1
|
Lyu Y, Zhang T, Zhong W, Yi S, Zhu L. Exposure to Sodium p-Perfluorous Nonenoxybenzenesulfonate Induces Renal Fibrosis in Mice by Disrupting Lysine Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7461-7473. [PMID: 40116701 DOI: 10.1021/acs.est.4c10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental exposure is one driving factor of chronic kidney disease (CKD), yet the intrinsic molecular mechanisms are largely unexplored. As a persistent chemical, perfluorooctanesulfonate (PFOS) is regulated due to a great potential to induce multiple diseases, including renal fibrosis, a major pathological characteristic of CKD. It is hypothesized that sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a typical alternative to PFOS, may also induce renal fibrosis. We observed distinct renal fibrosis in mice exposed to OBS. Metabolomics analysis showed that Nα-acetyllysine was the primary metabolite biomarker, whose level decreased greatly due to its excessive consumption by lysyloxidase (LOX). This suppressed the miR-140-5p expression, promoting upregulation of fibroblast growth factor 9 (FGF9), which activated the PI3K/Akt signaling pathway through fibroblast growth factor receptor 3 (FGFR3), thereby enhancing proliferation and activation of fibroblasts. Supplement of Nα-acetyllysine upregulated miR-140-5p expression, reduced expressions of FGF9 and FGFR3, and eventually ameliorated OBS-induced renal fibrosis. Similarly, treatment with miR-140-5p agomir and PI3K/Akt signaling pathway inhibitor LY294002 attenuated OBS-induced renal fibrosis. Taken together, OBS caused renal fibrosis through the LOX-Nα-acetyllysine-miR-140-5p-FGF9-FGFR3-PI3K/Akt-Bad-Bcl-2-fibroblast axis. The results of this study reveal a specific molecular axis for OBS to induce renal fibrosis and call for concerns in supervising the application of OBS.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
3
|
Ford AT, Ginley F. Insights into PFAS contaminants before and after sewage discharges into a marine protected harbour. CHEMOSPHERE 2024; 366:143526. [PMID: 39395480 DOI: 10.1016/j.chemosphere.2024.143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) and their degradation products are a concern to human and ecosystem health. Wastewater treatment plants are not efficient at removing PFAS compounds and are thought to be a major source of these compounds to marine environments. The sewerage infrastructure in the UK, has over 20,000 combined stormwater overflows (CSOs). These CSOs are relief values whereby untreated wastewater can discharge under permit from the Environment Agency with exceptional rain/snowfall conditions. CSOs discharged 3.6 million monitored hours of untreated wastewater into English rivers and coasts in 2023. Concerns have been raised about the proximity of these CSO discharges to highly protected marine habitats. This study is the first to determine that PFAS concentrations are elevated in a highly protected marine bay (Langstone Harbour, England) following recent sewage releases compared to an extended period without discharge. Analysis was carried out into a suite of 54 PFAS compounds of which only one (PFHpA) was detectable above LOD prior to discharges but 8 afterwards. These included banned PFOS (Linear and Branched 8.6 ng/L ∓ 0.90) and PFOA (2.9 ng/L ∓ 0.29) which were above annual average EQS for inland and 'other' surface waters. Most of the PFAS compounds detected doubled in concentration above LODs. These two-fold increases we discuss are likely conservative estimates based on the use of LODs and tidal conditions. Additional Oysters (Crassostrea gigas) and Seaweed (Fucus vesiculosus) were taken revealing high concentrations of the shorter chain PFBA (6.99μg/kg ∓ 2.42 ww) in seaweed samples. These seaweeds were calculated to have conservative bioaccumulation factors (BAF) > 6000 for PFBA indicating these algae might be an important reservoir of some PFAS contamination. We discuss these results in the context of the largescale discharges of untreated wastewater nationally and globally, and call upon a need for a better understanding of the transfer of PFAS contaminants into marine food chains.
Collapse
Affiliation(s)
- Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK.
| | | |
Collapse
|
4
|
Zhang YT, Zeeshan M, Fan YY, Tan WH, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Lin LZ, Liu RQ, Zeng XW, Dong GH, Chu C. Isomer of per- and polyfluoroalkyl substances and red blood cell indices in adults: The Isomers of C8 Health Project in China. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:153-165. [PMID: 39219509 DOI: 10.1080/19338244.2024.2396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to explore the isomer-specific, sex-specific, and joint associations of PFAS and red blood cell indices. We used data of 1,238 adults from the Isomers of C8 Health Project in China. Associations of PFAS isomers and red blood cell indices were explored using multiple linear regression models, Bayesian Kernel Machine Regression models and subgroup analysis across sex. We found that serum concentration of linear (n-) and branched (Br-) isomers of perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were significantly associated with red blood cell indices in single-pollutant models, with stronger associations observed for n-PFHxS than Br-PFHxS, in women than in men. For instance, the estimated percentage change in hemoglobin concentration for n-PFHxS (3.65%; 95% CI: 2.95%, 4.34%) was larger than that for Br-PFHxS (0.96%; 95% CI: 0.52%, 1.40%). The estimated percentage change in red blood cell count for n-PFHxS in women (2.55%; 95% CI: 1.81%, 3.28%) was significantly higher than that in men (0.12%; 95% CI: -1.04%, 1.29%) (Pinter < 0.001). Similarly, sex-specific positive association of PFAS mixture and outcomes was observed. Therefore, the structure, susceptive population, and joint effect of PFAS isomers should be taken into consideration when evaluating the health risk of chemicals.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Yuan-Yuan Fan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xia Liang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jing-Wen Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jia-Xin Zhou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Hao Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Zi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Ru-Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Chu Chu
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Niu Z, Duan Z, He W, Chen T, Tang H, Du S, Sun J, Chen H, Hu Y, Iijima Y, Han S, Li J, Zhao Z. Kidney function decline mediates the adverse effects of per- and poly-fluoroalkyl substances (PFAS) on uric acid levels and hyperuricemia risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134312. [PMID: 38640681 DOI: 10.1016/j.jhazmat.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuang Du
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuanzhuo Hu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuka Iijima
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.
| | - Jiufeng Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| |
Collapse
|
6
|
Bennett BJ, Aung MT, Boonstra R, Delehanty B, Houde M, Muir DCG, Fair PA, Gribble MO. Investigation of the Link between Per- and Polyfluoroalkyl Substances and Stress Biomarkers in Bottlenose Dolphins ( Tursiops truncatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9061-9070. [PMID: 38743562 PMCID: PMC11137861 DOI: 10.1021/acs.est.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.
Collapse
Affiliation(s)
- Baylin J. Bennett
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Max T. Aung
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Rudy Boonstra
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Brendan Delehanty
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Magali Houde
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Montreal, Quebec G1J 0C3, Canada
| | - Derek C. G. Muir
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Patricia A. Fair
- Department
of Public Health Sciences, Medical University
of South Carolina, Charleston, South Carolina 29425, United States
| | - Matthew O. Gribble
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
7
|
Jeong Y, Mok S, Park KJ, Moon HB. Accumulation features and temporal trends (2002-2015) for legacy and emerging per- and polyfluoroalkyl substances (PFASs) in finless porpoises bycaught off Korean coasts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123925. [PMID: 38593937 DOI: 10.1016/j.envpol.2024.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Legacy and emerging per- and polyfluoroalkyl substances (PFASs) were measured in livers of finless porpoises (Neophocaena asiaeorientalis; n = 167) collected in Korean waters from 2002 to 2015 to investigate their occurrence, bioaccumulation feature, temporal trends, and ecotoxicological implications. Perfulorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA), and perfluorotridecanoate (PFTrDA) were the predominant PFASs found in the porpoises. The concentration of 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B), an alternative to PFOS, was comparable to that of PFTrDA. Perfluorooctane sulfonamide (FOSA), a precursor of PFOS, was also detected in all the porpoises examined. All PFASs, including F-53B, accumulated to higher concentrations in immature porpoises compared with mature specimens, implying substantial maternal transfer and limited metabolizing capacity for PFASs. A significant correlation was observed between PFOS and F-53B concentrations, indicating similar bioaccumulation processes. Based on prenatal exposure and toxicity, F-53B is an emerging contaminant in marine ecosystems. Significantly increasing trends were observed in the concentrations of sulfonates, carboxylates, and F-53B between 2002/2003 and 2010, whereas the FOSA concentration significantly decreased. During 2010-2015, decreasing trends were observed in the concentrations of FOSA and sulfonates, whereas concentrations of carboxylate and F-53B increased without statistical significance, likely due to a gap for the implementation of regulatory actions between sulfonates and carboxylates. Although PFOS and PFOA were found to pose little health risk to porpoises, the combined toxicological effects of other contaminants should be considered to protect populations and to mitigate PFAS contamination in marine ecosystems.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyum Joon Park
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, 44780, Republic of Korea.
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
8
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
9
|
Foord CS, Szabo D, Robb K, Clarke BO, Nugegoda D. Hepatic concentrations of per- and polyfluoroalkyl substances (PFAS) in dolphins from south-east Australia: Highest reported globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168438. [PMID: 37963535 DOI: 10.1016/j.scitotenv.2023.168438] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations were investigated in hepatic tissue of four dolphin species stranded along the south-east coast of Australia between 2006 and 2021; Burrunan dolphin (Tursiops australis), common bottlenose dolphin (Tursiops truncatus), Indo-Pacific bottlenose dolphin (Tursiops aduncus), and short-beaked common dolphin (Delphinus delphis). Two Burrunan dolphin populations represented in the dataset have the highest reported global population concentrations of ∑25PFAS (Port Phillip Bay median 9750 ng/g ww, n = 3, and Gippsland Lakes median 3560 ng/g ww, n = 8), which were 50-100 times higher than the other species reported here; common bottlenose dolphin (50 ng/g ww, n = 9), Indo-Pacific bottlenose dolphin (80 ng/g ww, n = 1), and short-beaked common dolphin (61 ng/g ww, n = 12). Also included in the results is the highest reported individual ∑25PFAS (19,500 ng/g ww) and PFOS (18,700 ng/g ww) concentrations, at almost 30 % higher than any other Cetacea reported globally. Perfluorooctane sulfonate (PFOS) was above method reporting limits for all samples (range; 5.3-18,700 ng/g ww), and constituted the highest contribution to overall ∑PFAS burdens with between 47 % and 99 % of the profile across the dataset. The concentrations of PFOS exceed published tentative critical concentrations (677-775 ng/g) in 42 % of all dolphins and 90 % of the critically endangered Burrunan dolphin. This research reports for the first time novel and emerging PFASs such as 6:2 Cl-PFESA, PFMPA, PFEECH and FBSA in marine mammals of the southern hemisphere, with high detection rates across the dataset. It is the first study to show the occurrence of PFAS in the tissues of multiple species of Cetacea from the Australasian region, demonstrating high global concentrations for inshore dolphins. Finally, it provides key baseline knowledge to the potential exposure and bioaccumulation of PFAS compounds within the coastal environment of south-east Australia.
Collapse
Affiliation(s)
- Chantel S Foord
- Royal Melbourne Institute of Technology, Bundoora, Australia; Marine Mammal Foundation, Mentone, VIC.
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| | - Kate Robb
- Marine Mammal Foundation, Mentone, VIC
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
10
|
Wang N, Jagani R, Nwobodo N, Ma J. Toxicity of environmentally relevant concentration of PFAS chemicals in Lumbriculus variegatus (Oligochaeta, Lumbriculidae) - A multi-bioindicator study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115722. [PMID: 37992644 DOI: 10.1016/j.ecoenv.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
PFAS, or per- and polyfluoroalkyl substances, are a family of man-made chemicals found in a variety of products from non-stick cookware and food wrappers to firefighting foams. PFAS are persistent and widely distributed in the environment, including aquatic environments. In this study we examined the impact of PFAS chemicals on the physiological and behavioral endpoints of Lumbriculus variegatus (i.e., blackworms). Lumbriculus variegatus is a species of freshwater annelid worm that plays key roles in shallow freshwater ecosystems. At an environmentally relevant concentration of 1 μg/L, 12-day aqueous exposure to long chain PFAS, including PFOA, PFOS and PFDA, each markedly slowed the pulse rate of the dorsal blood vessel in L. variegatus, indicating a suppressive effect on blood circulation. The mean pulse rate was reduced from 9.6 beats/minute to 6.2 and 7.0 beats/min in PFOA and PFOS, respectively (P < 0.0001). Further, PFOA, PFOS and PFDA reduced the escape responsiveness of L. variegatus to physical stimulation. The percentage of worms showing normal escape behavior was reduced from 99.0% in control to 90.6% in the PFOS exposed group (P < 0.01). In a chronic (4 week) growth study, exposure to overlying water and sediment spiked with PFOA, PFOS or PFDA reduced the total biomass and the number of worms, indicating a suppressive effect on worm population growth. For instance, PFOA and PFDA reduced the total dry biomass by 26.3% and 28.5%, respectively, compared to the control (P < 0.05). The impact of PFAS on blackworm physiology is accompanied by an increase in lipid peroxidation. The level of malondialdehyde (MDA), an indicator of lipid peroxidation, and catalase, a major antioxidant enzyme, were markedly increased in PFOA, PFOS and PFDA exposed groups. Interestingly, exposure to PFHxA, a short chain PFAS, had no detectable effect on any of the measured endpoints. Our results demonstrate that L. variegatus is highly sensitive to the toxic impact of long chain PFAS chemicals as measured by multiple endpoints including blood circulation, behavior, and population growth. Such toxicity may have a detrimental impact on L. variegatus and the freshwater ecosystems where it resides.
Collapse
Affiliation(s)
| | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,USA
| | - Nigel Nwobodo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Ogunsuyi OM, Fasakin PT, Ajibiye OP, Ogunsuyi OI, Adekoya KO. Perfluoroundecanoic acid induces DNA damage, reproductive and pathophysiological dysfunctions via oxidative stress in male Swiss mice. CHEMOSPHERE 2023; 338:139491. [PMID: 37453524 DOI: 10.1016/j.chemosphere.2023.139491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Perfluoroundecanoic acid (PFUnA) is an eleven carbon-chain compound that belongs to the perfluoroalkyl carboxylic acid family. It has been detected in the human blood, effluents, and surface/ground waters, but its toxic effects to the DNA and reproductive system remain unclear. This study was aimed at exploring the toxicity of PFUnA on the hepatic DNA, organ-system and reproductive system in orally treated male Swiss mice. In this present study, administration of PFUnA for 28 days with five doses (0.1, 0.3, 05, 0.7 and 1.0 mg kg-1 b.w./d) in male Swiss mice induced significant hepatic DNA damage which was observed using the alkaline comet assay and equally altered hematological and clinical biochemical parameters. In addition to testicular atrophy, sperm count and sperm motility significantly decreased while sperm abnormalities increased after 35 days exposure. Serum LH and FSH levels were remarkably increased while serum testosterone levels were strikingly reduced. Histopathology revealed the liver, kidney, and testis as potential targets of PFUnA toxicity. Increased activities of superoxide dismutase (SOD) and catalase (CAT), as well as levels of glutathione-s-transferase (GST) and reduced glutathione (GSH), with consistent reduction of glutathione peroxidase (GPx) and reduced glutathione (GSH) in the liver and testis induced oxidative stress. In conclusion, PFUnA exhibited both genotoxicity and reproductive toxicity via oxidative stress induction.
Collapse
Affiliation(s)
- Opeoluwa M Ogunsuyi
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria.
| | - Peter T Fasakin
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Oluwatobi P Ajibiye
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Science, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Khalid O Adekoya
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| |
Collapse
|
12
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Lee K, Alava JJ, Cottrell P, Cottrell L, Grace R, Zysk I, Raverty S. Emerging Contaminants and New POPs (PFAS and HBCDD) in Endangered Southern Resident and Bigg's (Transient) Killer Whales ( Orcinus orca): In Utero Maternal Transfer and Pollution Management Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:360-374. [PMID: 36512803 DOI: 10.1021/acs.est.2c04126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Killer whales (Orcinus orca) have been deemed one of the most contaminated cetacean species in the world. However, concentrations and potential health implications of selected 'contaminants of emerging concern' (CECs) and new persistent organic pollutants (POPs) in endangered Southern Resident and threatened Bigg's (Transient) killer whales in the Northeastern Pacific (NEP) have not yet been documented. Here, we quantify CECs [alkylphenols (APs), triclosan, methyl triclosan, and per- and polyfluoroalkyl substances (PFAS)] and new POPs [hexabromocyclododecane (HBCCD), PFOS, PFOA, and PFHxS] in skeletal muscle and liver samples of these sentinel species and investigate in utero transfer of these contaminants. Samples were collected from necropsied individuals from 2006 to 2018 and analyzed by LC-MS/MS or HRBC/HRMS. AP and PFAS contaminants were the most prevalent compounds; 4-nonylphenol (4NP) was the predominant AP (median 40.84 ng/g ww), and interestingly, 7:3-fluorotelomer carboxylic acid (7:3 FTCA) was the primary PFAS (median 66.35 ng/g ww). Maternal transfer ratios indicated 4NP as the most transferred contaminant from the dam to the fetus, with maternal transfer rates as high as 95.1%. Although too few killer whales have been screened for CECs and new POPs to infer the magnitude of contamination impact, these results raise concerns regarding pathological implications and potential impacts on fetal development and production of a viable neonate. This study outlines CEC and new POP concentrations in killer whales of the NEP and provides scientifically derived evidence to support and inform regulation to mitigate pollutant sources and contamination of Southern Resident killer whale critical habitat and other marine ecosystems.
Collapse
Affiliation(s)
- Kiah Lee
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
| | - Paul Cottrell
- Fisheries and Oceans Canada (DFO), Fisheries and Aquaculture Management, 401 Burrard Street, Vancouver V6C 3S4, Canada
| | - Lauren Cottrell
- Department of Biology, University of Victoria, Cunningham Building 202, Victoria V8P 5C2, Canada
| | - Richard Grace
- SGS AXYS Analytical Services Ltd, 2045 Mills Road W, Sidney V8L 5X2, Canada
| | - Ivona Zysk
- SGS AXYS Analytical Services Ltd, 2045 Mills Road W, Sidney V8L 5X2, Canada
| | - Stephen Raverty
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
- Animal Health Centre, BC Ministry of Agriculture, Food and Fisheries, 1767 Angus Campbell Road, Abbotsford V3G 2M3, Canada
| |
Collapse
|
14
|
Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120149. [PMID: 36115493 DOI: 10.1016/j.envpol.2022.120149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Figueres
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - E Mañanós
- Institute of Aquaculture Torre La Sal (IATS),-CSIC, 12595, Cabanes, Castellón, Spain
| | - C Rojo-Solís
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| | - D García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| |
Collapse
|
15
|
Guillette TC, Jackson TW, Guillette M, McCord J, Belcher SM. Blood concentrations of per- and polyfluoroalkyl substances are associated with autoimmune-like effects in American alligators from Wilmington, North Carolina. FRONTIERS IN TOXICOLOGY 2022; 4:1010185. [PMID: 36337916 PMCID: PMC9630345 DOI: 10.3389/ftox.2022.1010185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Surface and groundwater of the Cape Fear River basin in central and coastal North Carolina is contaminated with high levels of per- and polyfluoroalkyl substances (PFAS). Elevated levels of PFAS have also been found in blood of fish and wildlife from the Cape Fear River, and in the blood of human populations reliant on contaminated well or surface water from the Cape Fear River basin as a source of drinking water. While the public and environmental health impacts of long-term PFAS exposures are poorly understood, elevated blood concentrations of some PFAS are linked with immunotoxicity and increased incidence of some chronic autoimmune diseases in human populations. The goal of this One Environmental Health study was to evaluate PFAS exposure and biomarkers related to immune health in populations of American alligators (Alligator mississippiensis), a protected and predictive sentinel species of adverse effects caused by persistent toxic pollutants. We found that serum PFAS concentrations in alligator populations from the Cape Fear River were increased compared to a reference population of alligators from the adjoining Lumber River basin. The elevated serum PFAS concentrations in the Cape Fear River alligators were associated with increased innate immune activities, and autoimmune-like phenotypes in this population. In addition to evidence of significantly higher double stranded-DNA binding autoantibodies in adult Cape Fear River alligators, our qRT-PCR analysis found remarkably high induction of Interferon-α signature genes implicated in the pathology of human autoimmune disease. We interpret the association of increased PFAS exposure with disrupted immune functions to suggest that PFAS broadly alters immune activities resulting in autoimmune-like pathology in American alligators. This work substantiates and extends evidence from experimental models and human epidemiology studies showing that some PFAS are immune toxicants.
Collapse
Affiliation(s)
- T. C. Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Thomas W. Jackson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Matthew Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States,*Correspondence: Scott M. Belcher,
| |
Collapse
|
16
|
Bangma J, Guillette TC, Bommarito PA, Ng C, Reiner JL, Lindstrom AB, Strynar MJ. Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. ENVIRONMENT INTERNATIONAL 2022; 159:107037. [PMID: 34896671 PMCID: PMC8802192 DOI: 10.1016/j.envint.2021.107037] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) accumulation and elimination in both wildlife and humans is largely attributed to PFAS interactions with proteins, including but not limited to organic anion transporters (OATs), fatty acid binding proteins (FABPs), and serum proteins such as albumin. In wildlife, changes in the biotic and abiotic environment (e.g. salinity, temperature, reproductive stage, and health status) often lead to dynamic and responsive physiological changes that alter the prevalence and location of many proteins, including PFAS-related proteins. Therefore, we hypothesize that if key PFAS-related proteins are impacted as a result of environmentally induced as well as biologically programmed physiological changes (e.g. reproduction), then PFAS that associate with those proteins will also be impacted. Changes in tissue distribution across tissues of PFAS due to these dynamics may have implications for wildlife studies where these chemicals are measured in biological matrices (e.g., serum, feathers, eggs). For example, failure to account for factors contributing to PFAS variability in a tissue may result in exposure misclassification as measured concentrations may not reflect average exposure levels. The goal of this review is to share general information with the PFAS research community on what biotic and abiotic changes might be important to consider when designing and interpreting a biomonitoring or an ecotoxicity based wildlife study. This review will also draw on parallels from the epidemiological discipline to improve study design in wildlife research. Overall, understanding these connections between biotic and abiotic environments, dynamic protein levels, PFAS levels measured in wildlife, and epidemiology serves to strengthen study design and study interpretation and thus strengthen conclusions derived from wildlife studies for years to come.
Collapse
Affiliation(s)
| | - T C Guillette
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Reiner
- Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Rd, Charleston, SC, USA
| | - Andrew B Lindstrom
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Wilkinson BP, Robuck AR, Lohmann R, Pickard HM, Jodice PGR. Urban proximity while breeding is not a predictor of perfluoroalkyl substance contamination in the eggs of brown pelicans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150110. [PMID: 34525704 PMCID: PMC8595685 DOI: 10.1016/j.scitotenv.2021.150110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Identifying sources of exposure to chemical stressors is difficult when both target organisms and stressors are highly mobile. While previous studies have demonstrated that populations of some organisms proximal to urban centers may display increased burdens of human-created chemicals compared to more distal populations, this relationship may not be universal when applied to organisms and stressors capable of transboundary movements. We examined eggs of brown pelicans (Pelecanus occidentalis), a nearshore seabird with daily movements ranging from local to 50 km and annual migrations ranging from year-round residency to 1500 km. Thirty-six eggs from three breeding colonies located at increasing distances to a major urban center (Charleston, South Carolina, USA) were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS). Areas of high use for each colony during the breeding season were also assessed via the tracking of adult pelicans from each colony using GPS-PTT satellite transmitters and overlapped with measures of relative urbanization via land cover data. We report potentially significant ∑PFAS concentrations in the eggs of pelicans (175.4 ± 120.1 ng/g w wt. SD), driven largely by linear perfluorooctane sulfonate (n-PFOS) (48-546 ng/g w wt.). Residues of the precursor compound perfluorooctane sulfonamide (FOSA) were also present in pelican eggs, suggesting continued exposure of local wildlife beyond implemented phaseouts of some PFAS. For most analytes, egg concentrations did not exhibit a significant spatial structure despite some differentiation in high-use areas unlike similar data for another regional apex predator, the bottlenose dolphin (Tursiops truncatus). We suggest that the partially migratory nature of brown pelicans during the non-breeding season, combined with daily ranges that may extend to 50 km from local point sources, may have homogenized exposure across individuals. Charleston likely remains a major source for PFAS in the overall region, however, given the high concentrations observed as well as known releases of PFAS in the nearshore environment.
Collapse
Affiliation(s)
- Bradley P Wilkinson
- Department of Forestry and Environmental Conservation, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, SC 29634, USA.
| | - Anna R Robuck
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick G R Jodice
- U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
18
|
Of Whales and Genes: Unraveling the Physiological Response to Stressors in Belugas (Delphinapterus leucas) at the Molecular Level. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marine mammals, now more than ever, are exposed to environmental and anthropogenic stressors. A better understanding of stress physiology in marine mammals is warranted in order to assist in conservation efforts. This study screened gene expression profiles (cytokines, stress-response markers) in blood samples collected opportunistically under controlled conditions from aquarium belugas during transport and introduction to a novel environment (T/NEnv), participation in out-of-water examinations (OWE) and from wild belugas during live capture–release health assessments (WLCR). Quantitative-PCR was used to measure gene expression involved in physiological and immune responses at different time scales. Linear mixed models with repeated measures and pairwise comparisons were used for analysis. Overall, a generalized down-regulation of relative gene expression when compared to samples collected under behavioral control from aquarium whales or to pre-assessment samples of wild whales was observed, with genes IFNγ, IL2, TGFβ and Nr3c1 displaying the largest significant (p < 0.05) changes. Significant (p < 0.05) negative associations of inflammatory gene expression with norepinephrine suggest inhibitory effects of catecholamines on the inflammatory response. Overall, this study contributes to our understanding of the physiological response to stressors at the molecular level in belugas, and the genes suggested here can further be utilized as additional tools in beluga health assessments and monitoring.
Collapse
|
19
|
Britt-Marie B, Sara P, Suzanne F, Frank RF, Anna RM. Temporal and Geographical Variation of Intestinal Ulcers in Grey Seals ( Halichoerus grypus) and Environmental Contaminants in Baltic Biota during Four Decades. Animals (Basel) 2021; 11:ani11102968. [PMID: 34679987 PMCID: PMC8532654 DOI: 10.3390/ani11102968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary In the 1970s it was discovered that seal populations in the Baltic Sea had decreased severely due to hunting and high levels of contaminants. Lesions were found in several organs and many of the females became sterile. Since then, most of the organ lesions have decreased and so have the levels of some pollutants. However, ulcers in the large intestines of the grey seals increased in the early 1980s and decreased after the mid-1990s. The aims of this study were to: (1) describe the ulcers and investigate if there is a trend over time that coincides with concentrations of some pollutants in Baltic biota; (2) evaluate the significance of different sea areas in the Baltic, grade of parasite intensity, as well as the sex and age of the seals. The results show that seals with ulcers had, in general, higher parasite intensity. Ulcers were more common in older seals and in the Bothnian Sea. The time trend of ulcers coincides with the trend of certain contaminant levels (BDE-47, PFOS and cadmium). The high prevalence of intestinal ulcers and the high intensity of acanthocephalan parasites appear to be unique to the Baltic population of grey seals. Abstract The prevalence of intestinal ulcers and parasites was investigated in 2172 grey seals (Halichoerus grypus) collected in the Baltic Sea and 49 grey seals collected outside the Baltic Sea (i.e., the Atlantic). An increase in frequency of ileocaeco-colonic ulcers was observed in the early 1980s, followed by a decrease in the mid-1990s. At the same time, there was an increase followed by a decrease in brominated flame retardants, Perfluorooctanesulfonic acid (PFOS) and cadmium levels in herring (Clupea harengus), the most common prey item in Baltic grey seal diet, as well as in another top predator in the Baltic, the common guillemot (Uria aalge). The frequency of intestinal ulcers was significantly related to the intensity of acanthocephalan parasites, the age of the seal and the region of the Baltic Sea. Perforation of the intestinal wall was the cause of death in 26 of the investigated Baltic grey seals. In contrast, none of the investigated Atlantic grey seals had intestinal ulcers. They showed a thin colonic wall and very few acanthocephalan parasites. The high prevalence of intestinal ulcers and the high parasite intensity appear to be unique to the Baltic population of grey seals.
Collapse
Affiliation(s)
- Bäcklin Britt-Marie
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
- Correspondence: ; Tel.: +46-851-954-259
| | - Persson Sara
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| | - Faxneld Suzanne
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| | - Rigét F. Frank
- Department of Ecoscience, Danish Centre for Environment and Energy, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Roos M. Anna
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE 104 05 Stockholm, Sweden; (P.S.); (F.S.); (R.M.A.)
| |
Collapse
|
20
|
Birgersson L, Jouve J, Jönsson E, Asker N, Andreasson F, Golovko O, Ahrens L, Sturve J. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112495. [PMID: 34265536 DOI: 10.1016/j.ecoenv.2021.112495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and β, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.
Collapse
Affiliation(s)
- Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Justin Jouve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Fredrik Andreasson
- Department for Nature and Climate, County Administrative Board of Blekinge, SE-371 86 Karlskrona, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
21
|
Taylor S, Terkildsen M, Stevenson G, de Araujo J, Yu C, Yates A, McIntosh RR, Gray R. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147446. [PMID: 33971603 DOI: 10.1016/j.scitotenv.2021.147446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Per and polyfluorinated substances (PFAS) exposure was investigated in Australian pinnipeds. Concentrations of 16 PFAS were measured in the livers of Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and a long-nosed Fur Seal (Arctocephalus forsteri) pup sampled between 2017 and 2020 from colonies in South Australia and Victoria. Findings reported in this study are the first documented PFAS concentrations in Australian pinnipeds. Median and observed range of values in ng/g wet weight were highest for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the liver of N. cinerea (PFOS = 7.14, 1.00-16.9; PFOA = 2.73, 0.32-11.2; PFNA = 2.96, 0.61-8.22; n = 28), A. forsteri (PFOS = 15.98, PFOA = 2.02, PFNA = 7.86; n = 1) and A. p. doriferus (PFOS = 27.4, 10.5-2119; PFOA = 0.98, 0.32-52.2; PFNA = 2.50, 0.91-44.2; n = 20). PFAS concentrations in A. p. doriferus pups were significantly greater (p < 0.05) than in N. cinerea pups for all PFAS except PFOA and were of similar magnitude to those reported in northern hemisphere marine animals. These results demonstrate exposure differences in both magnitude and PFAS profiles for N. cinerea in South Australia and A. p. doriferus in Victoria. This study reports detectable PFAS concentrations in Australian pinniped pups indicating the importance of maternal transfer of these toxicants. As N. cinerea are endangered and recent declines in pup production has been reported for A. p. doriferus at the colony sampled, investigation of potential health impacts of these toxicants on Australian pinnipeds is recommended.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| | | | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Jesuina de Araujo
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Chunhai Yu
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Alan Yates
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Rebecca R McIntosh
- Conservation Department, Phillip Island Nature Parks, PO Box 97, Cowes, Victoria 3922, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
22
|
Kataoka C, Kashiwada S. Ecological Risks Due to Immunotoxicological Effects on Aquatic Organisms. Int J Mol Sci 2021; 22:8305. [PMID: 34361068 PMCID: PMC8347160 DOI: 10.3390/ijms22158305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism's biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.
Collapse
Affiliation(s)
- Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shosaku Kashiwada
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan;
- Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
23
|
Ankley GT, Cureton P, Hoke RA, Houde M, Kumar A, Kurias J, Lanno R, McCarthy C, Newsted J, Salice CJ, Sample BE, Sepúlveda MS, Steevens J, Valsecchi S. Assessing the Ecological Risks of Per- and Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:564-605. [PMID: 32897586 PMCID: PMC7984443 DOI: 10.1002/etc.4869] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) encompass a large, heterogenous group of chemicals of potential concern to human health and the environment. Based on information for a few relatively well-understood PFAS such as perfluorooctane sulfonate and perfluorooctanoate, there is ample basis to suspect that at least a subset can be considered persistent, bioaccumulative, and/or toxic. However, data suitable for determining risks in either prospective or retrospective assessments are lacking for the majority of PFAS. In August 2019, the Society of Environmental Toxicology and Chemistry sponsored a workshop that focused on the state-of-the-science supporting risk assessment of PFAS. The present review summarizes discussions concerning the ecotoxicology and ecological risks of PFAS. First, we summarize currently available information relevant to problem formulation/prioritization, exposure, and hazard/effects of PFAS in the context of regulatory and ecological risk assessment activities from around the world. We then describe critical gaps and uncertainties relative to ecological risk assessments for PFAS and propose approaches to address these needs. Recommendations include the development of more comprehensive monitoring programs to support exposure assessment, an emphasis on research to support the formulation of predictive models for bioaccumulation, and the development of in silico, in vitro, and in vivo methods to efficiently assess biological effects for potentially sensitive species/endpoints. Addressing needs associated with assessing the ecological risk of PFAS will require cross-disciplinary approaches that employ both conventional and new methods in an integrated, resource-effective manner. Environ Toxicol Chem 2021;40:564-605. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T. Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection AgencyDuluthMinnesotaUSA
| | - Philippa Cureton
- Science and Risk Assessment Division, Environment and Climate Change Canada, GatineauQuebecCanada
| | | | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, MontrealQuebecCanada
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation UrrbraeSouth AustraliaAustralia
| | - Jessy Kurias
- Science and Risk Assessment Division, Environment and Climate Change Canada, GatineauQuebecCanada
| | | | | | | | | | | | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources, Purdue UniversityWest LayetteIndianaUSA
| | - Jeffery Steevens
- US Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
| | - Sara Valsecchi
- Water Research Institute, National Research CouncilBrugherioMonza and BrianzaItaly
| |
Collapse
|
24
|
Brown SR, Flynn RW, Hoverman JT. Perfluoroalkyl Substances Increase Susceptibility of Northern Leopard Frog Tadpoles to Trematode Infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:689-694. [PMID: 31995841 DOI: 10.1002/etc.4678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Per/polyfluoroalkyl substances (PFAS) are contaminants of emerging concern that can impair immune function, yet few studies have tested whether exposure increases infection risk. Using laboratory experiments, we found that exposure to 10 ppb of perfluorohexanesulfonic acid increased trematode (Echinoparyphium lineage 3) infections in larval northern leopard frogs (Lithobates pipiens). However, there was no effect of perfluorooctanesulfonic acid. Our results demonstrate that PFAS can potentially enhance infection risk in natural systems. Environ Toxicol Chem 2021;40:689-694. © 2020 SETAC.
Collapse
Affiliation(s)
- Sophia R Brown
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - R Wesley Flynn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Liang H, Yang M, Zeng C, Wu W, Zhao L, Wang Y. Perfluorooctane sulfonate exerts inflammatory bowel disease-like intestinal injury in rats. PeerJ 2021; 9:e10644. [PMID: 33510972 PMCID: PMC7798615 DOI: 10.7717/peerj.10644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Perfluorooctane sulfonate (PFOS), a type of perfluorinated compounds (PFCs), can induce various organ toxicity, including hepatomegaly, immunotoxicity, and gut microbiota disorder. PFCs have been associated with inflammatory bowel disease (IBD). Yet, whether PFOS exposure causes IBD-like disorder and the underlying mechanism remains undefined. Here, we investigated the influence of PFOS exposure on the development of IBD-like disorder in rats. Methods Sprague-Dawley rats were intraperitoneally injected with PFOS (1 or 10 mg/kg) or normal saline (NS) every other day for 15 days. Body weight, serum concentrations of serum amyloid A (SAA) and high sensitivity C reactive protein (hsCRP) were measured. Pathological assessments of villi height and crypt depth in the proximal duodenum and jejunum were performed using H&E staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assay cell apoptosis in the jejunum. The infiltration of inflammatory cells and cytokines in the jejunum were detected by immunohistochemistry analysis. Results PFOS (10 mg/kg) significantly increased the body weight, SAA and hsCRP, whereas no significant differences were observed in PFOS 1 mg/kg group of rats. The villi height and crypt depth in the proximal duodenum and jejunum were significantly reduced upon PFOS exposure. PFOS induced higher histopathological score in intestinal tissues compared to NS. Notably, TUNEL-positive cells were significantly higher in the jejunum upon PFOS exposure. Further, neutrophil and macrophage accumulated, and inflammatory cytokines infiltration were also remarkably increased in rats exposed to PFOS. Conclusion PFOS induces IBD-like phenotypes in rats, with associated inflammatory infiltration to intestinal.
Collapse
Affiliation(s)
- Hai Liang
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Miao Yang
- Department of Neurology, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Cheng Zeng
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Wei Wu
- Department of Pharmacy, The People's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Liying Zhao
- Department of Pharmacy, Deqing People's Hospital, Huzhou, Zhejiang Province, China
| | - Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
26
|
López-Berenguer G, Bossi R, Eulaers I, Dietz R, Peñalver J, Schulz R, Zubrod J, Sonne C, Martínez-López E. Stranded cetaceans warn of high perfluoroalkyl substance pollution in the western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115367. [PMID: 32866862 DOI: 10.1016/j.envpol.2020.115367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a class of organohalogenated compounds of environmental concern due to similar characteristics as the well-studied legacy persistent organic pollutants (POPs) that typically show environmental persistence, biomagnification and toxicity. Nevertheless, PFAS are still poorly regulated internationally and in many aspects poorly understood. Here, we studied liver and muscle concentrations in five cetacean species stranded at the southeastern coast of Spain during 2009-2018. Twelve of the fifteen targeted compounds were detected in >50% of the liver samples. Hepatic concentrations were significantly higher than those in muscle reflecting the particular toxicokinetics of these compounds. Bottlenose dolphins Tursiops truncatus showed the highest hepatic ΣPFAS (n = 5; 796.8 ± 709.0 ng g-1 ww) concentrations, followed by striped dolphin Stenella coeruleoalba (n = 29; 259.5 ± 136.2 ng g-1 ww), sperm whale Physeter macrocephalus (n = 1; 252.8 ng g-1 ww), short-beaked common dolphin Delphinus delphis (n = 2; 240.3 ± 218.6 ng g-1 ww) and Risso's dolphin Grampus griseus (n = 1; 78.7 ng g-1 ww). These interspecies differences could be partially explained by habitat preferences, although they could generally not be related to trophic position or food chain proxied by stable N (δ15N) and C (δ13C) isotope values, respectively. PFAS profiles in all species showed a similar pattern of concentration prevalence in the order PFOS>PFOSA>PFNA≈PFFUnA>PFDA. The higher number of samples available for striped dolphin allowed for evaluating their PFAS burden and profile in relation to the stranding year, stable isotope values, and biological variables including sex and length. However, we could only find links between δ15N and PFAS burdens in muscle tissue, and between stranding year and PFAS profile composition. Despite reductions in the manufacturing industry, these compounds still appear in high concentrations compared to more than two decades ago in the Mediterranean Sea and PFOS remains the dominating compound.
Collapse
Affiliation(s)
| | - R Bossi
- Department of Environmental Science, Aarhus University, Denmark
| | - I Eulaers
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - R Dietz
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - J Peñalver
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - R Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - J Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - C Sonne
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - E Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
27
|
Baldwin WS, Bain LJ, Di Giulio R, Kullman S, Rice CD, Ringwood AH, den Hurk PV. 20th Pollutant Responses in Marine Organisms (PRIMO 20): Global issues and fundamental mechanisms caused by pollutant stress in marine and freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105620. [PMID: 32932042 PMCID: PMC11106729 DOI: 10.1016/j.aquatox.2020.105620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 20th Pollutant Responses in Marine Organisms (PRIMO 20) conference provided a forum for scientists from around the world to communicate novel toxicological research findings specifically focused on aquatic organisms, by combining applied and basic research at the intersection of environmental and mechanistic toxicology. The work highlighted in this special issue of Aquatic Toxicology, a special issue of Marine Environmental Research, and presented through posters and presentations, encompass important and emerging topics in freshwater and marine toxicology. This includes multiple types of emerging contaminants including microplastics and UV filtering chemicals. Other studies aimed to further our understanding of the effects of endocrine disrupting chemicals, pharmaceuticals, and personal care products. Further research presented in this virtual issue examined the interactive effects of chemicals and pathogens, while the final set of manuscripts demonstrates continuing efforts to combine traditional biomonitoring, data from -omic technologies, and modeling for use in risk assessment and management. An additional goal of PRIMO meetings is to address the link between environmental and human health. Several articles in this issue of Aquatic Toxicology describe the appropriateness of using aquatic organisms as models for human health, while the keynote speakers, as described in the editorial below, presented research that highlighted bioaccumulation of contaminants such as PFOS and mercury from fish to marine mammals and coastal human populations such as the Gullah/GeeChee near Charleston, South Carolina, USA.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29631, United States.
| | - Lisa J Bain
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Seth Kullman
- Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Charles D Rice
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| | - Amy H Ringwood
- Biological Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, United States.
| | - Peter van den Hurk
- Biological Sciences, Clemson University, Clemson, SC 29631, United States
| |
Collapse
|
28
|
Lynch KM, Fair PA, Houde M, Muir DC, Kannan K, Bossart GD, Bartell SM, Gribble MO. Temporal Trends in Per- and Polyfluoroalkyl Substances in Bottlenose Dolphins ( Tursiops truncatus) of Indian River Lagoon, Florida and Charleston, South Carolina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14194-14203. [PMID: 31804805 PMCID: PMC7051242 DOI: 10.1021/acs.est.9b04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Temporal trends in plasma concentrations of per- and polyfluoroalkyl substances (PFAS) in free-ranging bottlenose dolphins (Tursiops truncatus) inhabiting two geographic areas: Indian River Lagoon, Florida over the years 2003-2015 and the waters surrounding Charleston, South Carolina over 2003-2013, were examined. Nine PFAS met the inclusion criteria for analysis based on percent of values below level of detection and sampling years. Proportionate percentiles parametric quantile regression assuming lognormal distributions was used to estimate the average ratio of PFAS concentrations per year for each chemical. Plasma concentrations decreased over time for perfluorodecanoate (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluoroundecanoate (PFUnDA) in both locations. Perfluorononanoate (PFNA) decreased with time in Indian River Lagoon dolphins. Perfluorododecanoate (PFDoDA) concentrations significantly increased over time among female Indian River Lagoon dolphins. Regulation and phaseout of specific PFAS groups may have led to the decreasing levels of those PFAS and increasing levels of other replacement PFAS.
Collapse
Affiliation(s)
- Katie M. Lynch
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Patricia A. Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | - Scott M. Bartell
- Program in Public Health and Department of Statistics, University of California, Irvine, CA 92697, USA
| | - Matthew O. Gribble
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
- Corresponding author: Matthew Gribble, PhD DABT, Address: 1518 Clifton Road NE, Mailstop 1518-002-2BB, Atlanta, Georgia 30322, T: 404-712-8908,
| |
Collapse
|
29
|
Wilson AE, Fair PA, Carlson RI, Houde M, Cattet M, Bossart GD, Houser DS, Janz DM. Environment, endocrinology, and biochemistry influence expression of stress proteins in bottlenose dolphins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100613. [PMID: 31382157 DOI: 10.1016/j.cbd.2019.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Natural and anthropogenic stressors have been reported to impact the health of marine mammals. Therefore, investigation of quantifiable biomarkers in response to stressors is required. We hypothesized that stress protein expression would be associated with biological and health variables in wild and managed-care bottlenose dolphins (Tursiops truncatus). To test this hypothesis, our study objectives were to (1) determine if stress proteins in skin, white blood cells (WBCs), and plasma could be measured with an antibody-based microarray, (2) measure stress-protein expression relative to biological data (location, sex, age, environment), and (3) determine if stress-protein expression was associated with endocrine, hematological, biochemical and serological variables and gene expression in bottlenose dolphins. Samples were collected from two wild groups (n = 28) and two managed-care groups (n = 17). Proteins involved in the HPA axis, apoptosis, proteotoxicity, and inflammation were identified as stress proteins. The expression of 3 out of 33 proteins was significantly (P < 0.05) greater in skin than plasma and WBCs. Male dolphins had significantly greater expression levels for 10 proteins in skin compared to females. The greatest number of stress-associated proteins varied by the dolphins' environment; nine were greater in managed-care dolphins and 15 were greater in wild dolphins, which may be related to wild dolphin disease status. Protein expression in skin and WBCs showed many positive relationships with measures of plasma endocrinology and biochemistry. This study provides further understanding of the underlying mechanisms of the stress response in bottlenose dolphins and application of a combination of novel methods to measure stress in wildlife.
Collapse
Affiliation(s)
- Abbey E Wilson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, United States of America; Department of Public Health Sciences, Medical University of South Carolina, 221 Fort Johnson Road, Charleston, SC 29412, United States of America
| | - Ruth I Carlson
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7, Canada
| | - Marc Cattet
- RGL Recovery Wildlife Health & Veterinary Services, 415 Mount Allison Crescent, Saskatoon, Saskatchewan S7H 4A6, Canada
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker St NW, Atlanta, GA 30313, United States of America; Division of Comparative Pathology, Miller School of Medicine, University of Miami, PO Box 016960 (R-46), Miami, FL 33101, United States of America
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Dr, San Diego, CA 92106, United States of America
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada.
| |
Collapse
|
30
|
Marsili L, Di Guardo G, Mazzariol S, Casini S. Insights Into Cetacean Immunology: Do Ecological and Biological Factors Make the Difference? Front Immunol 2019; 10:1219. [PMID: 31214183 PMCID: PMC6554325 DOI: 10.3389/fimmu.2019.01219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate the expression of Major histocompatibility complex (MHC) class I chain-related protein A (MICA) in fibroblast cell cultures of cetaceans (skin biopsies of free-ranging specimens and skin samples of freshly stranded cetaceans) by an immunofluorescence technique and to outline possible variations in MICA expression linked to different ecological and biological factors, while also investigating MICA expression after in vitro treatments with different contaminants. Free-ranging or stranded specimens of cetaceans were sampled in the Sea of Cortez (Mexico) (Balaenoptera edeni, Delphinus capensis, and Orcinus orca) and in the Mediterranean Sea (Balaenoptera physalus, Physeter macrocephalus, Tursiops truncatus, and Stenella coeruleoalba). Cell cultures were treated with an OC mixture, flame retardants, PAHs, MeHg, and BPA. The three species from the Sea of Cortez showed higher basal activity of MICA and lower levels of DDTs and PCBs than the Mediterranean species. A Pearson's linear coefficient equal to −0.45 also confirmed this tendency to have high levels of MICA and low total OC levels. Treatment of cultured fibroblasts with different contaminants mostly resulted in the upregulation of MICA protein expression by at least one treatment dose; downregulation was also found in some species or treatments. MICA alteration indicates a state of stress of the organism and a modification of the immune system's response and can be proposed as a non-invasive immunological marker that can be measured in skin biopsy samples, thus offering a good alternative to blood measurements.
Collapse
Affiliation(s)
- Letizia Marsili
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food, University of Padua, Padua, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
31
|
Fair PA, Wolf B, White ND, Arnott SA, Kannan K, Karthikraj R, Vena JE. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. ENVIRONMENTAL RESEARCH 2019; 171:266-277. [PMID: 30703622 PMCID: PMC6943835 DOI: 10.1016/j.envres.2019.01.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/17/2023]
Abstract
Concentrations of 11 PFASs were determined in muscle and whole fish for six species collected from Charleston, South Carolina (SC) for the assessment of potential health risks to humans and wildlife. Across all species and capture locations, total PFAS levels in whole fish were significantly higher than fillets by a factor of two- to three-fold. Mean ∑PFAS concentrations varied from 12.7 to 33.0 ng/g wet weight (ww) in whole fish and 6.2-12.7 ng/g ww in fillets. For individual whole fish, ∑PFASs ranged from 12.7 ng/g ww in striped mullet to 85.4 ng/g ww in spotted seatrout, and in fillets individual values ranged from 6.2 ng/g ww in striped mullet to 27.9 ng/g ww in spot. The most abundant compound in each species was perfluorooctane sulfonate (PFOS), comprising 25.5-69.6% of the ∑PFASs. Striped mullet had significantly lower relative amounts of PFOS compared to all other species and higher relative amounts of PFUnDA compared to Atlantic croaker, spotted seatrout, and spot. Unlike whole fish, PFAS levels in fillets varied significantly by location with higher ∑PFOS from the Ashley River than the Cooper River and Charleston Harbor, which reflects the levels of PFASs contamination in these systems. In whole fish, differences in relative concentrations of PFOS, PFNA, and PFDA occurred by capture location, suggestive of different sources. PFOS concentrations for southern flounder and spotted seatrout fillets were within the advisory range to limit fish consumption to 4 meals a month. PFOS levels exceeded screening values to protect mammals in 83% of whole fish examined and represent a potential risk to wildlife predators such as dolphins.
Collapse
Affiliation(s)
- Patricia A Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA; NOAA's Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA.
| | - Beth Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Natasha D White
- NOAA's Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA
| | - Stephen A Arnott
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC 29412, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| |
Collapse
|
32
|
Gui D, Zhang M, Zhang T, Zhang B, Lin W, Sun X, Yu X, Liu W, Wu Y. Bioaccumulation behavior and spatiotemporal trends of per- and polyfluoroalkyl substances in Indo-Pacific humpback dolphins from the Pearl River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1029-1038. [PMID: 30677968 DOI: 10.1016/j.scitotenv.2018.12.278] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Sixteen per- and polyfluoroalkyl substances (PFASs) were measured in liver (n = 52) and kidney (n = 18) tissues of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE) of China between 2004 and 2016. The average concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and most of other PFASs in the liver samples were respectively greater than any records previously reported in cetaceans globally. PFOS levels in 46% of dolphin liver samples exceeded the hepatic toxicity threshold in cetaceans. For the first time, we found a U-shaped trend for the distribution pattern of perfluorinated carboxylic acids (PFCAs) between liver and kidney with increasing carbon chain lengths (C5-C16), whereas a descending trend (C4-C10) was found for perfluoroalkane sulfonic acids (PFASs), which may be explained by binding efficiencies of PFAS analogues to proteins. Dolphins with the highest levels of ∑PFASs (age-corrected) were clustered near the river outlets in Lingdingyang area, which agrees with the spatial distribution of PFASs in the environment. Significant temporal trends were observed for many PFASs. Concentrations of PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA) and perfluoroheptanoic acid (PFHpA) all peaked in year 2011, followed by a decreasing trend, while a consistently descending trend was shown for perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS). Our findings contribute to the knowledge of tissue distribution and spatiotemporal trends of PFASs in the PRE dolphins, which are valuable for us to understand the PFASs exposure risk and their industrial emission in Southern China.
Collapse
Affiliation(s)
- Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Mei Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenzhi Lin
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Wen Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
33
|
Palmer K, Bangma JT, Reiner JL, Bonde RK, Korte JE, Boggs ASP, Bowden JA. Per- and polyfluoroalkyl substances (PFAS) in plasma of the West Indian manatee (Trichechus manatus). MARINE POLLUTION BULLETIN 2019; 140:610-615. [PMID: 30803684 PMCID: PMC6529203 DOI: 10.1016/j.marpolbul.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 05/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, synthetic anthropogenic chemicals known to infiltrate and persist in biological systems as a result of their stability and bioaccumulation potential. This study investigated 15 PFAS, including short-chain carboxylic and sulfonic acids, and their presence in a threatened herbivore, the West Indian manatee (Trichechus manatus). Seven of the 15 PFAS examined were detected in manatee plasma. Perfluorooctanesulfonic acid (PFOS) (ranging from 0.13 to 166 ng/g ww) and perfluorononanoic acid (PFNA) (ranging from 0.038 to 3.52 ng/g ww) were detected in every manatee plasma sample examined (n = 69), with differing medians across sampling sites in Florida, Crystal River (n = 39), Brevard County (n = 18), Everglades National Park (n = 8), and four samples (n = 4) from Puerto Rico. With an herbivorous diet and long life-span, the manatee provides a new perspective to monitoring PFAS contamination.
Collapse
Affiliation(s)
- Kady Palmer
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, SC 29412, United States.
| | - Jacqueline T Bangma
- Medical University of South Carolina, Department of Obstetrics and Gynecology, 221 Fort Johnson Rd, Charleston, SC 29412, United States
| | - Jessica L Reiner
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, United States.
| | - Robert K Bonde
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL 32653, United States.
| | - Jeffrey E Korte
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303, Charleston, SC 29425, United States.
| | - Ashley S P Boggs
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, United States
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, United States; University of Florida, Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, 32601, United States.
| |
Collapse
|
34
|
Routti H, Diot B, Panti C, Duale N, Fossi MC, Harju M, Kovacs KM, Lydersen C, Scotter SE, Villanger GD, Bourgeon S. Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:658-667. [PMID: 30611942 DOI: 10.1016/j.envpol.2018.11.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/26/2023]
Abstract
Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (Odobenus rosmarus rosmarus) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations and ratio of TT4 and reverse triiodothyronine decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway; University of Siena, Siena, Italy.
| | - Béatrice Diot
- UiT, The Arctic University of Norway, Tromsø, Norway
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | | | | | | |
Collapse
|
35
|
Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware LE. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review. Clin J Am Soc Nephrol 2018; 13:1479-1492. [PMID: 30213782 PMCID: PMC6218824 DOI: 10.2215/cjn.04670418] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Per- and polyfluoroalkyl substances (PFASs) are a large group of manufactured nonbiodegradable compounds. Despite increasing awareness as global pollutants, the impact of PFAS exposure on human health is not well understood, and there are growing concerns for adverse effects on kidney function. Therefore, we conducted a scoping review to summarize and identify gaps in the understanding between PFAS exposure and kidney health. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We systematically searched PubMed, EMBASE, EBSCO Global Health, World Health Organization Global Index, and Web of Science for studies published from 1990 to 2018. We included studies on the epidemiology, pharmacokinetics, or toxicology of PFAS exposure and kidney-related health, including clinical, histologic, molecular, and metabolic outcomes related to kidney disease, or outcomes related to the pharmacokinetic role of the kidneys. RESULTS We identified 74 studies, including 21 epidemiologic, 13 pharmacokinetic, and 40 toxicological studies. Three population-based epidemiologic studies demonstrated associations between PFAS exposure and lower kidney function. Along with toxicology studies (n=10) showing tubular histologic and cellular changes from PFAS exposure, pharmacokinetic studies (n=5) demonstrated the kidneys were major routes of elimination, with active proximal tubule transport. In several studies (n=17), PFAS exposure altered several pathways linked to kidney disease, including oxidative stress pathways, peroxisome proliferators-activated receptor pathways, NF-E2-related factor 2 pathways, partial epithelial mesenchymal transition, and enhanced endothelial permeability through actin filament modeling. CONCLUSIONS A growing body of evidence portends PFASs are emerging environmental threats to kidney health; yet several important gaps in our understanding still exist.
Collapse
Affiliation(s)
- John W. Stanifer
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; and
- Duke Global Health Institute
| | | | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; and
| | | | | | - L. Ebony Boulware
- Division of General Internal Medicine, Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
36
|
Li WT, Chang HW, Yang WC, Lo C, Wang LY, Pang VF, Chen MH, Jeng CR. Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus). Sci Rep 2018; 8:5593. [PMID: 29618730 PMCID: PMC5884781 DOI: 10.1038/s41598-018-23737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP20) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Cheng Yang
- College of Veterinary Medicine, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chieh Lo
- Farglory Ocean Park, Hualien, 97449, Taiwan
| | - Lei-Ya Wang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
37
|
Chaousis S, Leusch FDL, van de Merwe JP. Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:59-70. [PMID: 29156442 DOI: 10.1016/j.envpol.2017.11.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Threatened species are susceptible to irreversible population decline caused by adverse sub-lethal effects of chemical contaminant exposure. It is therefore vital to develop the necessary tools to predict and detect these effects as early as possible. Biomarkers of contaminant exposure and effect are widely applied to this end, and a significant amount of research has focused on development and validation of sensitive and diagnostic biomarkers. However, progress in the use biomarkers that can be measured using non-destructive techniques has been relatively slow and there are still many difficulties to overcome in the development of sound methods. This paper systematically quantifies and reviews studies that have aimed to develop or validate non-destructive biomarkers in wildlife, and provides an analysis of the successes of these methods based on the invasiveness of the methods, the potential for universal application, cost, and the potential for new biomarker discovery. These data are then used to infer what methods and approaches appear the most effective for successful development of non-destructive biomarkers of contaminant exposure in wildlife. This review highlights that research on non-destructive biomarkers in wildlife is severely lacking, and suggests further exploration of in vitro methods in future studies.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia.
| | - Frederic D L Leusch
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| | - Jason P van de Merwe
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| |
Collapse
|
38
|
Tipton JJ, Guillette LJ, Lovelace S, Parrott BB, Rainwater TR, Reiner JL. Analysis of PFAAs in American alligators part 1: Concentrations in alligators harvested for consumption during South Carolina public hunts. J Environ Sci (China) 2017; 61:24-30. [PMID: 29191311 PMCID: PMC6582648 DOI: 10.1016/j.jes.2017.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Environmental contamination resulting from the production or release of harmful chemicals can lead to negative consequences for wildlife and human health. Perfluorinated alkyl acids (PFAAs) were historically produced as protective coatings for many household items and currently persist in the environment, wildlife, and humans. PFAAs have been linked to immune suppression, endocrine disruption, and developmental toxicity in wildlife and laboratory studies. This study examines the American alligator, Alligator mississippiensis, as an important indicator of ecosystem contamination and a potential pathway for PFAA exposure in humans. Alligator meat harvested in the 2015 South Carolina (SC) public hunt season and prepared for human consumption was collected and analyzed for PFAAs to determine meat concentrations and relationships with animal body size (total length), sex, and location of harvest. Of the 15 PFAAs analyzed, perfluorooctane sulfonate (PFOS) was found in all alligator meat samples and at the highest concentrations (median 6.73ng/g). No relationship was found between PFAA concentrations and total length or sex. Concentrations of one or all compounds varied significantly across sampling locations, with alligators harvested in the Middle Coastal hunt unit having the highest PFOS concentrations (median 16.0ng/g; p=0.0001). Alligators harvested specifically from Berkley County, SC (located in the Middle Coastal hunt unit) had the highest PFOS concentrations and the greatest number of PFAAs detected (p<0.0001). The site-specific nature of PFAA concentrations in alligator meat observed in this study suggests a source of PFAA contamination in Berkley County, SC.
Collapse
Affiliation(s)
| | - Louis J Guillette
- Medical University of South Carolina, Department of Obstetrics and Gynecology, Charleston, SC 29425, USA
| | | | - Benjamin B Parrott
- University of Georgia, Odum School of Ecology, Savannah River Ecology Laboratory, Jackson, SC 29831, USA
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center & Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC 29442, USA
| | - Jessica L Reiner
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| |
Collapse
|
39
|
Tipton JJ, Guillette LJ, Lovelace S, Parrott BB, Rainwater TR, Reiner JL. Analysis of PFAAs in American alligators part 2: Potential dietary exposure of South Carolina hunters from recreationally harvested alligator meat. J Environ Sci (China) 2017; 61:31-38. [PMID: 29191313 PMCID: PMC6526952 DOI: 10.1016/j.jes.2017.05.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Exposure to perfluorinated alkyl acids (PFAAs) has been linked to many harmful health effects including reproductive disorders, developmental delays, and altered liver and kidney function. Most human exposure to environmental contaminants, including PFAAs, occurs through consumption of contaminated food or drinking water. This study uses PFAA data from meat samples collected from recreationally harvested American alligators (Alligator mississippiensis) in South Carolina to assess potential dietary exposure of hunters and their families to PFAAs. Consumption patterns were investigated using intercept surveys of 23 hunters at a wild game meat processor. An exposure scenario using the average consumption frequency, portion size, and median perfluorooctane sulfonic acid (PFOS) concentration in alligator meat from all hunt units found the daily dietary exposure to be 2.11ng/kg body weight per day for an adult human. Dietary PFOS exposure scenarios based on location of harvest suggested the highest daily exposure occurs with alligator meat from the Middle Coastal hunt unit in South Carolina. Although no samples were found to exceed the recommended threshold for no consumption of PFOS found in Minnesota state guidelines, exposure to a mixture of PFAAs found in alligator meat and site-specific exposures based on harvest location should be considered in determining an appropriate guideline for vulnerable populations potentially exposed to PFAAs through consumption of wild alligator meat.
Collapse
Affiliation(s)
| | - Louis J Guillette
- Medical University of South Carolina, Department of Obstetrics and Gynecology, Charleston, SC 29425, USA
| | | | - Benjamin B Parrott
- University of Georgia, Odum School of Ecology, Savannah River Ecology Laboratory, Jackson, SC 29831, USA
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center & Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, P.O. Box 596, Georgetown, SC 29442, USA
| | - Jessica L Reiner
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| |
Collapse
|
40
|
Desforges JP, Levin M, Jasperse L, De Guise S, Eulaers I, Letcher RJ, Acquarone M, Nordøy E, Folkow LP, Hammer Jensen T, Grøndahl C, Bertelsen MF, St Leger J, Almunia J, Sonne C, Dietz R. Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11431-11439. [PMID: 28876915 DOI: 10.1021/acs.est.7b03532] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most controlled toxicity studies use single chemical exposures that do not represent the real world situation of complex mixtures of known and unknown natural and anthropogenic substances. In the present study, complex contaminant cocktails derived from the blubber of polar bears (PB; Ursus maritimus) and killer whales (KW; Orcinus orca) were used for in vitro concentration-response experiments with PB, cetacean and seal spp. immune cells to evaluate the effect of realistic contaminant mixtures on various immune functions. Cytotoxic effects of the PB cocktail occurred at lower concentrations than the KW cocktail (1 vs 16 μg/mL), likely due to differences in contaminant profiles in the mixtures derived from the adipose of each species. Similarly, significant reduction of lymphocyte proliferation occurred at much lower exposures in the PB cocktail (EC50: 0.94 vs 6.06 μg/mL; P < 0.01), whereas the KW cocktail caused a much faster decline in proliferation (slope: 2.9 vs 1.7; P = 0.04). Only the KW cocktail modulated natural killer (NK) cell activity and neutrophil and monocyte phagocytosis in a concentration- and species-dependent manner. No clear sensitivity differences emerged when comparing cetaceans, seals and PB. Our results showing lower effect levels for complex mixtures relative to single compounds suggest that previous risk assessments underestimate the effects of real world contaminant exposure on immunity. Our results using blubber-derived contaminant cocktails add realism to in vitro exposure experiments and confirm the immunotoxic risk marine mammals face from exposure to complex mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Lindsay Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut , 61 North Eagleville Road, Storrs, Connecticut 06269-3089, United States of America
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario Canada K1A 0H3
| | - Mario Acquarone
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | - Erling Nordøy
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | - Lars P Folkow
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway , Breivika, 9037 Tromsø, Norway
| | | | - Carsten Grøndahl
- Copenhagen ZOO, Roskildevej 38, PO Box 7, DK-2000 Frederiksberg, Denmark
| | - Mads F Bertelsen
- Copenhagen ZOO, Roskildevej 38, PO Box 7, DK-2000 Frederiksberg, Denmark
| | - Judy St Leger
- SeaWorld Parks and Entertainment, 500 SeaWorld Drive, San Diego, California 92109, United States of America
| | - Javier Almunia
- Loro Parque Fundación, Avda. Loro Parque, s/n 38400 Puerto de la Cruz, Tenerife Spain
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University , Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
41
|
Reif JS, Schaefer AM, Bossart GD, Fair PA. Health and Environmental Risk Assessment Project for bottlenose dolphins Tursiops truncatus from the southeastern USA. II. Environmental aspects. DISEASES OF AQUATIC ORGANISMS 2017; 125:155-166. [PMID: 28737160 DOI: 10.3354/dao03143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bottlenose dolphins Tursiops truncatus are the most common apex predators found in coastal and estuarine ecosystems along the southeastern coast of the USA, where these animals are exposed to multiple chemical pollutants and microbial agents. In this review, we summarize the results of investigations of environmental exposures evaluated in 360 free-ranging dolphins between 2003 and 2015. Bottlenose dolphins inhabiting the Indian River Lagoon, Florida (IRL, n = 246), and coastal waters of Charleston, South Carolina (CHS, n = 114), were captured, given comprehensive health examinations, and released as part of a multidisciplinary and multi-institutional study of individual and population health. High concentrations of persistent organic pollutants including legacy contaminants (DDT and other pesticides, polychlorinated biphenyl compounds) as well as 'emerging' contaminants (polybrominated diphenyl ethers, perfluorinated compounds) were detected in dolphins from CHS, with lower concentrations in the IRL. Conversely, the concentrations of mercury in the blood and skin of IRL dolphins were among the highest reported worldwide and approximately 5 times as high as those found in CHS dolphins. A high prevalence of resistance to antibiotics commonly used in humans and animals was detected in bacteria isolated from fecal, blowhole, and/or gastric samples at both sites, including methicillin-resistant Staphylococcus aureus (MRSA) at CHS. Collectively, these studies illustrate the importance of long-term surveillance of estuarine populations of bottlenose dolphins and reaffirm their important role as sentinels for marine ecosystems and public health.
Collapse
Affiliation(s)
- John S Reif
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
42
|
Fair PA, Schaefer AM, Houser DS, Bossart GD, Romano TA, Champagne CD, Stott JL, Rice CD, White N, Reif JS. The environment as a driver of immune and endocrine responses in dolphins (Tursiops truncatus). PLoS One 2017; 12:e0176202. [PMID: 28467830 PMCID: PMC5415355 DOI: 10.1371/journal.pone.0176202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
Immune and endocrine responses play a critical role in allowing animals to adjust to environmental perturbations. We measured immune and endocrine related markers in multiple samples from individuals from two managed-care care dolphin groups (n = 82 samples from 17 dolphins and single samples collected from two wild dolphin populations: Indian River Lagoon, (IRL) FL (n = 26); and Charleston, (CHS) SC (n = 19). The immune systems of wild dolphins were more upregulated than those of managed-care-dolphins as shown by higher concentrations of IgG and increases in lysozyme, NK cell function, pathogen antibody titers and leukocyte cytokine transcript levels. Collectively, managed-care care dolphins had significantly lower levels of transcripts encoding pro-inflammatory cytokine TNF, anti-viral MX1 and INFα and regulatory IL-10. IL-2Rα and CD69, markers of lymphocyte activation, were both lower in managed-care care dolphins. IL-4, a cytokine associated with TH2 activity, was lower in managed-care care dolphins compared to the free-ranging dolphins. Differences in immune parameters appear to reflect the environmental conditions under which these four dolphin populations live which vary widely in temperature, nutrition, veterinary care, pathogen/contaminant exposures, etc. Many of the differences found were consistent with reduced pathogenic antigenic stimulation in managed-care care dolphins compared to wild dolphins. Managed-care care dolphins had relatively low TH2 lymphocyte activity and fewer circulating eosinophils compared to wild dolphins. Both of these immunologic parameters are associated with exposure to helminth parasites which is uncommon in managed-care care dolphins. Less consistent trends were observed in a suite of hormones but significant differences were found for cortisol, ACTH, total T4, free T3, and epinephrine. While the underlying mechanisms are likely multiple and complex, the marked differences observed in the immune and endocrine systems of wild and managed-care care dolphins appear to be shaped by their environment.
Collapse
Affiliation(s)
- Patricia A. Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, Charleston, SC, United States of America
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States of America
- * E-mail: ,
| | - Adam M. Schaefer
- Harbor Branch Oceanographic Institution at Florida Atlantic University, Ft. Pierce, FL, United States of America
| | - Dorian S. Houser
- Marine Mammal Foundation, San Diego, CA, United States of America
| | - Gregory D. Bossart
- Georgia Aquarium, Atlanta, GA, United States of America
- Division of Comparative Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Tracy A. Romano
- Mystic Aquarium, a division of Sea Research Foundation, Mystic, CT, United States of America
| | | | | | - Charles D. Rice
- Department of Biological Sciences, Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC, United States of America
| | - Natasha White
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, Charleston, SC, United States of America
| | - John S. Reif
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
43
|
Soloff AC, Wolf BJ, White ND, Muir D, Courtney S, Hardiman G, Bossart GD, Fair PA. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins. J Appl Toxicol 2017; 37:1108-1116. [PMID: 28425113 DOI: 10.1002/jat.3465] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4+ and CD8+ T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam C Soloff
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Hollings Cancer Center, Flow Cytometry and Cell Sorting Shared Resource, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Research Service, Charleston, SC, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Natasha D White
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA
| | - Derek Muir
- Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, Ontario, Canada
| | - Sean Courtney
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,The Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,The Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Patricia A Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA
| |
Collapse
|
44
|
Nouri-Shirazi M, Bible BF, Zeng M, Tamjidi S, Bossart GD. Phenotyping and comparing the immune cell populations of free-ranging Atlantic bottlenose dolphins (Tursiops truncatus) and dolphins under human care. BMC Vet Res 2017; 13:78. [PMID: 28347312 PMCID: PMC5369205 DOI: 10.1186/s12917-017-0998-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2017] [Indexed: 11/28/2022] Open
Abstract
Background Studies suggest that free-ranging bottlenose dolphins exhibit a suppressed immune system because of exposure to contaminants or microorganisms. However, due to a lack of commercially available antibodies specific to marine mammal immune cell surface markers, the research has been indecisive. The purpose of this study was to identify cross-reactive terrestrial-specific antibodies in order to assess the changes in the immune cell populations of dolphins under human care and free-ranging dolphins. The blood and PBMC fraction of blood samples from human care and free-ranging dolphins were characterized by H&E staining of cytospin slides and flow cytometry using a panel of terrestrial-specific antibodies. Results In this study, we show that out of 65 terrestrial-specific antibodies tested, 11 were cross-reactive and identified dolphin immune cell populations within their peripheral blood. Using these antibodies, we found significant differences in the absolute number of cells expressing specific markers within their lymphocyte and monocyte fractions. Interestingly, the peripheral blood mononuclear cell profile of free-ranging dolphins retained an additional population of cells that divided them into two groups showing a low (<27%) or high (>56%) percentage of smaller cells resembling granulocytes. Conclusions We found that the cross-reactive antibodies not only identified specific changes in the immune cells of free-ranging dolphins, but also opened the possibility to investigate the causal relationship between immunosuppression and mortality seen in free-ranging dolphins.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.
| | - Brittany F Bible
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Menghua Zeng
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Saba Tamjidi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, NW, Atlanta, GA, S, USA.,Division of Comparative Pathology, Miller School of Medicine, University of Miami, PO Box 016960 (R-46), Miami, FL, 33101, USA
| |
Collapse
|
45
|
Pedersen KE, Letcher RJ, Sonne C, Dietz R, Styrishave B. Per- and polyfluoroalkyl substances (PFASs) - New endocrine disruptors in polar bears (Ursus maritimus)? ENVIRONMENT INTERNATIONAL 2016; 96:180-189. [PMID: 27692342 DOI: 10.1016/j.envint.2016.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging in the Arctic and accumulate in brain tissues of East Greenland (EG) polar bears. In vitro studies have shown that PFASs might possess endocrine disrupting abilities and therefore the present study was conducted to investigate potential PFAS induced alterations in brain steroid concentrations. The concentrations of eleven steroid hormones were determined in eight brain regions from ten EG polar bears. Pregnenolone (PRE), the dominant progestagen, was found in mean concentrations of 5-47ng/g (ww) depending on brain region. PRE showed significantly (p<0.01) higher concentrations in female compared to male bears. Dehydroepiandrosterone (DHEA) found in mean concentrations 0.67-4.58ng/g (ww) was the androgen found in highest concentrations. Among the estrogens estrone (E1) showed mean concentrations of 0.90-2.21ng/g (ww) and was the most abundant. Remaining steroid hormones were generally present in concentrations below 2ng/g (ww). Steroid levels in brain tissue could not be explained by steroid levels in plasma. There was however a trend towards increasing estrogen levels in plasma resulting in increasing levels of androgens in brain tissue. Correlative analyses showed positive associations between PFASs and 17α-hydroxypregnenolone (OH-PRE) (e.g. perflouroalkyl sulfonates (∑PFSA): p<0.01, r=0.39; perfluoroalkyl carboxylates (∑PFCA): p<0.01, r=0.61) and PFCA and testosterone (TS) (∑PFCA: p=0.03, r=0.30) across brain regions. Further when investigating correlative associations in specific brain regions significant positive correlations were found between ∑PFCA and several steroid hormones in the occipital lobe. Correlative positive associations between PFCAs and steroids were especially observed for PRE, progesterone (PRO), OH-PRE, DHEA, androstenedione (AN) and testosterone (TS) (all p≤0.01, r≥0.7). The results from the present study generally indicate that an increase in PFASs concentration seems to concur with an increase in steroid hormones of EG polar bears. It is, however, not possible to determine whether alterations in brain steroid concentrations arise from interference with de novo steroid synthesis or via disruption of peripheral steroidogenic tissues mainly in gonads and feedback mechanisms. Steroids are important for brain plasticity and gender specific behavior as well as postnatal development and sexually dimorph brain function. The present work indicates an urgent need for a better mechanistic understanding of how PFASs may affect the endocrine system of polar bears and potentially other mammal species.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, Roskilde DK-4000, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, Roskilde DK-4000, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
46
|
Elliott JE, Rattner BA, Shore RF, Van Den Brink NW. Paying the Pipers: Mitigating the Impact of Anticoagulant Rodenticides on Predators and Scavengers. Bioscience 2016. [DOI: 10.1093/biosci/biw028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Desforges JPW, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. ENVIRONMENT INTERNATIONAL 2016; 86:126-139. [PMID: 26590481 DOI: 10.1016/j.envint.2015.10.007] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.
Collapse
Affiliation(s)
- Jean-Pierre W Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
48
|
Gribble MO, Bartell SM, Kannan K, Wu Q, Fair PA, Kamen DL. Longitudinal measures of perfluoroalkyl substances (PFAS) in serum of Gullah African Americans in South Carolina: 2003-2013. ENVIRONMENTAL RESEARCH 2015; 143:82-8. [PMID: 25819541 PMCID: PMC4583839 DOI: 10.1016/j.envres.2015.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Charleston Harbor has elevated concentrations of PFAS in dolphins, but local human exposure data are limited. OBJECTIVES We sought to describe PFAS serum concentrations' temporal trends among Gullah African American residents of coastal South Carolina. METHODS Longitudinal measures of PFAS in blood serum from a Gullah clinical sample, without lupus, were examined using spaghetti plots and visit-to-visit change scores (e.g., differences in concentrations between visits) among the 68 participants with repeated measures available. We also modeled population-level trends among the 71 participants with any data using proportionate percentile models, accounting for clustering through robust standard errors. In a post-hoc analysis we examined heterogeneity of temporal trends by age through mixed-effects models for the log-transformed PFAS compounds. RESULTS Population concentrations of PFOS dropped approximately 9 (95% CI: 8, 10) percent each year over 2003-2013. This was concordant with individual PFOS trajectories (median PFOS change score -21.7 ng/g wet weight, interquartile range of PFOS change scores: -32.8, -14.9) and reports for other populations over this time period. Several other compounds including PFOA, PFHxS, and PFuNDA also showed a population-level decrease. However, examination of individual trajectories suggested substantial heterogeneity. Post-hoc analyses indicated that PFAS trajectories were heterogeneous by age. CONCLUSIONS Many PFAS compounds are decreasing in a sample of Gullah African Americans from coastal South Carolina. There may be age differences in the elimination kinetics of PFASs. The possible role of age as a modifier of PFAS serum trends merits further research.
Collapse
Affiliation(s)
- Matthew O Gribble
- Department of Preventive Medicine, Division of Biostatistics, University of Southern California, Los Angeles, CA, USA.
| | - Scott M Bartell
- Program in Public Health and Department of Statistics; University of California, Irvine, Irvine, CA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Qian Wu
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, Charleston, SC, USA
| | - Diane L Kamen
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina; Charleston, SC, USA
| |
Collapse
|
49
|
Bossart GD, Schaefer AM, McCulloch S, Goldstein J, Fair PA, Reif JS. Mucocutaneous lesions in free-ranging Atlantic bottlenose dolphins Tursiops truncatus from the southeastern USA. DISEASES OF AQUATIC ORGANISMS 2015; 115:175-184. [PMID: 26290502 DOI: 10.3354/dao02895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mucocutaneous lesions were biopsied from free-ranging Atlantic bottlenose dolphins Tursiops truncatus inhabiting the Indian River Lagoon (IRL), Florida, and estuarine waters of Charleston (CHS), South Carolina, USA, between 2003 and 2013. A total of 78 incisional biopsies from 58 dolphins (n=43 IRL, n=15 CHS) were examined. Thirteen dolphins had 2 lesions biopsied at the same examination, and 6 dolphins were re-examined and re-biopsied at time intervals varying from 1 to 8 yr. Biopsy sites included the skin (n=47), tongue (n=2), and genital mucosa (n=29). Pathologic diagnoses were: orogenital sessile papilloma (39.7%), cutaneous lobomycosis (16.7%), tattoo skin disease (TSD; 15.4%), nonspecific chronic to chronic-active dermatitis (15.4%), and epidermal hyperplasia (12.8%). Pathologic diagnoses from dolphins with 2 lesions were predominately orogenital sessile papillomas (n=9) with nonspecific chronic to chronic-active dermatitis (n=4), TSD (n=3), lobomycosis (n=1), and epidermal hyperplasia (n=1). Persistent pathologic diagnoses from the same dolphins re-examined and re-biopsied at different times included genital sessile papillomas (n=3), lobomycosis (n=2), and nonspecific dermatitis (n=2). This is the first study documenting the various types, combined prevalence, and progression of mucocutaneous lesions in dolphins from the southeastern USA. The data support other published findings describing the health patterns in dolphins from these geographic regions. Potential health impacts related to the observed suite of lesions are important for the IRL and CHS dolphin populations, since previous studies have indicated that both populations are affected by complex infectious diseases often associated with immunologic disturbances and anthropogenic contaminants.
Collapse
|
50
|
White ND, Balthis L, Kannan K, De Silva AO, Wu Q, French KM, Daugomah J, Spencer C, Fair PA. Elevated levels of perfluoroalkyl substances in estuarine sediments of Charleston, SC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:79-89. [PMID: 25828416 DOI: 10.1016/j.scitotenv.2015.03.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 05/15/2023]
Abstract
Urban areas are sources of perfluoroalkyl substances (PFASs) in the environment, although little is known about specific point sources and distribution of PFASs. Sentinel species, like bottlenose dolphins, are important indicators of environmental perturbations. The high PFAS levels found in dolphins inhabiting Charleston, South Carolina prompted investigation of these chemicals in this area. This study provides further evidence on the extent of contamination and potential sources of PFASs. In this study, concentrations of 11 PFASs measured in estuarine sediments collected in 2012 from the Charleston Harbor and the Ashley and Cooper Rivers (n=36) in South Carolina revealed higher levels than those reported in any other U.S. urban areas. Detectable levels were found in all sample locations with mean total PFAS concentrations of 3.79ngg(-1) (range 0.22 to 19.2ngg(-1) d.w.). Dominant compounds were perfluorooctane sulfonate (PFOS) (mean 1.52ngg(-1); range 0.09-7.37ngg(-1) d.w.), followed by perfluorodecanoate (PFDA) (mean 0.83ngg(-1); range 0.06-4.76ngg(-1) d.w.) and perfluorooctanoate (PFOA) (mean 0.42ngg(-1); range 0.02-2.52ngg(-1) d.w.). PFOS levels in sediments at 19 of 36 sites (representing 52% of the study area) exceeded the published global median PFOS sediment concentration of 0.54ngg(-1).
Collapse
Affiliation(s)
- Natasha D White
- National Oceanic and Atmospheric Administration/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Len Balthis
- National Oceanic and Atmospheric Administration/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - Amila O De Silva
- Environment Canada, Water Science Technology Directorate, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Qian Wu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - Katherine M French
- Environment Canada, Water Science Technology Directorate, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - James Daugomah
- National Oceanic and Atmospheric Administration/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Christine Spencer
- Environment Canada, Water Science Technology Directorate, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Patricia A Fair
- National Oceanic and Atmospheric Administration/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA.
| |
Collapse
|