1
|
de Freitas Neto LL, Santos RFB, da Silva MA, de Souza Bezerra R, Saldanha-Corrêa F, Espósito BP. Zinc speciation promotes distinct effects on dinoflagellate growth and coral trypsin-like enzyme activity. Biometals 2025; 38:573-586. [PMID: 39810029 DOI: 10.1007/s10534-025-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis. B. minutum was the most sensitive strain to any form of added Zn. For the other strains, the complex [Zn(His)2] better translated metal load into growth. This complex was the only tested compound that did not interfere with the trypsin-like activity of Millepora alcicornis extracts. Also, histidine was able to recover the activity of the enzyme inhibited by zinc. [Zn(His)2] is a potential biocarrier of zinc for microalgae or coral cultivation. These findings suggest that the control of chemical speciation of an essential metal could lead to useful compounds that assist autotrophy, while not affecting heterotrophy, in the coral holobiont.
Collapse
Affiliation(s)
| | - Rudã Fernandes Brandão Santos
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Maria Angélica da Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Ranilson de Souza Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Flávia Saldanha-Corrêa
- Banco de Microrganismos Aidar & Kutner - BMAK, Instituto Oceanográfico, Universidade de São Paulo, Praça Do Oceanográfico, 191, São Paulo, 05508-120, Brazil
| | - Breno Pannia Espósito
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Çetin YA, Escorihuela L, Martorell B, Serratosa F. Revisiting Water Adsorption on TiO 2 and ZnO Surfaces: An SCC-DFTB Molecular Dynamics Study. ACS OMEGA 2025; 10:4449-4457. [PMID: 39959094 PMCID: PMC11822698 DOI: 10.1021/acsomega.4c07557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Metal oxides (MOs) are the key materials in applications of biomedicine industrial technologies due to their versatile features. Knowing their possible toxicity level is crucial given some specific environments, particularly in water. We have learned that their reactivity almost depends on the electronic structure on the surface of the MOs. Thus, a detailed understanding of the electronic structure on the surface and its reactivity processes is useful for determining the toxicity in MOs and defining good descriptive parameters. We simulated the interaction of ZnO and TiO2 slab models with water and checked their geometric and electronic structure changes from the bulk of the material to the water interface. To this end, we used the density functional tight binding theory coupled with finite temperature molecular dynamics. We have observed the interaction of water with the MO surface in terms of electronic and geometric parameters for several conditions, such as temperature, hydrogenated or clean, and exposed surface. In doing so, we provide molecular-level insights into topographical and electronic processes on MO surfaces besides finding critical points on the surface that can explain the initialization of dissolution processes. Thus, we reveal information about potential toxicity descriptors in a systematic analysis approach.
Collapse
Affiliation(s)
- Yarkın A. Çetin
- Departament
d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus
Sescelades, 43007 Tarragona, Catalunya, Spain
| | - Laura Escorihuela
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Catalunya, Spain
| | - Benjamí Martorell
- Escola
de Doctorat, Universitat Rovira i Virgili, Av. Catalunya 35, Campus Catalunya, 43002 Tarragona, Catalunya, Spain
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Catalunya, Spain
| | - Francesc Serratosa
- Departament
d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus
Sescelades, 43007 Tarragona, Catalunya, Spain
| |
Collapse
|
3
|
Cyprichová V, Urík M, Csibriová S, Kolenčík M, Bujdoš M, Matúš P, Šebesta M. Interaction of zinc oxide nanoparticles with soil colloidal suspensions. CHEMOSPHERE 2025; 370:144001. [PMID: 39708946 DOI: 10.1016/j.chemosphere.2024.144001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The properties of soil colloids determine the interaction with nanoparticles, their behavior, and destiny in the soil environment including soil solutions. This study examines how several properties of soil colloids, including pH, phosphorus content, clay minerals, and iron oxyhydroxides, influence the interaction with zinc oxide nanoparticles (ZnO-nps). For the experimental setup, four different soils were selected from the temperate climate of central Europe, in Slovakia, exhibiting pH values ranging from 4.6 to 8.0. Two concentrations of ZnO-nps suspended in water, 20 and 200 mg Zn∙L-1 were applied to the colloidal suspensions extracted from the soils and shaken for 24 h. Then the soil colloids were separated into three fractions, 100-1000 nm in size, 1-100 nm in size, and dissolved. Concentrations of Al, Si, Fe, Mn, P, and Zn were measured in these fractions, providing a comprehensive understanding of ZnO-NP distribution and interaction with soil colloids. The study reveals that soil pH significantly affects the distribution of Zn from ZnO-nps across different size fractions. However, the concentration of Fe, Al, and Si had an even greater impact on the concentration of dissolved Zn. Additionally, behavior of Zn following ZnO-NP application is associated with soil P content, where P may stabilize the ZnO-nps. These findings enhance the knowledge of nanoparticle behavior in various soil matrices and contribute to developing more stable, efficient, and easily useable nanoparticle-based applications in environmental science and agriculture.
Collapse
Affiliation(s)
- Veronika Cyprichová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Sindy Csibriová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra, 949 76, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
4
|
Radić Brkanac S, Domijan AM, Peharec Štefanić P, Maldini K, Dutour Sikirić M, Vujčić Bok V, Cvjetko P. Difference in the toxic effects of micro and nano ZnO particles on L. minor - an integrative approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58830-58843. [PMID: 39320599 DOI: 10.1007/s11356-024-35133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The toxicity of nano-sized ZnO particles (nZnO) was evaluated and compared to that of their micro-sized counterparts (mZnO) using an integrative approach to investigate the mechanism of toxicity, utilizing duckweed (Lemna minor) as plant model. Following 7 days of exposure to nZnO or mZnO (2.5, 5, 25, and 50 mg L-1) growth rate, photosynthesis, oxidative stress, and genotoxicity parameters have been determined in duckweed. Phytotoxicity of both ZnO forms at relatively low concentrations was due to the release of free Zn ions into the nutrient media. However, the accumulation of Zn in plants treated with nZnO was significantly higher than in those treated with mZnO. Both mZnO and nZnO significantly reduced growth rate and impaired the functionality of the photosynthetic apparatus as evidenced by structural changes of chloroplasts, a decline in the efficiency of photosystem II, and chlorophyll a content. Additionally, exposure to mZnO and nZnO resulted in the accumulation of reactive oxygen species (ROS), increased lipid peroxidation, the formation of carbonylated proteins, DNA damage, and alterations in antioxidant defense mechanisms. Overall, nZnO caused significantly stronger toxic effects than mZnO. The mechanism of nZnO toxicity to L. minor, as determined by multivariate statistical analysis, involved the disruption of primary photosynthetic reactions due to a redox imbalance in the cell caused by the enhanced absorption of Zn into plant tissues.
Collapse
Affiliation(s)
- Sandra Radić Brkanac
- Faculty of Science, Department of Biology, University of Zagreb, 10000, Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, University of Zagreb, 10000, Zagreb, Croatia.
| | | | - Krešimir Maldini
- Croatian Waters, Main Water Management Laboratory, 10000, Zagreb, Croatia
| | - Maja Dutour Sikirić
- Division of Physical Chemistry, Institute Rudjer Boskovic, 10000, Zagreb, Croatia
| | - Valerija Vujčić Bok
- Faculty of Science, Department of Biology, University of Zagreb, 10000, Zagreb, Croatia
| | - Petra Cvjetko
- Faculty of Science, Department of Biology, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
5
|
Yu N, Su M, Wang J, Liu Y, Yang J, Zhang J, Wang M. Long-Term Exposure of Fresh and Aged Nano Zinc Oxide Promotes Hepatocellular Carcinoma Malignancy by Up-Regulating Claudin-2. Int J Nanomedicine 2024; 19:9989-10008. [PMID: 39371475 PMCID: PMC11453161 DOI: 10.2147/ijn.s478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Background Tumor development and progression is a long and complex process influenced by a combination of intrinsic (eg, gene mutation) and extrinsic (eg, environmental pollution) factors. As a detoxification organ, the liver plays an important role in human exposure and response to various environmental pollutants including nanomaterials (NMs). Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and remains a serious threat to human health. Whether NMs promote liver cancer progression remains elusive and assessing long-term exposure to subtoxic doses of nanoparticles (NPs) remains a challenge. In this study, we focused on the promotional effects of nano zinc oxide (nZnO) on the malignant progression of human HCC cells HepG2, especially aged nZnO that has undergone physicochemical transformation. Methods In in vitro experiments, we performed colony forming efficiency, soft agar colony formation, and cell migration/invasion assays on HepG2 cells that had been exposed to a low dose of nZnO (1.5 μg/mL) for 3 or 4 months. In in vivo experiments, we subcutaneously inoculated HepG2 cells that had undergone long-term exposure to nZnO for 4 months into BALB/c athymic nude mice and observed tumor formation. ZnCl2 was administered to determine the role of zinc ions. Results Chronic low-dose exposure to nZnO significantly intensified the malignant progression of HCC cells, whereas aged nZnO may exacerbate the severity of malignant progression. Furthermore, through transcriptome sequencing analysis and in vitro cellular rescue experiments, we demonstrated that the mechanism of nZnO-induced malignant progression of HCC could be linked to the activation of Claudin-2 (CLDN2), one of the components of cellular tight junctions, and the dysregulation of its downstream signaling pathways. Conclusion Long-term exposure of fresh and aged nZnO promotes hepatocellular carcinoma malignancy by up-regulating CLDN2. The implications of this work can be profound for cancer patients, as the use of various nanoproducts and unintentional exposure to environmentally transformed NMs may unknowingly hasten the progression of their cancers.
Collapse
Affiliation(s)
- Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingya Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
6
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
8
|
Hussain MA, Parveen G, Bhat AH, Reshi ZA, Ataya FS, Handoo ZA. Harnessing Walnut-Based Zinc Oxide Nanoparticles: A Sustainable Approach to Combat the Disease Complex of Meloidogyne arenaria and Macrophomina phaseolina in Cowpea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1743. [PMID: 38999583 PMCID: PMC11244520 DOI: 10.3390/plants13131743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating the impact of simultaneous infection by Meloidogyne arenaria (root-knot nematode) and Macrophomina phaseolina (root-rot fungus) in cowpea plants. The characterization of ZnO NPs was carried out through various analytical techniques, including UV-visible spectrophotometry, Powder-XRD analysis, FT-IR spectroscopy, and SEM-EDX analysis. The study confirmed the successful synthesis of ZnO NPs with a hexagonal wurtzite structure and exceptional purity. Under in vitro conditions, ZnO NPs exhibited significant nematicidal and antifungal activities. The mortality of M. arenaria juveniles increased with rising ZnO NP concentrations, and a similar trend was observed in the inhibition of M. phaseolina mycelial growth. SEM studies revealed physical damage to nematodes and structural distortions in fungal hyphae due to ZnO NP treatment. In infected cowpea plants, ZnO NPs significantly improved plant growth parameters, including plant length, fresh mass, and dry mass, especially at higher concentrations. Leghemoglobin content and the number of root nodules also increased after ZnO NP treatment. Additionally, ZnO NPs reduced gall formation and egg mass production by M. arenaria nematodes and effectively inhibited the growth of M. phaseolina in the roots. Furthermore, histochemical analyses demonstrated a reduction in oxidative stress, as indicated by decreased levels of reactive oxygen species (ROS) and lipid peroxidation in ZnO NP-treated plants. These findings highlight the potential of green-synthesized ZnO NPs as an eco-friendly and effective solution to manage disease complex in cowpea caused by simultaneous nematode and fungal infections.
Collapse
Affiliation(s)
- Mir Akhtar Hussain
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Ghazala Parveen
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Aashaq Hussain Bhat
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Zubair Altaf Reshi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Zaffar A. Handoo
- Mycology & Nematology Genetic Diversity & Biology Laboratory, USDA, ARS, Bldg. 010A, Rm. 111, 118, BARC-West 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| |
Collapse
|
9
|
Bruhns T, Sánchez-Girón Barba C, König L, Timm S, Fisch K, Sokolova IM. Combined effects of organic and mineral UV-filters on the lugworm Arenicola marina. CHEMOSPHERE 2024; 358:142184. [PMID: 38697569 DOI: 10.1016/j.chemosphere.2024.142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.
Collapse
Affiliation(s)
- Torben Bruhns
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Candela Sánchez-Girón Barba
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Life Sciences, Imperial College London, Exhibition Road SW7 2AZ London, United Kingdom
| | - Lilian König
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 21, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
11
|
Liu Q, Niu X, Zhang D, Ye X, Tan P, Shu T, Lin Z. Phototransformation of phosphite induced by zinc oxide nanoparticles (ZnO NPs) in aquatic environments. WATER RESEARCH 2023; 245:120571. [PMID: 37683523 DOI: 10.1016/j.watres.2023.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Peibing Tan
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Ting Shu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N. Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro. Int J Nanomedicine 2023; 18:4821-4838. [PMID: 37662686 PMCID: PMC10473965 DOI: 10.2147/ijn.s416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Cancer chemotherapy faces two major challenges - high toxicity of active substances and tumor resistance to drugs. Low toxic nanocarriers in combination with anticancer agents can significantly increase the effectiveness of therapy. Modern advances in nanotechnology make it easy to create materials with the necessary physical and chemical properties. Methods Two hybrid nanosystems of dextran-polyacrylamide/ zinc oxide nanoparticles (D-PAA/ZnO NPs) were synthesized in aqueous solution with zinc sulphate (D-PAA/ZnO NPs (SO42-)) and zinc acetate (D-PAA/ZnO NPs (-OAc)). The light absorption, fluorescence, dynamic light scattering and transmission electron microscopy for nanocomposite characterization were used. MTT, neutral red uptake and scratch assays were selected as fibroblasts cytotoxicity assays. Cytotoxicity was tested in vitro for normal fibroblasts, MAEC, prostate (LNCaP, PC-3, DU-145) and breast (MDA-MB-231, MCF-7) cancer cells lines. Immunocytochemical methods were used for detection of Ki-67, p53, Bcl-2, Bax, e-cadherin, N-cadherin and CD44 expression. Acridine orange was used to detect morphological changes in cells. Results The radius of ZnO NPs (SO42-) was 1.5 nm and ZnO NPs (-OAc) was 2 nm. The nanosystems were low-toxic to fibroblasts, MAEC. Cells in the last stages of apoptosis with the formation of apoptotic bodies were detected for all investigated cancer cell lines. Proapoptotic proteins expression in cancer cells indicates an apoptotic death. Increased expression of E-cadherin and N-cadherin was registered for cancer cells line LNCaP, PC-3, DU-145 and MCF-7 after 48 h incubation with D-PAA/ZnO NPs (SO42-). Conclusion The nanosystems were low-toxic to fibroblasts, MAEC. The D-PAA/ZnO NPs nanosystem synthesized using zinc sulphate demonstrates high cytotoxicity due to destruction of various types of cancer cells in vitro and potentially increases adhesion between cells. Thus, our findings indicate the selective cytotoxicity of D-PAA/ZnO NPs against cancer cells and can be potentially used for cancer treatment.
Collapse
Affiliation(s)
- Vasyl Chumachenko
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Virych
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Guochao Nie
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Oleg Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Khort
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliia Lukianova
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Taras Zadvornyi
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | | | - Liyao Ding
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Nataliya Kutsevol
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institut Charles Sadron, Strasbourg, France
| |
Collapse
|
13
|
Li Z, Yin X, Lyu C, Wang T, Wang W, Zhang J, Wang J, Wang Z, Han C, Zhang R, Guo D, Xu R. Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2023; 164:114988. [PMID: 37307677 DOI: 10.1016/j.biopha.2023.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Teng Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wenhao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jiachen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Zhenzhen Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Chen Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China; Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
14
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
15
|
Sezer S, Yücel A, Özhan Turhan D, Emre FB, Sarıkaya M. Comparison of ZnO doped different phases TiO 2 nanoparticles in terms of toxicity using zebrafish (Danio rerio). CHEMOSPHERE 2023; 325:138342. [PMID: 36933837 DOI: 10.1016/j.chemosphere.2023.138342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide is used in many commercial and industrial areas such as paint, paper, cosmetics, textiles, and surface coating. The reasons for its use in such a wide area are its anti-corrosion and high stability. Although TiO2 is considered to be a low-toxicity material, research has been further expanded following the recognition of the possible carcinogenic effects of TiO2 in humans by the International Agency for Research on Cancer (IARC). The aim of this study is to compare the toxicity of TiO2 used in many fields in different phases. In the study anatase TiO2 synthesized by hydrothermal method and dual phase TiO2 (anatase and rutile phase) structures obtained by thermal conditioning were used and compared with commercially available TiO2. ZnO which has similar uses like TiO2 was also used and compared with 1% doped TiO2 in different phases in terms of toxicity. Zebrafish (Danio rerio, D. rerio), a freshwater fish, which is widely used in toxicity assessments was preferred in this study due to its small size, fast reproduction rate, low cost, physiological and molecular similarity with humans, and genetic predisposition. Experimental investigations showed that the highest death occurred in the low concentrations of (10 ppm) ZnO doped rutile phase. 39% of the embryos died in the ZnO nanoparticle solutions prepared at low concentrations. The highest mortality at medium (100 ppm) and high (1000 ppm) concentrations were observed in the ZnO-doped rutile phase after 96 h. Similarly, the highest malformation was detected in the ZnO-doped rutile phase during the same period.
Collapse
Affiliation(s)
- Selda Sezer
- Malatya Turgut Ozal University, Akcadag Vocational School, Laboratory and Veterinary Health Program, Akcadag, Malatya, Turkey.
| | - Ayşegül Yücel
- Iskenderun Technical University Iskenderun Vocational School, Environmental Protection and Control Program, Iskenderun, Hatay, Turkey; Inonu University, Faculty of Engineering, Department of Mining Engineering, Malatya, Turkey
| | - Duygu Özhan Turhan
- Inonu University, Faculty of Arts and Science, Department of Biology, Malatya, Turkey
| | - Fatma Bilge Emre
- Inonu University, Faculty of Education, Department of Science Teaching, Malatya, Turkey
| | - Musa Sarıkaya
- Inonu University, Faculty of Engineering, Department of Mining Engineering, Malatya, Turkey
| |
Collapse
|
16
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
17
|
Advances in Rubber Compounds Using ZnO and MgO as Co-Cure Activators. Polymers (Basel) 2022; 14:polym14235289. [PMID: 36501682 PMCID: PMC9737580 DOI: 10.3390/polym14235289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
Zinc oxide performs as the best cure activator in sulfur-based vulcanization of rubber, but it is regarded as a highly toxic material for aquatic organisms. Hence, the toxic cure activator should be replaced by a non-toxic one. Still, there is no suitable alternative industrially. However, binary activators combining ZnO and another metal oxide such as MgO can largely reduce the level of ZnO with some improved benefits in the vulcanization of rubber as investigated in this research. Curing, mechanical, and thermal characteristics were investigated to find out the suitability of MgO in the vulcanization of rubber. Curing studies reveal that significant reductions in the optimum curing times are found by using MgO as a co-cure activator. Especially, the rate of vulcanization with conventional 5 phr (per hundred grams) ZnO can be enhanced by more than double, going from 0.3 Nm/min to 0.85 Nm/min by the use of a 3:2 ratio of MgO to ZnO cure activator system that should have high industrial importance. Mechanical and thermal properties investigations suggest that MgO as a co-cure activator used at 60% can provide 7.5% higher M100 (modulus at 100% strain) (0.58 MPa from 0.54 MPa), 20% higher tensile strength (23.7 MPa from 19.5 MPa), 15% higher elongation at break (1455% from 1270%), 68% higher fracture toughness (126 MJ/m3 from 75 MJ/m3), and comparable thermal stability than conventionally using 100 % ZnO. Especially, MgO as a co-cure activator could be very useful for improving the fracture toughness in rubber compounds compared to ZnO as a single-site curing activator. The significant improvements in the curing and mechanical properties suggest that MgO and ZnO undergo chemical interactions during vulcanization. Such rubber compounds can be useful in advanced tough and stretchable applications.
Collapse
|
18
|
Ergönül MB, Nassouhi D, Çelik M, Dilbaz D, Sazlı D, Atasağun S. Lemna trisulca L.: a novel phytoremediator for the removal of zinc oxide nanoparticles (ZnO NP) from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90852-90867. [PMID: 35879634 DOI: 10.1007/s11356-022-22112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Several aquatic plant species have been proposed for phytoremediation of waters polluted with heavy metals and pesticides According to the limited information available, aquatic macrophytes also have a promising potential to remove NPs from aqueous media. Although there is considerable information on the remediation potential of Lemna spp., the capacity of Lemna trisulca seems to be neglected, particularly for nanoparticle removal. Therefore, in the current study, we aimed to investigate the removal efficiency of L. trisulca exposed to 3 different ZnO NP concentrations (2.5, 5, and 10 ppm) for 1, 4, and 7 days in Hoagland solutions and the removal percentage were measured on each duration and compared among groups. The accumulated zinc levels were measured in whole plant material and bioconcentration factors were calculated for each group. In addition, the effect of ZnO NPs on the photosynthetic activity of the plant was evaluated via analyzing the photosynthetic pigment (chlorophyll a and b) concentration. The removal percentage ranged between 9.3 and 72.9% and showed a gradual increase in all experimental groups based both on dose and test duration. The statistical comparisons of the removal percentage among the groups with or without the plant indicate that L. trisulca had a significant effect on removal rates particularly between 1st and 4th days of exposure, however, did not show any progress at 7th days. The only significant difference for chl-a and chl-b levels was observed in 10 ppm ZnO NP-exposed plants at 7th days.
Collapse
Affiliation(s)
- Mehmet Borga Ergönül
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey.
| | - Danial Nassouhi
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Meltem Çelik
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
| | - Dilara Dilbaz
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Duygu Sazlı
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Sibel Atasağun
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
19
|
Dinga E, Mthiyane DMN, Marume U, Botha TL, Horn S, Pieters R, Wepener V, Ekennia A, Onwudiwe DC. Biosynthesis of ZnO nanoparticles using Melia azedarach seed extract: Evaluation of the cytotoxic and antimicrobial potency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Lehner R, Zanoni I, Banuscher A, Costa AL, Rothen-Rutishauser B. Fate of engineered nanomaterials at the human epithelial lung tissue barrier in vitro after single and repeated exposures. FRONTIERS IN TOXICOLOGY 2022; 4:918633. [PMID: 36185318 PMCID: PMC9524228 DOI: 10.3389/ftox.2022.918633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of the engineered nanomaterials (NMs) potential interaction with tissue barriers is important to predict their accumulation in cells. Herein, the fate, e.g., cellular uptake/adsorption at the cell membrane and translocation, of NMs with different physico-chemical properties across an A549 lung epithelial tissue barrier, cultured on permeable transwell inserts, were evaluated. We assessed the fate of five different NMs, known to be partially soluble, bio-persistent passive and bio-persistent active. Single exposure measurements using 100 µg/ml were performed for barium sulfate (BaSO4), cerium dioxide (CeO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NMs and non-nanosized crystalline silica (DQ12). Elemental distribution of the materials in different compartments was measured after 24 and 80 h, e.g., apical, apical wash, intracellular and basal, using inductively coupled plasma optical emission spectrometry. BaSO4, CeO2, and TiO2 were mainly detected in the apical and apical wash fraction, whereas for ZnO a significant fraction was detected in the basal compartment. For DQ12 the major fraction was found intracellularly. The content in the cellular fraction decreased from 24 to 80 h incubation for all materials. Repeated exposure measurements were performed exposing the cells on four subsequent days to 25 µg/ml. After 80 h BaSO4, CeO2, and TiO2 NMs were again mainly detected in the apical fraction, ZnO NMs in the apical and basal fraction, while for DQ12 a significant concentration was measured in the cell fraction. Interestingly the cellular fraction was in a similar range for both exposure scenarios with one exception, i.e., ZnO NMs, suggesting a potential different behavior for this material under single exposure and repeated exposure conditions. However, we observed for all the NMs, a decrease of the amount detected in the cellular fraction within time, indicating NMs loss by cell division, exocytosis and/or possible dissolution in lysosomes. Overall, the distribution of NMs in the compartments investigated depends on their composition, as for inert and stable NMs the major fraction was detected in the apical and apical wash fraction, whereas for partially soluble NMs apical and basal fractions were almost similar and DQ12 could mainly be found in the cellular fraction.
Collapse
Affiliation(s)
- Roman Lehner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Ilaria Zanoni
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Anne Banuscher
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Barbara Rothen-Rutishauser,
| |
Collapse
|
21
|
Food Additive Zinc Oxide Nanoparticles: Dissolution, Interaction, Fate, Cytotoxicity, and Oral Toxicity. Int J Mol Sci 2022; 23:ijms23116074. [PMID: 35682753 PMCID: PMC9181433 DOI: 10.3390/ijms23116074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Food additive zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement in the food and agriculture industries. However, ZnO NPs are directly added to complex food-matrices and orally taken through the gastrointestinal (GI) tract where diverse matrices are present. Hence, the dissolution properties, interactions with bio- or food-matrices, and the ionic/particle fates of ZnO NPs in foods and under physiological conditions can be critical factors to understand and predict the biological responses and oral toxicity of ZnO NPs. In this review, the solubility of ZnO NPs associated with their fate in foods and the GI fluids, the qualitative and quantitative determination on the interactions between ZnO NPs and bio- or food-matrices, the approaches for the fate determination of ZnO NPs, and the interaction effects on the cytotoxicity and oral toxicity of ZnO NPs are discussed. This information will be useful for a wide range of ZnO applications in the food industry at safe levels.
Collapse
|
22
|
The High-Throughput In Vitro CometChip Assay for the Analysis of Metal Oxide Nanomaterial Induced DNA Damage. NANOMATERIALS 2022; 12:nano12111844. [PMID: 35683698 PMCID: PMC9181865 DOI: 10.3390/nano12111844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanomaterials (MONMs) are among the most highly utilized classes of nanomaterials worldwide, though their potential to induce DNA damage in living organisms is known. High-throughput in vitro assays have the potential to greatly expedite analysis and understanding of MONM induced toxicity while minimizing the overall use of animals. In this study, the high-throughput CometChip assay was used to assess the in vitro genotoxic potential of pristine copper oxide (CuO), zinc oxide (ZnO), and titanium dioxide (TiO2) MONMs and microparticles (MPs), as well as five coated/surface-modified TiO2 NPs and zinc (II) chloride (ZnCl2) and copper (II) chloride (CuCl2) after 2–4 h of exposure. The CuO NPs, ZnO NPs and MPs, and ZnCl2 exposures induced dose- and time-dependent increases in DNA damage at both timepoints. TiO2 NPs surface coated with silica or silica–alumina and one pristine TiO2 NP of rutile crystal structure also induced subtle dose-dependent DNA damage. Concentration modelling at both post-exposure timepoints highlighted the contribution of the dissolved species to the response of ZnO, and the role of the nanoparticle fraction for CuO mediated genotoxicity, showing the differential impact that particle and dissolved fractions can have on genotoxicity induced by MONMs. The results imply that solubility alone may be insufficient to explain the biological behaviour of MONMs.
Collapse
|
23
|
Kansara K, Bolan S, Radhakrishnan D, Palanisami T, Al-Muhtaseb AH, Bolan N, Vinu A, Kumar A, Karakoti A. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118726. [PMID: 34953948 DOI: 10.1016/j.envpol.2021.118726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Engineered nanomaterials (ENMs) are at the forefront of many technological breakthroughs in science and engineering. The extensive use of ENMs in several consumer products has resulted in their release to the aquatic environment. ENMs entering the aquatic ecosystem undergo a dynamic transformation as they interact with organic and inorganic constituents present in aquatic environment, specifically abiotic factors such as NOM and clay minerals, and attain an environmental identity. Thus, a greater understanding of ENM-abiotic factors interactions is required for an improved risk assessment and sustainable management of ENMs contamination in the aquatic environment. This review integrates fundamental aspects of ENMs transformation in aquatic environment as impacted by abiotic factors, and delineates the recent advances in bioavailability and ecotoxicity of ENMs in relation to risk assessment for ENMs-contaminated aquatic ecosystem. It specifically discusses the mechanism of transformation of different ENMs (metals, metal oxides and carbon based nanomaterials) following their interaction with the two most common abiotic factors NOM and clay minerals present within the aquatic ecosystem. The review critically discusses the impact of these mechanisms on the altered ecotoxicity of ENMs including the impact of such transformation at the genomic level. Finally, it identifies the gaps in our current understanding of the role of abiotic factors on the transformation of ENMs and paves the way for the future research areas.
Collapse
Affiliation(s)
- Krupa Kansara
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, - 380009, India
| | - Shiv Bolan
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Deepika Radhakrishnan
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thava Palanisami
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Perth, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, - 380009, India
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
24
|
Stetten L, Mackevica A, Tepe N, Hofmann T, von der Kammer F. Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. NANOMATERIALS 2022; 12:nano12030519. [PMID: 35159864 PMCID: PMC8839430 DOI: 10.3390/nano12030519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines. According to a survey of surface water hydrochemistry, we propose to use media with low concentrations of Ca2+ and Mg2+ for a better simulation of the ionic background of surface waters, at pH values representing acidic (5 < pH < 6) and near-neutral/alkaline (7 < pH < 8) waters. We evaluated a continuous flow setup adapted to expose small amounts of ENMs to aqueous media, to mimic ENMs in surface waters. For this purpose, silver nanoparticles (Ag NPs) were used as model for soluble metal-bearing ENMs. Ag NPs were deposited onto a 10 kg.mol−1 membrane through the injection of 500 µL of a 5 mg.L−1 or 20 mg.L−1 Ag NP dispersion, in order to expose only a few micrograms of Ag NPs to the aqueous media. The dissolution rate of Ag NPs in 10 mM NaNO3 was more than two times higher for ~2 µg compared with ~8 µg of Ag NPs deposited onto the membrane, emphasizing the importance of evaluating the dissolution of ENMs at low concentrations in order to keep a realistic scenario. Dissolution rates of Ag NPs in artificial waters (2 mM Ca(NO3)2, 0.5 mM MgSO4, 0–5 mM NaHCO3) were also determined, proving the feasibility of the test using environmentally relevant media. In view of the current lack of harmonized methods, this work encourages the standardization of continuous flow dissolution methods toward OECD guidelines focused on natural aquatic environments, for systematic comparisons of nanomaterials and adapted risk assessments.
Collapse
|
25
|
Ciobanu V, Roncari F, Ceccone G, Braniste T, Ponti J, Bogni A, Guerrini G, Cassano D, Colpo P, Tiginyanu I. Protein-corona formation on aluminum doped zinc oxide and gallium nitride nanoparticles. J Appl Biomater Funct Mater 2022; 20:22808000221131881. [DOI: 10.1177/22808000221131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The interaction of semiconductor nanoparticles with bio-molecules attracts increasing interest of researchers, considering the reactivity of nanoparticles and the possibility to control their properties remotely giving mechanical, thermal, or electrical stimulus to the surrounding bio-environment. This work reports on a systematic comparative study of the protein-corona formation on aluminum doped zinc oxide and gallium nitride nanoparticles. Bovine serum albumin was chosen as a protein model. Dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopy techniques have been used to demonstrate the formation of protein-corona as well as the stability of the colloidal suspension given by BSA, which also works as a surfactant. The protein adsorption on the NPs surface studied by Bradford Assay showed the dependence on the quantity of proteins adsorbed to the available sites on the NPs surface, thus the saturation was observed at ratio higher than 5:1 (NPs:Proteins) in case of ZnO, these correlating with DLS results. Moreover, the kinetics of the proteins showed a relatively fast adsorption on the NPs surface with a saturation curve after about 25 min. GaN NPs, however, showed a very small amount of proteins adsorbed on the surface, a change in the hydrodynamic size being not observable with DLS technique or differential centrifugal sedimentation. The Circular Dichroism analysis suggests a drastic structural change in the secondary structure of the BSA after attaching on the NPs surface. The ZnO nanoparticles adsorb a protein-corona, which does not protect them against dissolution, and in consequence, the material proved to be highly toxic for Human keratinocyte cell line (HaCaT) at concentration above 25 µg/mL. In contrast, the GaN nanoparticles which do not adsorb a protein-corona, show no toxicity signs for HaCaT cells at concentration as high as 50 µg/mL, exhibiting much lower concentration of ions leakage in the culture medium as compared to ZnO nanoparticles.
Collapse
Affiliation(s)
- Vladimir Ciobanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Moldova
| | | | - Giacomo Ceccone
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Moldova
| | - Jessica Ponti
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | - Alessia Bogni
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | | | - Pascal Colpo
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Moldova
- Academy of Sciences of Moldova, Chisinau, Moldova
| |
Collapse
|
26
|
Khabir Z, Holmes AM, Lai YJ, Liang L, Deva A, Polikarpov MA, Roberts MS, Zvyagin AV. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int J Mol Sci 2021; 22:12372. [PMID: 34830253 PMCID: PMC8618668 DOI: 10.3390/ijms222212372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Zinc oxide nanoparticle (ZnO NP)-based sunscreens are generally considered safe because the ZnO NPs do not penetrate through the outermost layer of the skin, the stratum corneum (SC). However, cytotoxicity of zinc ions in the viable epidermis (VE) after dissolution from ZnO NP and penetration into the VE is ill-defined. We therefore quantified the relative concentrations of endogenous and exogenous Zn using a rare stable zinc-67 isotope (67Zn) ZnO NP sunscreen applied to excised human skin and the cytotoxicity of human keratinocytes (HaCaT) using multiphoton microscopy, zinc-selective fluorescent sensing, and a laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) methodology. Multiphoton microscopy with second harmonic generation imaging showed that 67ZnO NPs were retained on the surface or within the superficial layers of the SC. Zn fluorescence sensing revealed higher levels of labile and intracellular zinc in both the SC and VE relative to untreated skin, confirming that dissolved zinc species permeated across the SC into the VE as ionic Zn and significantly not as ZnO NPs. Importantly, the LA-ICP-MS estimated exogenous 67Zn concentrations in the VE of 1.0 ± 0.3 μg/mL are much lower than that estimated for endogenous VE zinc of 4.3 ± 0.7 μg/mL. Furthermore, their combined total zinc concentrations in the VE are much lower than the exogenous zinc concentration of 21 to 31 μg/mL causing VE cytotoxicity, as defined by the half-maximal inhibitory concentration of exogenous 67Zn found in human keratinocytes (HaCaT). This speaks strongly for the safety of ZnO NP sunscreens applied to intact human skin and the associated recent US FDA guidance.
Collapse
Affiliation(s)
- Zahra Khabir
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Amy M. Holmes
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
| | - Yi-Jen Lai
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | - Liuen Liang
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Anand Deva
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | | | - Michael S. Roberts
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
- Diamantina Institute, University of Queensland, Brisbane 4072, Australia
| | - Andrei V. Zvyagin
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- Centre of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
27
|
Caldelas C, Gurí R, Araus JL, Sorolla A. Effect of ZnO nanoparticles on Zn, Cu, and Pb dissolution in a green bioretention system for urban stormwater remediation. CHEMOSPHERE 2021; 282:131045. [PMID: 34118633 DOI: 10.1016/j.chemosphere.2021.131045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Stormwater runoff from urban and suburban areas can carry hazardous pollutants directly into aquatic ecosystems. These pollutants, such as metals, nutrients, aromatic hydrocarbons, pesticides, and pharmaceuticals, are very toxic to aquatic organisms. Recently, significant amounts of zinc oxide engineered nanoparticles (ZnO-NPs) have been detected in urban stormwater and its bioretention systems. This raises concerns about a potential increase of stormwater toxicity and reduced performance of the treatment infrastructures. To tackle these issues, we developed a simple, low-cost bioretention system to remediate stormwater and retain ZnO-NPs. This system retained up to 73% Zn, 66% Cu, and >99% Pb. However, the removal efficiency for Pb was lower after adding ZnO-NPs to the system, possibly due to the remobilization of Pb phosphates. The effect of ZnO-NPs on stormwater toxicity and metal accumulation in wetland plants was also evaluated.
Collapse
Affiliation(s)
- C Caldelas
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Av. Diagonal, 643, 08015, Barcelona, Spain.
| | - R Gurí
- CERM, Center for the Study of Mediterranean Rivers, University of Vic - Central University of Catalonia, Ter River Museum, Passeig del Ter 2, 08560 Manlleu, Catalonia, Spain; Naturalea, Terra Alta, 51, 08211, Castellar del Vallès, Barcelona, Spain
| | - J L Araus
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Av. Diagonal, 643, 08015, Barcelona, Spain
| | - A Sorolla
- Naturalea, Terra Alta, 51, 08211, Castellar del Vallès, Barcelona, Spain
| |
Collapse
|
28
|
Wei W, Chen X, Liu Y, Ni BJ. Aerobic sludge digestion is distinguishingly affected by the different entering pathways of zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125799. [PMID: 33838507 DOI: 10.1016/j.jhazmat.2021.125799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widespread emerging pollutants raising global concerns about their influences on biological wastewater treatment processes. However, the impacts of ZnO NPs on aerobic sludge digestion that is a major sludge treatment process remain unknown. Herein, this study comprehensively investigated the key influences of ZnO NPs on aerobic digestion of waste activated sludge (WAS) and the potential mechanisms involved. Two different entering pathways, i.e., ZnO NPs directly entered into aerobic sludge digester and ZnO NPs initially entered into wastewater bio-treatment reactor, were tested to evaluate the different impacts. Compared to the control, ZnO NPs initially entering into wastewater bioreactor inhibited WAS degradation by 18.2 ± 0.1%, whereas ZnO NPs immediately entered into digester inhibited it by 29.7 ± 0.1%. This was accompanied by a similar decrease in inorganic nitrogen production and oxygen consumption. ZnO NPs exposure in wastewater bioreactor changed WAS characteristics in favor of solubilization in aerobic digestion. Modelling analysis indicated that ZnO NPs inhibited WAS hydrolysis, especially for their direct entering into aerobic digester. Correspondingly, microbial community was shifted in the direction against aerobic digestion by the ZnO NPs. Excessive oxidative stress and Zn2+ release represented the primary toxicity factors for the inhibition.
Collapse
Affiliation(s)
- Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
29
|
Cai S, Wang H, Tang J, Tang X, Guan P, Li J, Jiang Y, Wu Y, Xu R. Feedback mechanisms of periphytic biofilms to ZnO nanoparticles toxicity at different phosphorus levels. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125834. [PMID: 33873034 DOI: 10.1016/j.jhazmat.2021.125834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The increasing use of nanoparticles (NPs) has raised concerns about their potential environmental risks. Many researches on NPs focused on the toxicity mechanism to microorganisms, but neglect the toxicity effects in relation to nutritional conditions. Here, we evaluated the interactive effects of zinc oxide (ZnO) NPs and phosphorus (P) levels on the bacterial community and functioning of periphytic biofilms. Results showed that long-term exposure to ZnO NPs significantly reduced alkaline phosphatase activity (APA) of periphytic biofilms just in P-limited conditions. Co-occurrence network analysis indicated that ZnO NPs exposure reduced network complexity between bacterial taxa in P-limited conditions, while the opposite trend was observed in P-replete conditions. Correlation analysis and random forest modeling suggested that excessive Zn2+ released and high reactive oxygen species (ROS) production might be mainly responsible for the inhibition of APA induced by ZnO NPs under P-limited conditions, while adjustment of bacterial diversity and improvement of keystone taxa cooperation were the main mechanisms in maintaining APA when subjected to weak toxicity of ZnO NPs in P-replete conditions. Taken together, our results provide insights into the biological feedback mechanism involved in ZnO NPs exposure on the ecological function of periphytic biofilms in different P nutritional conditions.
Collapse
Affiliation(s)
- Shujie Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotian Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuyu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renkou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Determination of silver nanoparticles in cosmetics using single particle ICP-MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01763-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Stepankova H, Swiatkowski M, Kruszynski R, Svec P, Michalkova H, Smolikova V, Ridoskova A, Splichal Z, Michalek P, Richtera L, Kopel P, Adam V, Heger Z, Rex S. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int J Nanomedicine 2021; 16:4431-4449. [PMID: 34234435 PMCID: PMC8257049 DOI: 10.2147/ijn.s304902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcin Swiatkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Vendula Smolikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Mendel University in Brno, Brno, Czechia
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
32
|
Ruiz-Torres N, Flores-Naveda A, Barriga-Castro ED, Camposeco-Montejo N, Ramírez-Barrón S, Borrego-Escalante F, Niño-Medina G, Hernández-Juárez A, Garza-Alonso C, Rodríguez-Salinas P, García-López JI. Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants ( Coriandrum sativum). Molecules 2021; 26:1998. [PMID: 33916062 PMCID: PMC8037768 DOI: 10.3390/molecules26071998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP-AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.
Collapse
Affiliation(s)
- Norma Ruiz-Torres
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Antonio Flores-Naveda
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo, Saltillo C.P. 25294, Coahuila, Mexico;
| | - Neymar Camposeco-Montejo
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Sonia Ramírez-Barrón
- Departamento de Parasitología y Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (S.R.-B.); (A.H.-J.)
| | - Fernando Borrego-Escalante
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| | - Guillermo Niño-Medina
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda el Canada, General Escobedo C.P. 66050, Nuevo León, Mexico; (G.N.-M.); (C.G.-A.)
| | - Agustín Hernández-Juárez
- Departamento de Parasitología y Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (S.R.-B.); (A.H.-J.)
| | - Carlos Garza-Alonso
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda el Canada, General Escobedo C.P. 66050, Nuevo León, Mexico; (G.N.-M.); (C.G.-A.)
| | - Pablo Rodríguez-Salinas
- Departamento en Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro C.P. 76230, Juriquilla, Mexico;
| | - Josué I. García-López
- Centro de Capacitación y Desarrollo en Tecnología de Semillas, Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Saltillo C.P. 25315, Coahuila, Mexico; (N.R.-T.); (A.F.-N.); (N.C.-M.); (F.B.-E.)
| |
Collapse
|
33
|
|
34
|
Rajendran G, Datta SP, Singh RD, Datta SC, Vakada M. Synthesis and characterization of ZnO nanoparticles – comparison of acetate (precursor) based methods. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1891099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gobinath Rajendran
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Siba Prasad Datta
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Raj Deo Singh
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | - Manasa Vakada
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| |
Collapse
|
35
|
Ergönül MB, Nassouhi D, Çelik M, Atasağun S. A comparison of the removal efficiencies of Myriophyllum spicatum L. for zinc oxide nanoparticles (ZnO NP) in different media: a microcosm approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8556-8568. [PMID: 33064281 DOI: 10.1007/s11356-020-11113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The phytoremediation potential of Myriophyllum spicatum L. has been well documented for bulk-sized heavy metals, including zinc (Zn). However, there is no information on the removal efficiencies of this aquatic macrophyte for zinc oxide nanoparticles contaminated waters. Therefore, the present study was aimed to compare the removal efficiency of M. spicatum in two different media: tap water and pond water. Results were evaluated by comparing percentage (%) removal and goodness-of-fit to regression models. Plants were exposed to 0.8 and 2 ppm nano-sized Zn for 1, 4, and 7 days. The zinc concentrations were monitored using ICP-MS. The %removal in tap water ranged between 29.5 and 70.3%, and slightly higher in pond water. Modeling results confirmed that there was a strong relationship between removal performance and exposure duration. Time-dependent removal shows that %removal shows no further progress after 4 days. Our results also indicate that planktonic communities in pond water might play an important role in the fate of ZnO NPs.
Collapse
Affiliation(s)
- Mehmet Borga Ergönül
- Department of Biology, Faculty of Science, Ankara University, 06100, Ankara, Turkey.
| | - Danial Nassouhi
- Department of Biology, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Meltem Çelik
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Sibel Atasağun
- Department of Biology, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
36
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
37
|
Canta M, Cauda V. The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: a tutorial review. Biomater Sci 2020; 8:6157-6174. [PMID: 33079078 DOI: 10.1039/d0bm01086c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the last 30 years the research about zinc oxide nanoparticles (ZnO NPs) and their related toxicity has shown a boom. ZnO NPs show cytotoxicity for both prokaryotic and eukaryotic cells and many studies demonstrated their selective toxicity towards cancer cells. However, with the increasing number of publications, it is observed an increase in the discrepancies obtained between the various results. Soon the scientific community understood that the ZnO NC toxicity behaviour is affected by many factors, related not only to the ZnO NPs themselves, but also to the experimental conditions used. Many recent reviews discussed these parameters by reporting experimental evidence and tried to assess the general statements about the ZnO NP cytotoxicity. This information is extremely useful for the evaluation of which type of ZnO NPs is more or less suitable for a specific study or application. However, despite that, a deep comprehension of the ZnO NP behaviour in relation to the different experimental conditions is still lacking. Actually, a full understanding of the reasons behind the NP behaviour is essential to better assess their biological activity and in particular their therapeutic application, avoiding undesired effects both in the experimental and clinical contexts. This tutorial review aims to be an experimental and practical guide for scientists that faced with the use of ZnO NPs for biomedical applications and, in particular, for their therapeutic purposes. The driving idea is to not simply summarize the results reported in the literature, but to provide instruments for a deep comprehension of the mechanisms affecting the ZnO NP cytotoxicity and behavior. This review also aims to point out the critical experimental parameters to be considered when working with these NPs, as well as the main related risks and limitations that scientists have to face.
Collapse
Affiliation(s)
- Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | | |
Collapse
|
38
|
Sabir S, Zahoor MA, Waseem M, Siddique MH, Shafique M, Imran M, Hayat S, Malik IR, Muzammil S. Biosynthesis of ZnO Nanoparticles Using Bacillus Subtilis: Characterization and Nutritive Significance for Promoting Plant Growth in Zea mays L. Dose Response 2020; 18:1559325820958911. [PMID: 32973419 PMCID: PMC7493260 DOI: 10.1177/1559325820958911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Nano-fertilizer(s), an emerging field of agriculture, is alternate option for enhancement of plant growth replacing the synthetic fertilizers. Zinc oxide nanoparticles (ZnO NPs) can be used as the zinc source for plants. The present investigation was carried out to assess the role of ZnO NPs in growth promotion of maize plants. Biosynthesized ZnO NPs (using Bacillus sp) were characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and Zeta potential. Different concentrations of ZnO NPs (2, 4, 8, 16 mg/L) were explored in pot culture experiment. Size of ZnO NPs ranged between 16 and 20 nm. A significant increase in growth parameters like shoot length (61.7%), root length (56.9%) and significantly higher level of protein was observed in the treated plants. The overall pattern for growth biomarkers including the protein contents was maximum at 8 mg/L of ZnO NPs. It was observed that application of biosynthesized ZnO NPs has improved majority of growth biomarkers including plant growth parameters, protein contents and leaf area. Therefore, biosynthesized ZnO NPs could be considered as an alternate source of nutrient in Zn deficient soils for promoting the modern agriculture.
Collapse
Affiliation(s)
- Sumera Sabir
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shafique
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Imran Riaz Malik
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
39
|
Johnson CR, Tran MN, Michelitsch LM, Abraham S, Hu J, Gray KA, Hartmann EM. Nano-enabled, antimicrobial toothbrushes - How physical and chemical properties relate to antibacterial capabilities. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122445. [PMID: 32298860 DOI: 10.1016/j.jhazmat.2020.122445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 05/06/2023]
Abstract
Over the past two decades, Ag and Zn nanoparticles have been integrated into various consumer products as a biocide. While some nano-enabled consumer products have been shown to have antibacterial properties, their antibacterial efficacy as well as the human and environmental health outcomes are not fully known. In this study, we examine a nanoparticle-enabled product that also serves as a conduit for human exposure to bacteria: toothbrushes. We utilize a combination of chemical analyses, laboratory experiments, and microscopy to characterize the nano-enabled toothbrush bristles. Our analysis showed the majority of measured Ag and Zn particles ranged from approximately 50 to 100 nm in size and were located on the surface and within bristles. During simulated brushing, antimicrobial bristles released both Ag and Zn, the majority of which was released in particulate form. While our results demonstrate that antimicrobial bristles have enhanced bactericidal properties compared to control samples, we also show that the surface topography influences nanoparticle retention, microbial adhesion, and bactericidal activity. We thus conclude that Ag or Zn content alone is insufficient to predict antimicrobial properties, which are further governed by the bioavailability of Ag or Zn at the bristle surface.
Collapse
Affiliation(s)
- Clayton R Johnson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States.
| | - Mia Nhu Tran
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Lisa-Marie Michelitsch
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Simi Abraham
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States.
| |
Collapse
|
40
|
Wang X, Sun T, Zhu H, Han T, Wang J, Dai H. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110656. [PMID: 32349960 DOI: 10.1016/j.jenvman.2020.110656] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The effects of pH, cation valence, and ionic strength (IS) on the stability and aggregation behavior of zinc oxide nanoparticles (ZnO NPs) were investigated in this study. Results showed that ZnO NPs were most prone to aggregation at the isoelectric point (pH = 8.7), with an aggregation rate (ΔD/Δt) of 30.1. ZnO NPs showed a greater propensity for dissolution at lower pH (pH < 7), and Zn2+ was more rapidly released into the aqueous phase in acidic solutions than neutral or alkaline conditions. The C/C0 of ZnO NPs was about 21.56% and remained stable in acidic solution of pH 4.0. Additionally, slow sedimentation with a C/C0 ratio of 95.0% was observed due to an increase in repulsive interactions between nanoparticles under pH = 10. The effect of cations on the ΔD/Δt of ZnO NPs decreased in strength as follows: Ca2+ > Mg2+ > K+ > Na+. High-valence metal cations (Ca2+, Mg2+) were more competitively adsorbed onto the surface of ZnO NPs with a hydrogen atom due to Coulomb's law, increasing the zeta potential and stabilizing the suspension of ZnO NPs at IS < 10 mM. Furthermore, compression of the electric double layer (EDL) became stronger than electrostatic adsorption with increasing IS, reaching a maximum ΔD/Δt of 23.3 (Ca2+, pH = 7, IS = 1 M). The C/C0 ratio of ZnO NPs decreased from 100% to 56.5% (Na+), 52.2% (K+), 45.2% (Mg2+), and 40.1% (Ca2+) at pH = 7 and an IS of 0.5 M. In addition to the cation valence, the hydration forces and ionic radii of the metal cations might be other factors that affected the interactions of metal cations with ZnO NPs. Finally, the total interaction energy between ZnO NPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, and the calculated results were in agreement with the experimental outcomes under various aquatic environmental conditions.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Tongshuai Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hui Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Jindalai Environmental Protection Co., Ltd, Jiangxi, 330100, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| |
Collapse
|
41
|
Sabir S, Zahoor MA, Waseem M, Siddique MH, Shafique M, Imran M, Hayat S, Malik IR, Muzammil S. Biosynthesis of ZnO Nanoparticles Using Bacillus Subtilis: Characterization and Nutritive Significance for Promoting Plant Growth in Zea mays L. Dose Response 2020; 18. [DOI: doi.org/10.1177/1559325820958911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Nano-fertilizer(s), an emerging field of agriculture, is alternate option for enhancement of plant growth replacing the synthetic fertilizers. Zinc oxide nanoparticles (ZnO NPs) can be used as the zinc source for plants. The present investigation was carried out to assess the role of ZnO NPs in growth promotion of maize plants. Biosynthesized ZnO NPs (using Bacillus sp) were characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and Zeta potential. Different concentrations of ZnO NPs (2, 4, 8, 16 mg/L) were explored in pot culture experiment. Size of ZnO NPs ranged between 16 and 20 nm. A significant increase in growth parameters like shoot length (61.7%), root length (56.9%) and significantly higher level of protein was observed in the treated plants. The overall pattern for growth biomarkers including the protein contents was maximum at 8 mg/L of ZnO NPs. It was observed that application of biosynthesized ZnO NPs has improved majority of growth biomarkers including plant growth parameters, protein contents and leaf area. Therefore, biosynthesized ZnO NPs could be considered as an alternate source of nutrient in Zn deficient soils for promoting the modern agriculture.
Collapse
Affiliation(s)
- Sumera Sabir
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shafique
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Imran Riaz Malik
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
42
|
Tymoszuk A, Wojnarowicz J. Zinc Oxide and Zinc Oxide Nanoparticles Impact on In Vitro Germination and Seedling Growth in Allium cepa L. MATERIALS 2020; 13:ma13122784. [PMID: 32575606 PMCID: PMC7344999 DOI: 10.3390/ma13122784] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are ones of the most commonly manufactured nanomaterials worldwide. They can be used as a zinc fertilizer in agriculture to enhance yielding and to control the occurrence of diseases thanks to its broad antifungal and antibacterial action. The aim of this study was to investigate and compare the effects of ZnO submicron particles (ZnO SMPs) and ZnO NPs on the process of in vitro seed germination and seedling growth in onion (Allium cepa L. 'Sochaczewska'), and to indicate the potential use of these compounds in onion production. In the experiment, disinfected seeds were inoculated on the modified Murashige and Skoog (MS) medium and poured with ZnO SMP or ZnO NP water suspension, at the concentrations of 50, 100, 200, 400, 800, 1600, and 3200 mg∙L-1. During three successive weeks, the germinating seeds were counted. Germination started most often on the second or third day of in vitro culture. The highest share of germination was recorded for seeds treated with 800 mg∙L-1 ZnO SMPs and ZnO NPs (52% and 56%, respectively). After the application of ZnO SMPs and ZnO NPs at the highest tested concentration (3200 mg∙L-1), the share of germinating seeds was only 19% and 11%, respectively. Interestingly, seedlings obtained from control seeds and seeds treated with ZnO SMPs and ZnO NPs did not differ statistically in terms of length, fresh weight, and dry weight of leaves, and roots. Both ZnO SMPs and ZnO NPs, in the concentration range from 50 to 1600 mg∙L-1, can be used to stimulate the germination process of onion seeds, without negative effects on the further growth and development of seedlings. There were no differences found between the action of ZnO NPs and ZnO SMPs, which suggested that the most important factor influencing seed germination was in fact the concentration of zinc ions, not the particle size.
Collapse
Affiliation(s)
- Alicja Tymoszuk
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology in Bydgoszcz, 6 Bernardyńska St., PL-85-029 Bydgoszcz, Poland
- Correspondence: (A.T.); (J.W.); Tel.: +48-52374-95-64 (A.T.); +48-22-876-04-29 (J.W.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, 29/37 Sokolowska St., PL-01-142 Warsaw, Poland
- Correspondence: (A.T.); (J.W.); Tel.: +48-52374-95-64 (A.T.); +48-22-876-04-29 (J.W.)
| |
Collapse
|
43
|
Holmes AM, Kempson I, Turnbull T, Paterson D, Roberts MS. Penetration of Zinc into Human Skin after Topical Application of Nano Zinc Oxide Used in Commercial Sunscreen Formulations. ACS APPLIED BIO MATERIALS 2020; 3:3640-3647. [DOI: 10.1021/acsabm.0c00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amy M. Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
| | - Ivan Kempson
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | - Tyron Turnbull
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | | | - Michael S. Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
- Therapeutics Research Centre, The University of Queensland, Brisbane 4102, Australia
| |
Collapse
|
44
|
Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. NANOMATERIALS 2020; 10:nano10030545. [PMID: 32197356 PMCID: PMC7153628 DOI: 10.3390/nano10030545] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
(1) In compliance with the 3Rs policy to reduce, refine and replace animal experiments, the development of advanced in vitro models is needed for nanotoxicity assessment. Cells cultivated in 3D resemble organ structures better than 2D cultures. This study aims to compare cytotoxic and genotoxic responses induced by titanium dioxide (TiO2), silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) in 2D monolayer and 3D spheroid cultures of HepG2 human liver cells. (2) NPs were characterized by electron microscopy, dynamic light scattering, laser Doppler anemometry, UV-vis spectroscopy and mass spectrometry. Cytotoxicity was investigated by the alamarBlue assay and confocal microscopy in HepG2 monolayer and spheroid cultures after 24 h of NP exposure. DNA damage (strand breaks and oxidized base lesions) was measured by the comet assay. (3) Ag-NPs were aggregated at 24 h, and a substantial part of the ZnO-NPs was dissolved in culture medium. Ag-NPs induced stronger cytotoxicity in 2D cultures (EC50 3.8 µg/cm2) than in 3D cultures (EC50 > 30 µg/cm2), and ZnO-NPs induced cytotoxicity to a similar extent in both models (EC50 10.1-16.2 µg/cm2). Ag- and ZnO-NPs showed a concentration-dependent genotoxic effect, but the effect was not statistically significant. TiO2-NPs showed no toxicity (EC50 > 75 µg/cm2). (4) This study shows that the HepG2 spheroid model is a promising advanced in vitro model for toxicity assessment of NPs.
Collapse
|
45
|
Rossner P, Vrbova K, Strapacova S, Rossnerova A, Ambroz A, Brzicova T, Libalova H, Javorkova E, Kulich P, Vecera Z, Mikuska P, Coufalik P, Krumal K, Capka L, Docekal B, Moravec P, Sery O, Misek I, Fictum P, Fiser K, Machala M, Topinka J. Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice. Toxicol Sci 2020; 168:190-200. [PMID: 30500950 PMCID: PMC6390655 DOI: 10.1093/toxsci/kfy288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
Collapse
Affiliation(s)
- Pavel Rossner
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Kristyna Vrbova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Simona Strapacova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Andrea Rossnerova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Antonin Ambroz
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Tana Brzicova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Department for Risk Research and Management, Faculty of Safety Engineering, VSB-Technical University of Ostrava, Ostrava 700 30, Czech Republic
| | - Helena Libalova
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Eliska Javorkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Lukas Capka
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Bohumil Docekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Pavel Moravec
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague 16502, Czech Republic
| | - Omar Sery
- Department of Animal Embryology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Ivan Misek
- Department of Animal Embryology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic
| | - Karel Fiser
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague 15006, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Topinka
- *Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
46
|
Holmes AM, Mackenzie L, Roberts MS. Disposition and measured toxicity of zinc oxide nanoparticles and zinc ions against keratinocytes in cell culture and viable human epidermis. Nanotoxicology 2020; 14:263-274. [PMID: 32003270 DOI: 10.1080/17435390.2019.1692382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Suspensions of the UV filter, zinc oxide nanoparticles (ZnO NP), are widely used in sunscreen products. This paper compared the relative disposition and local cytotoxicity of ZnO NP, and zinc ions formed on its dissolution, against keratinocyte cultures and in the human epidermis (ex vivo) after application of suspensions of ZnO NP. HaCaT keratinocyte cytotoxicities were found to be related to labile intra-cellular zinc but also total zinc and extra-cellular concentrations in cell culture media and to a degree ameliorated by the presence of a zinc chelating agent. Secondly, the zinc species were then dosed onto exposed ex vivo viable human epidermis and it was found that an increase in labile zinc level correlated with a shift in the metabolic state of the viable epidermis. This study highlights that excised viable skin acts as a more relevant model for determining cutaneous toxicity over keratinocyte monolayers in vitro.
Collapse
Affiliation(s)
- Amy M Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Quality Medication Care Pty Ltd, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Lorraine Mackenzie
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Quality Medication Care Pty Ltd, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Michael S Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Therapeutics Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
47
|
Fate Determination of ZnO in Commercial Foods and Human Intestinal Cells. Int J Mol Sci 2020; 21:ijms21020433. [PMID: 31936671 PMCID: PMC7014048 DOI: 10.3390/ijms21020433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Zinc oxide (ZnO) particles are widely used as zinc (Zn) fortifiers, because Zn is essential for various cellular functions. Nanotechnology developments may lead to production of nano-sized ZnO, although nanoparticles (NPs) are not intended to be used as food additives. Current regulations do not specify the size distribution of NPs. Moreover, ZnO is easily dissolved into Zn ions under acidic conditions. However, the fate of ZnO in commercial foods or during intestinal transit is still poorly understood. (2) Methods: We established surfactant-based cloud point extraction (CPE) for ZnO NP detection as intact particle forms using pristine ZnO-NP-spiked powdered or liquid foods. The fate determination and dissolution characterization of ZnO were carried out in commercial foods and human intestinal cells using in vitro intestinal transport and ex vivo small intestine absorption models. (3) Results: The results demonstrated that the CPE can effectively separate ZnO particles and Zn ions in food matrices and cells. The major fate of ZnO in powdered foods was in particle form, in contrast to its ionic fate in liquid beverages. The fate of ZnO was closely related to the extent of its dissolution in food or biomatrices. ZnO NPs were internalized into cells in both particle and ion form, but dissolved into ions with time, probably forming a Zn–ligand complex. ZnO was transported through intestinal barriers and absorbed in the small intestine primarily as Zn ions, but a small amount of ZnO was absorbed as particles. (4) Conclusion: The fate of ZnO is highly dependent on food matrix type, showing particle and ionic fates in powdered foods and liquid beverages, respectively. The major intracellular and intestinal absorption fates of ZnO NPs were Zn ions, but a small portion of ZnO particle fate was also observed after intestinal transit. These findings suggest that the toxicity of ZnO is mainly related to the Zn ion, but potential toxicity resulting from ZnO particles cannot be completely excluded.
Collapse
|
48
|
Luksiene Z, Rasiukeviciute N, Zudyte B, Uselis N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111656. [DOI: 10.1016/j.jphotobiol.2019.111656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
49
|
Coban O, Degim Z. Development and validation of highly selective method for the determination of imatinib mesylate and dexketoprofen trometamol combination in three different media. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ozlem Coban
- Karadeniz Technical University Faculty of Pharmacy, Turkey
| | | |
Collapse
|
50
|
Yadav VK, Khan SH, Malik P, Thappa A, Suriyaprabha R, Ravi RK, Choudhary N, Kalasariya H, Gnanamoorthy G. Microbial Synthesis of Nanoparticles and Their Applications for Wastewater Treatment. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2817-0_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|