacological inhibition of casein kinase 1 (CK1) as well as genetic ablation (dishevelled 3 knock out) of the pathway blocked the WNT5A-induced effect. Additionally, WNT/PCP pathway components were differentially expressed between healthy and tumor tissue as well as between the primary tumor and metastases. Additionally, ascites which activated WNT/PCP signaling contained the typical WNT/PCP ligand WNT5A and interestingly, patients with high levels of WNT5A protein in their ascites exhibited poor progression-free survival (PFS) and OS in comparison to patients with low or undetectable ascitic WNT5A. Together, our results suggest the existence of a positive feedback loop between tumor cells producing WNT ligands and ascites that distribute WNT activity to cancer cells in the peritoneum, in order to promote their pro-metastatic features and drive HGSC progression. Conclusions: Our results highlight the role of WNT/PCP signaling in ovarian cancerogenesis, indicate a possible therapeutic potential of CK1 inhibitors for HGSC, and strongly suggest that the detection of WNT pathway inducing activity ascites (or WNT5A levels in ascites as a surrogate marker) could be a novel prognostic tool for HGSC patients.
Collapse
|
22
|
Mazzoldi EL, Pastò A, Ceppelli E, Pilotto G, Barbieri V, Amadori A, Pavan S. Casein Kinase 1 Delta Regulates Cell Proliferation, Response to Chemotherapy and Migration in Human Ovarian Cancer Cells. Front Oncol 2019; 9:1211. [PMID: 31799185 PMCID: PMC6874158 DOI: 10.3389/fonc.2019.01211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Casein kinase 1 delta (CK1δ) has a tumor-promoting role in different cancers and it is genetically amplified in a portion of human epithelial ovarian cancer (EOC). CK1δ is involved in pleiotropic cellular functions such as cell proliferation, DNA damage, and migration. We specifically knocked down CK1δ by short hairpin RNA (shRNA) in human ovarian cancer cells and we performed proliferation, chemosensitivity, as well as in vitro and in vivo migration assays. CK1δ knocked-down cells displayed reduced proliferation capability both in vitro and in vivo. Nonetheless, these cells were sensitized to the first line chemotherapeutic agent carboplatin (CPT), and this observation could be associated to reduced expression levels of p21(Cip1/Waf1), involved in DNA damage response, and the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP). Moreover, CK1δ knocked-down cells were affected in their migratory and lung homing capability, even if in opposite ways, i.e., IGROV1, SKOV3 and MES-OV lost, while OVCAR3 gained motility potential. The results suggest CK1δ as a potential exploitable target for pharmacological EOC treatment, but they also advise further investigation of its role in cell migration.
Collapse
Affiliation(s)
- Elena Laura Mazzoldi
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Elisa Ceppelli
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giorgia Pilotto
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alberto Amadori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Simona Pavan
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| |
Collapse
|
23
|
Comprehensive Analysis of the Canonical and Non-canonical Wnt Signaling Pathways in Gastric Cancer. Dig Dis Sci 2019; 64:2830-2842. [PMID: 30997579 DOI: 10.1007/s10620-019-05606-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies showed that dysregulation of Wnt signaling by gene mutation and abnormal gene expression is one of the causative factors for gastric cancer (GC). So far, a systematic and comprehensive analysis of gene mutation, gene expression, and DNA methylation profiles of the Wnt pathway associated with gastric carcinogenesis, however, has not yet been reported. AIMS To this end, we investigated all the above-mentioned genetic alterations associated with the canonical and non-canonical Wnt pathways in GC tumors, in order to understand the molecular mechanism underlying gastric carcinogenesis. METHODS The information on gene mutations and expression was obtained from data resources, such as TCGA, GSEA, and TCGA-STAD, and was analyzed with the cBioPortal platform. We also performed in vitro analysis on DDK2 gene, a Wnt inhibitor, to characterize its role in GC tumor cells. RESULTS We found that gene mutations of 43 Wnt genes and abnormal expression of 13 Wnt genes occurred at a high frequency in GC tumors, and gene amplification and deletion are the major mutation types. Clusters of DNA methylation associated with Wnt signaling genes and GC tumors were also revealed, and a significant increase in β-catenin activity was found in the hypermethylated group of GC tumors. In addition, overexpression of DKK2 gene significantly inhibited multiple biological processes of the GC cells, including their growth, clonal forming, migration, and invasion ability, and induced apoptosis of the GC cells. CONCLUSIONS Our current study suggested that gene mutation, abnormal gene expression, and altered DNA methylation profiles associated with the Wnt signaling may play an important role in gastric carcinogenesis, and DKK2 gene may act as a tumor suppressor in gastric cells.
Collapse
|
24
|
Lin SH, Chen MK, Chang JH, Velmurugan BK, Annamanedi M, Su SC, Yeh KT, Yang SF. Impact of Polymorphisms in Casein Kinase 1 Epsilon and Environmental Factors in Oral Cancer Susceptibility. J Cancer 2019; 10:5065-5069. [PMID: 31602258 PMCID: PMC6775616 DOI: 10.7150/jca.34592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023] Open
Abstract
In Taiwan, the incidence rate of oral cancer is constantly increasing. Polymorphisms and lifestyle habits are major contributing factors to the development of oral cancer in such cases. Casein kinase 1 epsilon (CK1ε) gene expression plays a role in numerous cancers, and the knockdown of CK1ε induces tumor cell-selective cytotoxicity. The present study was designed to determine the effects of CK1ε gene polymorphisms combined with environmental carcinogens on susceptibility to developing oral squamous cell carcinoma and its clinicopathological status. Four single-nucleotide polymorphisms (SNPs) in CK1ε gene (rs135745, rs135764, rs1997644 and rs2075984) from 741 oral cancer patients and 462 healthy controls were analyzed using real-time polymerase chain reaction. Our results shown that variant types (GC) of CK1ε polymorphic rs135745 exhibited a significantly higher risk of 1.41 (95% confidence interval [CI]: 1.036-1.919) for oral cancer than did wild type alleles. Furthermore, these CK1ε gene SNPs along with betel-quid chewing and/or tobacco use further increased susceptibility to oral cancer. Moreover, variant genotypes (GC+CC) of CK1ε rs135745 were significantly associated with lymph node metastasis. These results suggested that the CK1ε gene polymorphism is associated with the clinicopathological development of oral cancer and increases individuals' susceptibility to environmental carcinogens (e.g., smoking and betel-quid chewing) in terms of developing oral cancer.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Julia Hueimei Chang
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Madhavi Annamanedi
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, India
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Synthesis and evaluation of novel 7 H-pyrrolo-[2,3- d]pyrimidine derivatives as potential anticancer agents. Future Med Chem 2019; 11:959-974. [PMID: 30789758 DOI: 10.4155/fmc-2018-0564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Bladder cancer is a highly recurrent urologic malignancy with limited treatment approaches. Previously, we reported compound 11 is a FGFR3 inhibitor with significant antibladder cancer activity. Materials & methods: In this study, a series of 7H-pyrrolo-[2,3-d]pyrimidine derivatives were synthesized through ring formation and modification of compound 11 for anticancer activity evaluation. Results: Compound 13i is the most effective agent against human RT-112 bladder cancer cells. Notably, 13i strongly inhibits CK1δ without affecting FGFR3 activity. We generated 13i HCl to increase solubility and showed profound cell cycle accumulation at the sub-G1 phase and apoptosis in CK1δ-overexpressed bladder and ovarian cancer cells. Conclusion: These results indicate that compound 13i could be a lead compound for further development of novel anticancer agents.
Collapse
|
26
|
Casein Kinase 1 Epsilon Regulates Glioblastoma Cell Survival. Sci Rep 2018; 8:13621. [PMID: 30206363 PMCID: PMC6134061 DOI: 10.1038/s41598-018-31864-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common malignant brain cancer with a dismal prognosis. The difficulty in treating glioblastoma is largely attributed to the lack of effective therapeutic targets. In our previous work, we identified casein kinase 1 ε (CK1ε, also known as CSNK1E) as a potential survival factor in glioblastoma. However, how CK1ε controls cell survival remains elusive and whether targeting CK1ε is a possible treatment for glioblastoma requires further investigation. Here we report that CK1ε was expressed at the highest level among six CK1 isoforms in glioblastoma and enriched in high-grade glioma, but not glia cells. Depletion of CK1ε remarkably inhibited the growth of glioblastoma cells and suppressed self-renewal of glioblastoma stem cells, while having limited effect on astrocytes. CK1ε deprivation activated β-catenin and induced apoptosis, which was further counteracted by knockdown of β-catenin. The CK1ε inhibitor IC261, but not PF-4800567, activated β-catenin and blocked the growth of glioblastoma cells and glioblastoma stem cells. Congruently, IC261 elicited a robust growth inhibition of human glioblastoma xenografts in mice. Together, our results demonstrate that CK1ε regulates the survival of glioblastoma cells and glioblastoma stem cells through β-catenin signaling, underscoring the importance of targeting CK1ε as an effective treatment for glioblastoma.
Collapse
|
27
|
Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood 2018; 131:1206-1218. [PMID: 29317454 DOI: 10.1182/blood-2017-05-786947] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022] Open
Abstract
Casein kinase 1δ/ε (CK1δ/ε) is a key component of noncanonical Wnt signaling pathways, which were shown previously to drive pathogenesis of chronic lymphocytic leukemia (CLL). In this study, we investigated thoroughly the effects of CK1δ/ε inhibition on the primary CLL cells and analyzed the therapeutic potential in vivo using 2 murine model systems based on the Eµ-TCL1-induced leukemia (syngeneic adoptive transfer model and spontaneous disease development), which resembles closely human CLL. We can demonstrate that the CK1δ/ε inhibitor PF-670462 significantly blocks microenvironmental interactions (chemotaxis, invasion and communication with stromal cells) in primary CLL cells in all major subtypes of CLL. In the mouse models, CK1 inhibition slows down accumulation of leukemic cells in the peripheral blood and spleen and prevents onset of anemia. As a consequence, PF-670462 treatment results in a significantly longer overall survival. Importantly, CK1 inhibition has synergistic effects to the B-cell receptor (BCR) inhibitors such as ibrutinib in vitro and significantly improves ibrutinib effects in vivo. Mice treated with a combination of PF-670462 and ibrutinib show the slowest progression of disease and survive significantly longer compared with ibrutinib-only treatment when the therapy is discontinued. In summary, this preclinical testing of CK1δ/ε inhibitor PF-670462 demonstrates that CK1 may serve as a novel therapeutic target in CLL, acting in synergy with BCR inhibitors. Our work provides evidence that targeting CK1 can represent an alternative or addition to the therapeutic strategies based on BCR signaling and antiapoptotic signaling (BCL-2) inhibition.
Collapse
|
28
|
Dolde C, Bischof J, Grüter S, Montada A, Halekotte J, Peifer C, Kalbacher H, Baumann U, Knippschild U, Suter B. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1ε. J Cell Sci 2018; 131:jcs.207316. [PMID: 29222110 PMCID: PMC5818060 DOI: 10.1242/jcs.207316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Casein kinase 1 (CK1) plays central roles in various signal transduction pathways and performs many cellular activities. For many years CK1 was thought to act independently of modulatory subunits and in a constitutive manner. Recently, DEAD box RNA helicases, in particular DEAD box RNA helicase 3 X-linked (DDX3X), were found to stimulate CK1 activity in vitro. In order to observe CK1 activity in living cells and to study its interaction with DDX3X, we developed a CK1-specific FRET biosensor. This tool revealed that DDX3X is indeed required for full CK1 activity in living cells. Two counteracting mechanisms control the activity of these enzymes. Phosphorylation by CK1 impairs the ATPase activity of DDX3X and RNA destabilizes the DDX3X–CK1 complex. We identified possible sites of interaction between DDX3X and CK1. While mutations identified in the DDX3X genes of human medulloblastoma patients can enhance CK1 activity in living cells, the mechanism of CK1 activation by DDX3X points to a possible therapeutic approach in CK1-related diseases such as those caused by tumors driven by aberrant Wnt/β-catenin and Sonic hedgehog (SHH) activation. Indeed, CK1 peptides can reduce CK1 activity. Highlighted Article: A FRET biosensor reveals DDX3X as an essential activator of the CK1 kinase in living cells. Its CK1-activating function is counteracted by its ATPase activity and also by CK1 peptides.
Collapse
Affiliation(s)
- Christine Dolde
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Simon Grüter
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Anna Montada
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Str. 12-14, 50674 Cologne, Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Ob dem Himmelreich 7, 72074 Tübingen, Germany
| | - Ulrich Baumann
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Str. 12-14, 50674 Cologne, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Beat Suter
- Institute of Cell Biology, Department of Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
29
|
Monastyrskyi A, Nilchan N, Quereda V, Noguchi Y, Ruiz C, Grant W, Cameron M, Duckett D, Roush W. Development of dual casein kinase 1δ/1ε (CK1δ/ε) inhibitors for treatment of breast cancer. Bioorg Med Chem 2017; 26:590-602. [PMID: 29289448 DOI: 10.1016/j.bmc.2017.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Casein kinase 1δ/ε have been identified as promising therapeutic target for oncology application, including breast and brain cancer. Here, we described our continued efforts in optimization of a lead series of purine scaffold inhibitors that led to identification of two new CK1δ/ε inhibitors 17 and 28 displaying low nanomolar values in antiproliferative assays against the human MDA-MB-231 triple negative breast cancer cell line and have physical, in vitro and in vivo pharmacokinetic properties suitable for use in proof of principle animal xenograft studies against human cancers.
Collapse
Affiliation(s)
- Andrii Monastyrskyi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Napon Nilchan
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Victor Quereda
- Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yoshihiko Noguchi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Claudia Ruiz
- Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Wayne Grant
- Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael Cameron
- Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Derek Duckett
- Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - William Roush
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
30
|
Zhao T, Zhao C, Zhou Y, Zheng J, Gao S, Lu Y. HIF-1α binding to AEG-1 promoter induced upregulated AEG-1 expression associated with metastasis in ovarian cancer. Cancer Med 2017; 6:1072-1081. [PMID: 28401704 PMCID: PMC5430094 DOI: 10.1002/cam4.1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer with the highest mortality rate among gynecological malignancies is one of common cancers among female cancer patients. As reported in recent years, AEG‐1 was associated with the occurrence, development, and metastasis of ovarian cancer, but the mechanisms remain unclear. In the current study, invasion capabilities of ovarian cancer OVCAR3 cells were measured by viral infection and transwell assay. Western blot analysis was used to evaluate the expression levels of β‐catenin, E‐cadherin, MMP2, and MMP9. With qRT‐PCR analysis, AEG‐1 and HIF‐1α gene expression were detected. We used luciferase reporter gene to measure AEG‐1 promoter activity under normoxia/hypoxia in OVCAR3 cells. Our work demonstrated that AEG‐1 significantly enhanced invasion capabilities of OVCAR3 cells and the expression levels of β‐catenin, E‐cadherin, MMP2, and MMP9 associated with invasion capabilities of OVCAR3 cells were upregulated. Furthermore, hypoxia enhanced invasion capabilities of OVCAR3 cells and induced AEG‐1 high gene expression, which was reversed by AEG‐1 knockdown lentivirus. HIF‐1α expression upregulation was induced in OVCAR3 cells after hypoxia. HIF‐1α knockdown lentivirus induced downregulated expression of AEG‐1 and invasion capabilities of OVCAR3 cells were also inhibited. Wild‐type AEG‐1 promoter activity under hypoxic conditions was significantly higher than that AEG‐1 mutation under normoxic conditions in the absence of hypoxia response. Our results suggested that HIF‐1α binds to AEG‐1 promoter to upregulate its expression, which was correlated with metastasis in ovarian cancer by inducing the expression of MMP2 and MMP9 as well as inhibiting expression of E‐cadherin and β‐catenin.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenyan Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanting Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shujun Gao
- The Diagnosis and Treatment Center of Cervical Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yuan Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
The interplay between HPIP and casein kinase 1α promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis 2016; 5:e260. [PMID: 27694835 PMCID: PMC5117846 DOI: 10.1038/oncsis.2016.44] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic pre-B cell leukemia transcription factor (PBX)-interacting protein (HPIP) was shown to be crucial during the development and progression of a variety of tumors. However, the role of HPIP in renal cell carcinoma (RCC) is unknown. Here we report that HPIP is upregulated in most RCC patients, positively correlates with tumor size, high Fuhrman grade and preoperative metastasis, and predicts poor clinical outcomes. Mechanistically, we identified casein kinase 1α (CK1α), a critical regulator of tumorigenesis and metastasis, as a novel HPIP-interacting protein. HPIP facilitates RCC cell growth, migration, invasion and epithelial–mesenchymal transition depending on its interaction with CK1α. Activation of mammalian target of rapamycin pathways by HPIP is partly dependent on CK1α and is required for HPIP modulation of RCC cell proliferation and migration. HPIP knockdown suppresses renal tumor growth and metastasis in nude mice through CK1α. Moreover, expression of CK1α is positively correlated with HPIP in RCC samples, and also predicts poor clinical outcome-like expression of HPIP. Taken together, our data demonstrate the critical regulatory role of the HPIP–CK1α interaction in RCC, and suggest that HPIP and CK1α may be potential targets for RCC therapy.
Collapse
|
32
|
Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M, Noguchi Y, Fallahi M, Yang C, Chang JC, Roush WR, Cleveland JL, Duckett DR. Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med 2016; 7:318ra202. [PMID: 26676609 DOI: 10.1126/scitranslmed.aac8773] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of specific drivers of human cancer is required to instruct the development of targeted therapeutics. We demonstrate that CSNK1D is amplified and/or overexpressed in human breast tumors and that casein kinase 1δ (CK1δ) is a vulnerability of human breast cancer subtypes overexpressing this kinase. Specifically, selective knockdown of CK1δ, or treatment with a highly selective and potent CK1δ inhibitor, triggers apoptosis of CK1δ-expressing breast tumor cells ex vivo, tumor regression in orthotopic models of triple-negative breast cancer, including patient-derived xenografts, and tumor growth inhibition in human epidermal growth factor receptor 2-positive (HER2(+)) breast cancer models. We also show that Wnt/β-catenin signaling is a hallmark of human tumors overexpressing CK1δ, that disabling CK1δ blocks nuclear accumulation of β-catenin and T cell factor transcriptional activity, and that constitutively active β-catenin overrides the effects of inhibition or silencing of CK1δ. Thus, CK1δ inhibition represents a promising strategy for targeted treatment in human breast cancer with Wnt/β-catenin involvement.
Collapse
Affiliation(s)
- Laura H Rosenberg
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA. Cancer Research Technology Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Marie Lafitte
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Victor Quereda
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wayne Grant
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weimin Chen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mathieu Bibian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yoshihiko Noguchi
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chunying Yang
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA. Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jenny C Chang
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX 77030, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - John L Cleveland
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA. Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Derek R Duckett
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
33
|
Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8642703. [PMID: 27635400 PMCID: PMC5011241 DOI: 10.1155/2016/8642703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/14/2023]
Abstract
Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).
Collapse
|
34
|
Nabavi S. Identifying candidate drivers of drug response in heterogeneous cancer by mining high throughput genomics data. BMC Genomics 2016; 17:638. [PMID: 27526849 PMCID: PMC4986197 DOI: 10.1186/s12864-016-2942-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND With advances in technologies, huge amounts of multiple types of high-throughput genomics data are available. These data have tremendous potential to identify new and clinically valuable biomarkers to guide the diagnosis, assessment of prognosis, and treatment of complex diseases, such as cancer. Integrating, analyzing, and interpreting big and noisy genomics data to obtain biologically meaningful results, however, remains highly challenging. Mining genomics datasets by utilizing advanced computational methods can help to address these issues. RESULTS To facilitate the identification of a short list of biologically meaningful genes as candidate drivers of anti-cancer drug resistance from an enormous amount of heterogeneous data, we employed statistical machine-learning techniques and integrated genomics datasets. We developed a computational method that integrates gene expression, somatic mutation, and copy number aberration data of sensitive and resistant tumors. In this method, an integrative method based on module network analysis is applied to identify potential driver genes. This is followed by cross-validation and a comparison of the results of sensitive and resistance groups to obtain the final list of candidate biomarkers. We applied this method to the ovarian cancer data from the cancer genome atlas. The final result contains biologically relevant genes, such as COL11A1, which has been reported as a cis-platinum resistant biomarker for epithelial ovarian carcinoma in several recent studies. CONCLUSIONS The described method yields a short list of aberrant genes that also control the expression of their co-regulated genes. The results suggest that the unbiased data driven computational method can identify biologically relevant candidate biomarkers. It can be utilized in a wide range of applications that compare two conditions with highly heterogeneous datasets.
Collapse
Affiliation(s)
- Sheida Nabavi
- Computer Science and Engineering Department, Institute for Systems Genomics, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT, 06268, USA.
| |
Collapse
|
35
|
Sinnberg T, Wang J, Sauer B, Schittek B. Casein kinase 1α has a non-redundant and dominant role within the CK1 family in melanoma progression. BMC Cancer 2016; 16:594. [PMID: 27488834 PMCID: PMC4973074 DOI: 10.1186/s12885-016-2643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background We previously identified CK1α as a novel tumor suppressor in melanoma and reported that the loss of CK1α leads to increased proliferation and invasive growth of melanoma cells by strong activation of the Wnt/β-catenin signaling pathway. Methods In this study we analyzed expression and the functional effects of the dominantly expressed CK1- isoforms α, δ and ε in melanoma cells by quantitative real-time PCR, western blot and immunohistochemistry. We down-regulated CK1 kinase activity with isoform specific siRNAs and small molecule inhibitors. Vice versa we overexpressed the CK1 isoforms α, δ and ε using viral vectors and tested the biological effects on melanoma cell proliferation, migration and invasion. Results We show that protein expression of all three CK1-isoforms is downregulated in metastatic melanoma cells compared to benign melanocytic cells. Furthermore, the CK1δ and ε isoforms are able to negatively regulate expression of each other, whereas CK1α expression is independently regulated in melanoma cells. Inhibition of the expression and activity of CK1δ or CK1ε by specific inhibitors or siRNAs had no significant effect on the growth and survival of metastatic melanoma cells. Moreover, the over-expression of CK1δ or CK1ε in melanoma cells failed to induce cell death and cell cycle arrest although p53 signaling was activated. This is in contrast to the effects of CK1α where up-regulated expression induces cell death and apoptosis in metastatic melanoma cells. Conclusion These data indicate that CK1α has a dominant and non-redundant function in melanoma cells and that the CK1δ and ε isoforms are not substantially involved in melanoma progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2643-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Jun Wang
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany.
| |
Collapse
|
36
|
High casein kinase 1 epsilon levels are correlated with better prognosis in subsets of patients with breast cancer. Oncotarget 2016; 6:30343-56. [PMID: 26327509 PMCID: PMC4745804 DOI: 10.18632/oncotarget.4850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/28/2015] [Indexed: 01/01/2023] Open
Abstract
Reliable biological markers that predict breast cancer (BC) outcomes after multidisciplinary therapy have not been fully elucidated. We investigated the association between casein kinase 1 epsilon (CK1ε) and the risk of recurrence in patients with BC. Using 168 available tumor samples from patients with BC treated with surgery +/− chemo(radio)therapy, we scored the CK1ε expression as high (≥1.5) or low (<1.5) using an immunohistochemical method. Kaplan-Meier analysis was performed to assess the risk of relapse, and Cox proportional hazards analyses were utilized to evaluate the effect of CK1ε expression on this risk. The median age at diagnosis was 60 years (range 35-96). A total of 58% of the patients underwent breast conservation surgery, while 42% underwent mastectomy. Adjuvant chemotherapy and radiation therapy were administered in 101 (60%) and 137 cases (82%), respectively. Relapse was observed in 24 patients (14%). Multivariate analysis found high expression of CK1ε to be associated with a statistically significant higher disease-free survival (DFS) in BC patients with wild-type p53 (Hazard ratio [HR] = 0.33; 95% CI, 0.12-0.91; P = 0.018) or poor histological differentiation ([HR] = 0.34; 95% CI, 0.12-0.94; P = 0.039) or in those without adjuvant chemotherapy ([HR] = 0.11; 95% CI, 0.01-0.97; P = 0.006). Our data indicate that CK1ε expression is associated with DFS in BC patients with wild-type p53 or poor histological differentiation or in those without adjuvant chemotherapy and thus may serve as a predictor of recurrence in these subsets of patients.
Collapse
|
37
|
Low cytoplasmic casein kinase 1 epsilon expression predicts poor prognosis in patients with hepatocellular carcinoma. Tumour Biol 2015; 37:3997-4005. [PMID: 26482619 DOI: 10.1007/s13277-015-4225-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 12/24/2022] Open
Abstract
Casein kinase 1 epsilon (CK1ε) is a member of the casein kinase 1 (CK1) family, which comprises highly conserved and ubiquitous serine/threonine protein kinases. Recent studies have demonstrated that CK1ε plays a role in human cancers; however, the role of CK1ε in hepatocellular carcinoma (HCC) remains unclear. The study used immunohistochemistry to examine CK1ε expression in 230 HCC specimens by tissue microarray (TMA) and assessed the effect of CK1ε knockdown on migration of human hepatoma cells in vitro. The immunohistochemical analyses showed that low CK1ε expression was significantly correlated with tumor differentiation (p = 0.008), T classification (p = 0.016), tumor vascular invasion (p = 0.002), and cancer stage (p = 0.010). The univariate and multivariate analyses showed that patients with low CK1ε expression had a considerably lower OS rate than that of the patients with high CK1ε expression (p = 0.041, hazard ratio = 1.4; p = 0.039, hazard ratio = 1.4). Moreover, CK1ε small interfering RNA (siRNA) treatment exerted an invasion-promoting effect in human hepatoma cells. In conclusion, our data indicated that low CK1ε expression is correlated with a low survival rate and CK1ε may play a role as a tumor suppressor in hepatocarcinogenesis.
Collapse
|
38
|
Mohan N, Sudheesh AP, Francis N, Anderson R, Laishram RS. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets. Nucleic Acids Res 2015; 43:7005-20. [PMID: 26138484 PMCID: PMC4538844 DOI: 10.1093/nar/gkv676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/19/2015] [Indexed: 11/14/2022] Open
Abstract
Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing.
Collapse
Affiliation(s)
- Nimmy Mohan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India
| | - A P Sudheesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India
| | - Nimmy Francis
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India
| | - Richard Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA
| | - Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India
| |
Collapse
|
39
|
Silveira-Dorta G, Sousa IJ, Fernandes MX, Martín VS, Padrón JM. Synthesis and identification of unprecedented selective inhibitors of CK1ε. Eur J Med Chem 2015; 96:308-17. [PMID: 25899335 DOI: 10.1016/j.ejmech.2015.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/26/2022]
Abstract
A small and structure-biased library of enantiopure anti-β-amino alcohols was prepared in a straightforward manner by a simplified version of the Reetz protocol. Antiproliferative activity testing against a panel of five human solid tumor cell lines gave GI50 values in the range 1-20 μM. The reverse screening by computational methods against 58 proteins involved in cancer pointed to kinases as possible therapeutic target candidates. The experimental determination of the interaction with 456 kinases indicated that the compounds behave as selective CK1ε inhibitors. Our results demonstrate that the lead compound represents the first selective CK1ε inhibitor with proven antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Inês J Sousa
- Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Miguel X Fernandes
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Victor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| |
Collapse
|
40
|
Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR, Cleveland JL, Stroupe ME, Karbstein K. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J Cell Biol 2015; 208:745-59. [PMID: 25778921 PMCID: PMC4362465 DOI: 10.1083/jcb.201409056] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/02/2015] [Indexed: 11/25/2022] Open
Abstract
Casein kinase 1δ/ε (CK1δ/ε) and their yeast homologue Hrr25 are essential for cell growth. Further, CK1δ is overexpressed in several malignancies, and CK1δ inhibitors have shown promise in several preclinical animal studies. However, the substrates of Hrr25 and CK1δ/ε that are necessary for cell growth and survival are unknown. We show that Hrr25 is essential for ribosome assembly, where it phosphorylates the assembly factor Ltv1, which causes its release from nascent 40S subunits and allows subunit maturation. Hrr25 inactivation or expression of a nonphosphorylatable Ltv1 variant blocked Ltv1 release in vitro and in vivo, and prevented entry into the translation-like quality control cycle. Conversely, phosphomimetic Ltv1 variants rescued viability after Hrr25 depletion. Finally, Ltv1 knockdown in human breast cancer cells impaired apoptosis induced by CK1δ/ε inhibitors, establishing that the antiproliferative activity of these inhibitors is due, at least in part, to disruption of ribosome assembly. These findings validate the ribosome assembly pathway as a novel target for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Homa Ghalei
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Franz X Schaub
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - Joanne R Doherty
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Yoshihiko Noguchi
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - William R Roush
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - John L Cleveland
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - M Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Katrin Karbstein
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
41
|
Richter J, Ullah K, Xu P, Alscher V, Blatz A, Peifer C, Halekotte J, Leban J, Vitt D, Holzmann K, Bakulev V, Pinna LA, Henne-Bruns D, Hillenbrand A, Kornmann M, Leithäuser F, Bischof J, Knippschild U. Effects of altered expression and activity levels of CK1δ and ɛ on tumor growth and survival of colorectal cancer patients. Int J Cancer 2014; 136:2799-810. [PMID: 25404202 DOI: 10.1002/ijc.29346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/03/2014] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer related death worldwide due to high apoptotic resistance and metastatic potential. Because mutations as well as deregulation of CK1 isoforms contribute to tumor development and tumor progression, CK1 has become an interesting drug target. In this study we show that CK1 isoforms are differently expressed in colon tumor cell lines and that growth of these cell lines can be inhibited by CK1-specific inhibitors. Furthermore, expression of CK1δ and ɛ is changed in colorectal tumors compared to normal bowel epithelium, and high CK1ɛ expression levels significantly correlate with prolonged patients' survival. In addition to changes in CK1δ and ɛ expression, mutations within exon 3 of CK1δ were detected in colorectal tumors. These mutations influence ATP binding resulting in changes in kinetic parameters of CK1δ. Overexpression of these mutants in HT29 cells alters their ability to grow anchorage independently. Consistent with these results, these CK1δ mutants lead to differences in proliferation rate and tumor size in xenografts due to changes in gene expression, especially in genes involved in regulation of cell proliferation, cell cycle, and apoptosis. In summary, our results provide evidence that changes in the expression levels of CK1 isoforms in colorectal tumors correlate with patients' survival. Furthermore, CK1 mutants affect growth and proliferation of tumor cells and induce tumor growth in xenografts, leading to the assumption that CK1 isoforms provide interesting targets for the development of novel effective therapeutic concepts to treat colorectal cancer.
Collapse
Affiliation(s)
- Julia Richter
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014; 13:231. [PMID: 25306547 PMCID: PMC4201705 DOI: 10.1186/1476-4598-13-231] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Collapse
|
43
|
Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP, Huang RYJ. FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis 2014; 5:e1346. [PMID: 25032869 PMCID: PMC4123093 DOI: 10.1038/cddis.2014.302] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 01/02/2023]
Abstract
Ovarian cancer (OC) can be classified into five biologically distinct molecular subgroups: epithelial-A (Epi-A), Epi-B, mesenchymal (Mes), Stem-A and Stem-B. Among them, Stem-A expresses genes relating to stemness and is correlated with poor clinical prognosis. In this study, we show that frizzled family receptor 7 (FZD7), a receptor for Wnt signalling, is overexpressed in the Stem-A subgroup. To elucidate the functional roles of FZD7, we used an RNA interference gene knockdown approach in three Stem-A cell lines: CH1, PA1 and OV-17R. Si-FZD7 OC cells showed reduced cell proliferation with an increase in the G0/G1 sub-population, with no effect on apoptosis. The cells also displayed a distinctive morphologic change by colony compaction to become more epithelial-like and polarised with smaller internuclear distances and increased z-axis height. Immunofluorescence (IF) staining patterns of pan-cadherin and β-catenin suggested an increase in cadherin-based cell–cell adhesion in si-FZD7 cells. We also observed a significant rearrangement in the actin cytoskeleton and an increase in tensile contractility in si-FZD7 OC cells, as evident by the loss of stress fibres and the redistribution of phospho-myosin light chain (pMLC) from the sites of cell–cell contacts to the periphery of cell colonies. Furthermore, there was reciprocal regulation of RhoA (Ras homolog family member A) and Rac1 (Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP-binding protein Rac1)) activities upon FZD7 knockdown, with a significant reduction in RhoA activity and a concomitant upregulation in Rac1 activity. These changes in pMLC and RhoA, as well as the increased TopFlash reporter activities in si-FZD7 cells, suggested involvement of the non-canonical Wnt/planar cell polarity (PCP) pathway. Selected PCP pathway genes (cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3), prickle homolog 4 (Drosophila) (PRICKLE4), dishevelled-associated activator of morphogenesis 1 (DAAM1), profilin 2 (PFN2), protocadherin 9 (PCDH9), protocadherin α1 (PCDHA1), protocadherin β17 pseudogene (PCDHB17), protocadherin β3 (PCDHB3), sprouty homolog 1 (SPRY1) and protein tyrosine kinase 7 (PTK7)) were found to be more highly expressed in Stem-A than non Stem-A subgroup of OC. Taken together, our results suggest that FZD7 might drive aggressiveness in Stem-A OC by regulating cell proliferation, cell cycle progression, maintenance of the Mes phenotype and cell migration via casein kinase 1ɛ-mediated non-canonical Wnt/PCP pathway.
Collapse
Affiliation(s)
- M Asad
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - M K Wong
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Z Tan
- Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - M Choolani
- Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore
| | - J Low
- 1] Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore [2] National University Cancer Institute of Singapore, Singapore, Singapore
| | - S Mori
- Division of Cancer Genomics, Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, Japan
| | - D Virshup
- Duke NUS Graduate Medical School, Singapore, Singapore
| | - J P Thiery
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore [2] National University Cancer Institute of Singapore, Singapore, Singapore [3] Department of Biochemistry, National University of Singapore, Singapore, Singapore [4] Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - R Y-J Huang
- 1] Cancer Science Institute of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore, Singapore [2] Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, Singapore [3] National University Cancer Institute of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Babron MC, Kazma R, Gaborieau V, McKay J, Brennan P, Sarasin A, Benhamou S. Genetic variants in DNA repair pathways and risk of upper aerodigestive tract cancers: combined analysis of data from two genome-wide association studies in European populations. Carcinogenesis 2014; 35:1523-7. [PMID: 24658182 DOI: 10.1093/carcin/bgu075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA repair pathways are good candidates for upper aerodigestive tract cancer susceptibility because of their critical role in maintaining genome integrity. We have selected 13 pathways involved in DNA repair representing 212 autosomal genes. To assess the role of these pathways and their associated genes, two European data sets from the International Head and Neck Cancer Epidemiology consortium were pooled, totaling 1954 cases and 3121 controls, with documented demographic, lifetime alcohol and tobacco consumption information. We applied an innovative approach that tests single nucleotide polymorphism (SNP)-sets within DNA repair pathways and then within genes belonging to the significant pathways. We showed an association between the polymerase pathway and oral cavity/pharynx cancers (P-corrected = 4.45 × 10(-) (2)), explained entirely by the association with one SNP, rs1494961 (P = 2.65 × 10(-) (4)), a missense mutation V306I in the second exon of HELQ gene. We also found an association between the cell cycle regulation pathway and esophagus cancer (P-corrected = 1.48 × 10(-) (2)), explained by three SNPs located within or near CSNK1E gene: rs1534891 (P = 1.27 × 10(-) (4)), rs7289981 (P = 3.37 × 10(-) (3)) and rs13054361 (P = 4.09 × 10(-) (3)). As a first attempt to investigate pathway-level associations, our results suggest a role of specific DNA repair genes/pathways in specific upper aerodigestive tract cancer sites.
Collapse
Affiliation(s)
- Marie-Claude Babron
- Inserm, U946, Genetic Variation and Human, Diseases and Université Paris-Diderot, Sorbonne Paris-Cité, UMRS-946, Paris, F-75010, France
| | - Rémi Kazma
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Valérie Gaborieau
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - James McKay
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - Paul Brennan
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - Alain Sarasin
- Université Paris-Sud, Faculty of Medicine, Villejuif, F-94805, France, CNRS, UMR8200, Genomes and Cancers and Gustave Roussy, Villejuif, F-94805, France
| | - Simone Benhamou
- Inserm, U946, Genetic Variation and Human, Diseases and Université Paris-Diderot, Sorbonne Paris-Cité, UMRS-946, Paris, F-75010, France, Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
45
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
46
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
47
|
Cermelli S, Jang IS, Bernard B, Grandori C. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 2014; 4:4/3/a014209. [PMID: 24591535 DOI: 10.1101/cshperspect.a014209] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although therapeutics against MYC could potentially be used against a wide range of human cancers, MYC-targeted therapies have proven difficult to develop. The convergence of breakthroughs in human genomics and in gene silencing using RNA interference (RNAi) have recently allowed functional interrogation of the genome and systematic identification of synthetic lethal interactions with hyperactive MYC. Here, we focus on the pathways that have emerged through RNAi screens and present evidence that a subset of genes showing synthetic lethality with MYC are significantly interconnected and linked to chromatin and transcriptional processes, as well as to DNA repair and cell cycle checkpoints. Other synthetic lethal interactions with MYC point to novel pathways and potentially broaden the repertoire of targeted therapies. The elucidation of MYC synthetic lethal interactions is still in its infancy, and how these interactions may be influenced by tissue-specific programs and by concurrent genetic change will require further investigation. Nevertheless, we predict that these studies may lead the way to novel therapeutic approaches and new insights into the role of MYC in cancer.
Collapse
Affiliation(s)
- Silvia Cermelli
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | | | | |
Collapse
|
48
|
Casein kinase 1 epsilon expression predicts poorer prognosis in low T-stage oral cancer patients. Int J Mol Sci 2014; 15:2876-91. [PMID: 24557581 PMCID: PMC3958887 DOI: 10.3390/ijms15022876] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022] Open
Abstract
Casein kinase 1 is a group of ubiquitous serine/threonine kinases that are involved in normal cellular functions and several pathological conditions, such as DNA repair, cell cycle progression, cytokinesis, differentiation, and apoptosis. Recent studies have indicated that casein kinase 1-epsilon (CK1ε) and casein kinase 1-delta (CK1δ) expression has a role in human cancers. We investigated the associations between CK1ε and CK1δ expression and the clinical parameters of oral cancer using immunohistochemical study methods on oral squamous cell carcinoma specimens. The results of our immunohistochemical analysis showed that the loss of CK1ε expression was greatly associated with a poor four-year survival rate in oral cancer patients (p = 0.002). A Kaplan-Meier analysis showed that patients who had a loss of CK1ε expression had a considerably poorer overall survival rate than patients who had positive CK1ε expressions (p = 0.022). A univariate analysis revealed that patients who had a loss of CK1ε expression had considerably poorer overall survival (OS) than patients who had positive expression (p = 0.024, hazard ratio (HR) = 1.7). In conclusion, our data indicated that the loss of cytoplasmic CK1ε expression is greatly associated with poor survival and might be an adverse survival factor.
Collapse
|
49
|
Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, Feng Y, Cameron MD, Duckett DR, Cleveland JL, Roush WR. Development of highly selective casein kinase 1δ/1ε (CK1δ/ε) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett 2013; 23:4374-80. [PMID: 23787102 PMCID: PMC3783656 DOI: 10.1016/j.bmcl.2013.05.075] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The development of a series of potent and highly selective casein kinase 1δ/ε (CK1δ/ε) inhibitors is described. Starting from a purine scaffold inhibitor (SR-653234) identified by high throughput screening, we developed a series of potent and highly kinase selective inhibitors, including SR-2890 and SR-3029, which have IC₅₀ ≤ 50 nM versus CK1δ. The two lead compounds have ≤100 nM EC50 values in MTT assays against the human A375 melanoma cell line and have physical, in vitro and in vivo PK properties suitable for use in proof of principle animal xenograft studies against human cancer cell lines.
Collapse
Affiliation(s)
- Mathieu Bibian
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Ronald J. Rahaim
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yoshihiko Noguchi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology and Center for Computational Science, University of Miami, 1120 NW 14th St., Miami, FL 33136, United States
| | - Weimin Chen
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Shima Nakanishi
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Konstantin Licht
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Laura H. Rosenberg
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Lin Li
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yangbo Feng
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Derek R. Duckett
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - John L. Cleveland
- Department of Cancer Biology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | - William R. Roush
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| |
Collapse
|
50
|
CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One 2013; 8:e68803. [PMID: 23861943 PMCID: PMC3701638 DOI: 10.1371/journal.pone.0068803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/01/2013] [Indexed: 12/19/2022] Open
Abstract
CK1δ, a member of the casein kinase 1 family, is involved in the regulation of various cellular processes and has been associated with the pathophysiology of neurodegenerative diseases and cancer. Therefore recently, interest in generating highly specific inhibitors for personalized therapy has increased enormously. However, the efficacy of newly developed inhibitors is affected by the phosphorylation state of CK1δ. Cellular kinases phosphorylating CK1δ within its C-terminal domain have been identified but still more information regarding the role of site-specific phosphorylation in modulating the activity of CK1δ is required. Here we show that Chk1 phosphorylates rat CK1δ at serine residues 328, 331, 370, and threonine residue 397 as well as the human CK1δ transcription variants 1 and 2. CK1δ mutant proteins bearing one, two or three mutations at these identified phosphorylation sites exhibited significant differences in their kinetic properties compared to wild-type CK1δ. Additionally, CK1δ co-precipitates with Chk1 from HT1080 cell extracts and activation of cellular Chk1 resulted in a significant decrease in cellular CK1δ kinase activity. Taken together, these data point towards a possible regulatory relationship between Chk1 and CK1δ.
Collapse
|